]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/mlx5/mlx5_rxtx.h
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / mlx5 / mlx5_rxtx.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2015 6WIND S.A.
3 * Copyright 2015 Mellanox Technologies, Ltd
4 */
5
6 #ifndef RTE_PMD_MLX5_RXTX_H_
7 #define RTE_PMD_MLX5_RXTX_H_
8
9 #include <stddef.h>
10 #include <stdint.h>
11 #include <sys/queue.h>
12
13 /* Verbs header. */
14 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
15 #ifdef PEDANTIC
16 #pragma GCC diagnostic ignored "-Wpedantic"
17 #endif
18 #include <infiniband/verbs.h>
19 #include <infiniband/mlx5dv.h>
20 #ifdef PEDANTIC
21 #pragma GCC diagnostic error "-Wpedantic"
22 #endif
23
24 #include <rte_mbuf.h>
25 #include <rte_mempool.h>
26 #include <rte_common.h>
27 #include <rte_hexdump.h>
28 #include <rte_atomic.h>
29 #include <rte_spinlock.h>
30 #include <rte_io.h>
31 #include <rte_bus_pci.h>
32
33 #include "mlx5_utils.h"
34 #include "mlx5.h"
35 #include "mlx5_mr.h"
36 #include "mlx5_autoconf.h"
37 #include "mlx5_defs.h"
38 #include "mlx5_prm.h"
39
40 /* Support tunnel matching. */
41 #define MLX5_FLOW_TUNNEL 5
42
43 struct mlx5_rxq_stats {
44 #ifdef MLX5_PMD_SOFT_COUNTERS
45 uint64_t ipackets; /**< Total of successfully received packets. */
46 uint64_t ibytes; /**< Total of successfully received bytes. */
47 #endif
48 uint64_t idropped; /**< Total of packets dropped when RX ring full. */
49 uint64_t rx_nombuf; /**< Total of RX mbuf allocation failures. */
50 };
51
52 struct mlx5_txq_stats {
53 #ifdef MLX5_PMD_SOFT_COUNTERS
54 uint64_t opackets; /**< Total of successfully sent packets. */
55 uint64_t obytes; /**< Total of successfully sent bytes. */
56 #endif
57 uint64_t oerrors; /**< Total number of failed transmitted packets. */
58 };
59
60 struct mlx5_priv;
61
62 /* Compressed CQE context. */
63 struct rxq_zip {
64 uint16_t ai; /* Array index. */
65 uint16_t ca; /* Current array index. */
66 uint16_t na; /* Next array index. */
67 uint16_t cq_ci; /* The next CQE. */
68 uint32_t cqe_cnt; /* Number of CQEs. */
69 };
70
71 /* Multi-Packet RQ buffer header. */
72 struct mlx5_mprq_buf {
73 struct rte_mempool *mp;
74 rte_atomic16_t refcnt; /* Atomically accessed refcnt. */
75 uint8_t pad[RTE_PKTMBUF_HEADROOM]; /* Headroom for the first packet. */
76 } __rte_cache_aligned;
77
78 /* Get pointer to the first stride. */
79 #define mlx5_mprq_buf_addr(ptr) ((ptr) + 1)
80
81 /* RX queue descriptor. */
82 struct mlx5_rxq_data {
83 unsigned int csum:1; /* Enable checksum offloading. */
84 unsigned int hw_timestamp:1; /* Enable HW timestamp. */
85 unsigned int vlan_strip:1; /* Enable VLAN stripping. */
86 unsigned int crc_present:1; /* CRC must be subtracted. */
87 unsigned int sges_n:2; /* Log 2 of SGEs (max buffers per packet). */
88 unsigned int cqe_n:4; /* Log 2 of CQ elements. */
89 unsigned int elts_n:4; /* Log 2 of Mbufs. */
90 unsigned int rss_hash:1; /* RSS hash result is enabled. */
91 unsigned int mark:1; /* Marked flow available on the queue. */
92 unsigned int strd_num_n:5; /* Log 2 of the number of stride. */
93 unsigned int strd_sz_n:4; /* Log 2 of stride size. */
94 unsigned int strd_shift_en:1; /* Enable 2bytes shift on a stride. */
95 unsigned int :6; /* Remaining bits. */
96 volatile uint32_t *rq_db;
97 volatile uint32_t *cq_db;
98 uint16_t port_id;
99 uint32_t rq_ci;
100 uint16_t consumed_strd; /* Number of consumed strides in WQE. */
101 uint32_t rq_pi;
102 uint32_t cq_ci;
103 uint16_t rq_repl_thresh; /* Threshold for buffer replenishment. */
104 struct mlx5_mr_ctrl mr_ctrl; /* MR control descriptor. */
105 uint16_t mprq_max_memcpy_len; /* Maximum size of packet to memcpy. */
106 volatile void *wqes;
107 volatile struct mlx5_cqe(*cqes)[];
108 struct rxq_zip zip; /* Compressed context. */
109 RTE_STD_C11
110 union {
111 struct rte_mbuf *(*elts)[];
112 struct mlx5_mprq_buf *(*mprq_bufs)[];
113 };
114 struct rte_mempool *mp;
115 struct rte_mempool *mprq_mp; /* Mempool for Multi-Packet RQ. */
116 struct mlx5_mprq_buf *mprq_repl; /* Stashed mbuf for replenish. */
117 uint16_t idx; /* Queue index. */
118 struct mlx5_rxq_stats stats;
119 uint64_t mbuf_initializer; /* Default rearm_data for vectorized Rx. */
120 struct rte_mbuf fake_mbuf; /* elts padding for vectorized Rx. */
121 void *cq_uar; /* CQ user access region. */
122 uint32_t cqn; /* CQ number. */
123 uint8_t cq_arm_sn; /* CQ arm seq number. */
124 #ifndef RTE_ARCH_64
125 rte_spinlock_t *uar_lock_cq;
126 /* CQ (UAR) access lock required for 32bit implementations */
127 #endif
128 uint32_t tunnel; /* Tunnel information. */
129 } __rte_cache_aligned;
130
131 /* Verbs Rx queue elements. */
132 struct mlx5_rxq_ibv {
133 LIST_ENTRY(mlx5_rxq_ibv) next; /* Pointer to the next element. */
134 rte_atomic32_t refcnt; /* Reference counter. */
135 struct mlx5_rxq_ctrl *rxq_ctrl; /* Back pointer to parent. */
136 struct ibv_cq *cq; /* Completion Queue. */
137 struct ibv_wq *wq; /* Work Queue. */
138 struct ibv_comp_channel *channel;
139 };
140
141 /* RX queue control descriptor. */
142 struct mlx5_rxq_ctrl {
143 struct mlx5_rxq_data rxq; /* Data path structure. */
144 LIST_ENTRY(mlx5_rxq_ctrl) next; /* Pointer to the next element. */
145 rte_atomic32_t refcnt; /* Reference counter. */
146 struct mlx5_rxq_ibv *ibv; /* Verbs elements. */
147 struct mlx5_priv *priv; /* Back pointer to private data. */
148 unsigned int socket; /* CPU socket ID for allocations. */
149 unsigned int irq:1; /* Whether IRQ is enabled. */
150 uint32_t flow_mark_n; /* Number of Mark/Flag flows using this Queue. */
151 uint32_t flow_tunnels_n[MLX5_FLOW_TUNNEL]; /* Tunnels counters. */
152 };
153
154 /* Indirection table. */
155 struct mlx5_ind_table_ibv {
156 LIST_ENTRY(mlx5_ind_table_ibv) next; /* Pointer to the next element. */
157 rte_atomic32_t refcnt; /* Reference counter. */
158 struct ibv_rwq_ind_table *ind_table; /**< Indirection table. */
159 uint32_t queues_n; /**< Number of queues in the list. */
160 uint16_t queues[]; /**< Queue list. */
161 };
162
163 /* Hash Rx queue. */
164 struct mlx5_hrxq {
165 LIST_ENTRY(mlx5_hrxq) next; /* Pointer to the next element. */
166 rte_atomic32_t refcnt; /* Reference counter. */
167 struct mlx5_ind_table_ibv *ind_table; /* Indirection table. */
168 struct ibv_qp *qp; /* Verbs queue pair. */
169 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
170 void *action; /* DV QP action pointer. */
171 #endif
172 uint64_t hash_fields; /* Verbs Hash fields. */
173 uint32_t rss_key_len; /* Hash key length in bytes. */
174 uint8_t rss_key[]; /* Hash key. */
175 };
176
177 /* TX queue descriptor. */
178 __extension__
179 struct mlx5_txq_data {
180 uint16_t elts_head; /* Current counter in (*elts)[]. */
181 uint16_t elts_tail; /* Counter of first element awaiting completion. */
182 uint16_t elts_comp; /* Counter since last completion request. */
183 uint16_t mpw_comp; /* WQ index since last completion request. */
184 uint16_t cq_ci; /* Consumer index for completion queue. */
185 #ifndef NDEBUG
186 uint16_t cq_pi; /* Producer index for completion queue. */
187 #endif
188 uint16_t wqe_ci; /* Consumer index for work queue. */
189 uint16_t wqe_pi; /* Producer index for work queue. */
190 uint16_t elts_n:4; /* (*elts)[] length (in log2). */
191 uint16_t cqe_n:4; /* Number of CQ elements (in log2). */
192 uint16_t wqe_n:4; /* Number of of WQ elements (in log2). */
193 uint16_t tso_en:1; /* When set hardware TSO is enabled. */
194 uint16_t tunnel_en:1;
195 /* When set TX offload for tunneled packets are supported. */
196 uint16_t swp_en:1; /* Whether SW parser is enabled. */
197 uint16_t mpw_hdr_dseg:1; /* Enable DSEGs in the title WQEBB. */
198 uint16_t max_inline; /* Multiple of RTE_CACHE_LINE_SIZE to inline. */
199 uint16_t inline_max_packet_sz; /* Max packet size for inlining. */
200 uint32_t qp_num_8s; /* QP number shifted by 8. */
201 uint64_t offloads; /* Offloads for Tx Queue. */
202 struct mlx5_mr_ctrl mr_ctrl; /* MR control descriptor. */
203 volatile struct mlx5_cqe (*cqes)[]; /* Completion queue. */
204 volatile void *wqes; /* Work queue (use volatile to write into). */
205 volatile uint32_t *qp_db; /* Work queue doorbell. */
206 volatile uint32_t *cq_db; /* Completion queue doorbell. */
207 struct rte_mbuf *(*elts)[]; /* TX elements. */
208 uint16_t port_id; /* Port ID of device. */
209 uint16_t idx; /* Queue index. */
210 struct mlx5_txq_stats stats; /* TX queue counters. */
211 #ifndef RTE_ARCH_64
212 rte_spinlock_t *uar_lock;
213 /* UAR access lock required for 32bit implementations */
214 #endif
215 } __rte_cache_aligned;
216
217 /* Verbs Rx queue elements. */
218 struct mlx5_txq_ibv {
219 LIST_ENTRY(mlx5_txq_ibv) next; /* Pointer to the next element. */
220 rte_atomic32_t refcnt; /* Reference counter. */
221 struct mlx5_txq_ctrl *txq_ctrl; /* Pointer to the control queue. */
222 struct ibv_cq *cq; /* Completion Queue. */
223 struct ibv_qp *qp; /* Queue Pair. */
224 };
225
226 /* TX queue control descriptor. */
227 struct mlx5_txq_ctrl {
228 struct mlx5_txq_data txq; /* Data path structure. */
229 LIST_ENTRY(mlx5_txq_ctrl) next; /* Pointer to the next element. */
230 rte_atomic32_t refcnt; /* Reference counter. */
231 unsigned int socket; /* CPU socket ID for allocations. */
232 unsigned int max_inline_data; /* Max inline data. */
233 unsigned int max_tso_header; /* Max TSO header size. */
234 struct mlx5_txq_ibv *ibv; /* Verbs queue object. */
235 struct mlx5_priv *priv; /* Back pointer to private data. */
236 off_t uar_mmap_offset; /* UAR mmap offset for non-primary process. */
237 void *bf_reg; /* BlueFlame register from Verbs. */
238 };
239
240 #define MLX5_TX_BFREG(txq) \
241 (MLX5_PROC_PRIV((txq)->port_id)->uar_table[(txq)->idx])
242
243 /* mlx5_rxq.c */
244
245 extern uint8_t rss_hash_default_key[];
246
247 int mlx5_check_mprq_support(struct rte_eth_dev *dev);
248 int mlx5_rxq_mprq_enabled(struct mlx5_rxq_data *rxq);
249 int mlx5_mprq_enabled(struct rte_eth_dev *dev);
250 int mlx5_mprq_free_mp(struct rte_eth_dev *dev);
251 int mlx5_mprq_alloc_mp(struct rte_eth_dev *dev);
252 void mlx5_rxq_cleanup(struct mlx5_rxq_ctrl *rxq_ctrl);
253 int mlx5_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
254 unsigned int socket, const struct rte_eth_rxconf *conf,
255 struct rte_mempool *mp);
256 void mlx5_rx_queue_release(void *dpdk_rxq);
257 int mlx5_rx_intr_vec_enable(struct rte_eth_dev *dev);
258 void mlx5_rx_intr_vec_disable(struct rte_eth_dev *dev);
259 int mlx5_rx_intr_enable(struct rte_eth_dev *dev, uint16_t rx_queue_id);
260 int mlx5_rx_intr_disable(struct rte_eth_dev *dev, uint16_t rx_queue_id);
261 struct mlx5_rxq_ibv *mlx5_rxq_ibv_new(struct rte_eth_dev *dev, uint16_t idx);
262 struct mlx5_rxq_ibv *mlx5_rxq_ibv_get(struct rte_eth_dev *dev, uint16_t idx);
263 int mlx5_rxq_ibv_release(struct mlx5_rxq_ibv *rxq_ibv);
264 int mlx5_rxq_ibv_releasable(struct mlx5_rxq_ibv *rxq_ibv);
265 struct mlx5_rxq_ibv *mlx5_rxq_ibv_drop_new(struct rte_eth_dev *dev);
266 void mlx5_rxq_ibv_drop_release(struct rte_eth_dev *dev);
267 int mlx5_rxq_ibv_verify(struct rte_eth_dev *dev);
268 struct mlx5_rxq_ctrl *mlx5_rxq_new(struct rte_eth_dev *dev, uint16_t idx,
269 uint16_t desc, unsigned int socket,
270 const struct rte_eth_rxconf *conf,
271 struct rte_mempool *mp);
272 struct mlx5_rxq_ctrl *mlx5_rxq_get(struct rte_eth_dev *dev, uint16_t idx);
273 int mlx5_rxq_release(struct rte_eth_dev *dev, uint16_t idx);
274 int mlx5_rxq_releasable(struct rte_eth_dev *dev, uint16_t idx);
275 int mlx5_rxq_verify(struct rte_eth_dev *dev);
276 int rxq_alloc_elts(struct mlx5_rxq_ctrl *rxq_ctrl);
277 int rxq_alloc_mprq_buf(struct mlx5_rxq_ctrl *rxq_ctrl);
278 struct mlx5_ind_table_ibv *mlx5_ind_table_ibv_new(struct rte_eth_dev *dev,
279 const uint16_t *queues,
280 uint32_t queues_n);
281 struct mlx5_ind_table_ibv *mlx5_ind_table_ibv_get(struct rte_eth_dev *dev,
282 const uint16_t *queues,
283 uint32_t queues_n);
284 int mlx5_ind_table_ibv_release(struct rte_eth_dev *dev,
285 struct mlx5_ind_table_ibv *ind_tbl);
286 int mlx5_ind_table_ibv_verify(struct rte_eth_dev *dev);
287 struct mlx5_ind_table_ibv *mlx5_ind_table_ibv_drop_new(struct rte_eth_dev *dev);
288 void mlx5_ind_table_ibv_drop_release(struct rte_eth_dev *dev);
289 struct mlx5_hrxq *mlx5_hrxq_new(struct rte_eth_dev *dev,
290 const uint8_t *rss_key, uint32_t rss_key_len,
291 uint64_t hash_fields,
292 const uint16_t *queues, uint32_t queues_n,
293 int tunnel __rte_unused);
294 struct mlx5_hrxq *mlx5_hrxq_get(struct rte_eth_dev *dev,
295 const uint8_t *rss_key, uint32_t rss_key_len,
296 uint64_t hash_fields,
297 const uint16_t *queues, uint32_t queues_n);
298 int mlx5_hrxq_release(struct rte_eth_dev *dev, struct mlx5_hrxq *hxrq);
299 int mlx5_hrxq_ibv_verify(struct rte_eth_dev *dev);
300 struct mlx5_hrxq *mlx5_hrxq_drop_new(struct rte_eth_dev *dev);
301 void mlx5_hrxq_drop_release(struct rte_eth_dev *dev);
302 uint64_t mlx5_get_rx_port_offloads(void);
303 uint64_t mlx5_get_rx_queue_offloads(struct rte_eth_dev *dev);
304
305 /* mlx5_txq.c */
306
307 int mlx5_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
308 unsigned int socket, const struct rte_eth_txconf *conf);
309 void mlx5_tx_queue_release(void *dpdk_txq);
310 int mlx5_tx_uar_init_secondary(struct rte_eth_dev *dev, int fd);
311 struct mlx5_txq_ibv *mlx5_txq_ibv_new(struct rte_eth_dev *dev, uint16_t idx);
312 struct mlx5_txq_ibv *mlx5_txq_ibv_get(struct rte_eth_dev *dev, uint16_t idx);
313 int mlx5_txq_ibv_release(struct mlx5_txq_ibv *txq_ibv);
314 int mlx5_txq_ibv_releasable(struct mlx5_txq_ibv *txq_ibv);
315 int mlx5_txq_ibv_verify(struct rte_eth_dev *dev);
316 struct mlx5_txq_ctrl *mlx5_txq_new(struct rte_eth_dev *dev, uint16_t idx,
317 uint16_t desc, unsigned int socket,
318 const struct rte_eth_txconf *conf);
319 struct mlx5_txq_ctrl *mlx5_txq_get(struct rte_eth_dev *dev, uint16_t idx);
320 int mlx5_txq_release(struct rte_eth_dev *dev, uint16_t idx);
321 int mlx5_txq_releasable(struct rte_eth_dev *dev, uint16_t idx);
322 int mlx5_txq_verify(struct rte_eth_dev *dev);
323 void txq_alloc_elts(struct mlx5_txq_ctrl *txq_ctrl);
324 uint64_t mlx5_get_tx_port_offloads(struct rte_eth_dev *dev);
325
326 /* mlx5_rxtx.c */
327
328 extern uint32_t mlx5_ptype_table[];
329 extern uint8_t mlx5_cksum_table[];
330 extern uint8_t mlx5_swp_types_table[];
331
332 void mlx5_set_ptype_table(void);
333 void mlx5_set_cksum_table(void);
334 void mlx5_set_swp_types_table(void);
335 uint16_t mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts,
336 uint16_t pkts_n);
337 uint16_t mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts,
338 uint16_t pkts_n);
339 uint16_t mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
340 uint16_t pkts_n);
341 uint16_t mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts,
342 uint16_t pkts_n);
343 uint16_t mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n);
344 void mlx5_mprq_buf_free_cb(void *addr, void *opaque);
345 void mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf);
346 uint16_t mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts,
347 uint16_t pkts_n);
348 uint16_t removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts,
349 uint16_t pkts_n);
350 uint16_t removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts,
351 uint16_t pkts_n);
352 int mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset);
353 int mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset);
354 uint32_t mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id);
355
356 /* Vectorized version of mlx5_rxtx.c */
357 int mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev);
358 int mlx5_check_vec_tx_support(struct rte_eth_dev *dev);
359 int mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq_data);
360 int mlx5_check_vec_rx_support(struct rte_eth_dev *dev);
361 uint16_t mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts,
362 uint16_t pkts_n);
363 uint16_t mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts,
364 uint16_t pkts_n);
365 uint16_t mlx5_rx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts,
366 uint16_t pkts_n);
367
368 /* mlx5_mr.c */
369
370 void mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl);
371 uint32_t mlx5_rx_addr2mr_bh(struct mlx5_rxq_data *rxq, uintptr_t addr);
372 uint32_t mlx5_tx_mb2mr_bh(struct mlx5_txq_data *txq, struct rte_mbuf *mb);
373 uint32_t mlx5_tx_update_ext_mp(struct mlx5_txq_data *txq, uintptr_t addr,
374 struct rte_mempool *mp);
375 int mlx5_dma_map(struct rte_pci_device *pdev, void *addr, uint64_t iova,
376 size_t len);
377 int mlx5_dma_unmap(struct rte_pci_device *pdev, void *addr, uint64_t iova,
378 size_t len);
379
380 /**
381 * Provide safe 64bit store operation to mlx5 UAR region for both 32bit and
382 * 64bit architectures.
383 *
384 * @param val
385 * value to write in CPU endian format.
386 * @param addr
387 * Address to write to.
388 * @param lock
389 * Address of the lock to use for that UAR access.
390 */
391 static __rte_always_inline void
392 __mlx5_uar_write64_relaxed(uint64_t val, void *addr,
393 rte_spinlock_t *lock __rte_unused)
394 {
395 #ifdef RTE_ARCH_64
396 *(uint64_t *)addr = val;
397 #else /* !RTE_ARCH_64 */
398 rte_spinlock_lock(lock);
399 *(uint32_t *)addr = val;
400 rte_io_wmb();
401 *((uint32_t *)addr + 1) = val >> 32;
402 rte_spinlock_unlock(lock);
403 #endif
404 }
405
406 /**
407 * Provide safe 64bit store operation to mlx5 UAR region for both 32bit and
408 * 64bit architectures while guaranteeing the order of execution with the
409 * code being executed.
410 *
411 * @param val
412 * value to write in CPU endian format.
413 * @param addr
414 * Address to write to.
415 * @param lock
416 * Address of the lock to use for that UAR access.
417 */
418 static __rte_always_inline void
419 __mlx5_uar_write64(uint64_t val, void *addr, rte_spinlock_t *lock)
420 {
421 rte_io_wmb();
422 __mlx5_uar_write64_relaxed(val, addr, lock);
423 }
424
425 /* Assist macros, used instead of directly calling the functions they wrap. */
426 #ifdef RTE_ARCH_64
427 #define mlx5_uar_write64_relaxed(val, dst, lock) \
428 __mlx5_uar_write64_relaxed(val, dst, NULL)
429 #define mlx5_uar_write64(val, dst, lock) __mlx5_uar_write64(val, dst, NULL)
430 #else
431 #define mlx5_uar_write64_relaxed(val, dst, lock) \
432 __mlx5_uar_write64_relaxed(val, dst, lock)
433 #define mlx5_uar_write64(val, dst, lock) __mlx5_uar_write64(val, dst, lock)
434 #endif
435
436 #ifndef NDEBUG
437 /**
438 * Verify or set magic value in CQE.
439 *
440 * @param cqe
441 * Pointer to CQE.
442 *
443 * @return
444 * 0 the first time.
445 */
446 static inline int
447 check_cqe_seen(volatile struct mlx5_cqe *cqe)
448 {
449 static const uint8_t magic[] = "seen";
450 volatile uint8_t (*buf)[sizeof(cqe->rsvd1)] = &cqe->rsvd1;
451 int ret = 1;
452 unsigned int i;
453
454 for (i = 0; i < sizeof(magic) && i < sizeof(*buf); ++i)
455 if (!ret || (*buf)[i] != magic[i]) {
456 ret = 0;
457 (*buf)[i] = magic[i];
458 }
459 return ret;
460 }
461 #endif /* NDEBUG */
462
463 /**
464 * Check whether CQE is valid.
465 *
466 * @param cqe
467 * Pointer to CQE.
468 * @param cqes_n
469 * Size of completion queue.
470 * @param ci
471 * Consumer index.
472 *
473 * @return
474 * 0 on success, 1 on failure.
475 */
476 static __rte_always_inline int
477 check_cqe(volatile struct mlx5_cqe *cqe,
478 unsigned int cqes_n, const uint16_t ci)
479 {
480 uint16_t idx = ci & cqes_n;
481 uint8_t op_own = cqe->op_own;
482 uint8_t op_owner = MLX5_CQE_OWNER(op_own);
483 uint8_t op_code = MLX5_CQE_OPCODE(op_own);
484
485 if (unlikely((op_owner != (!!(idx))) || (op_code == MLX5_CQE_INVALID)))
486 return 1; /* No CQE. */
487 #ifndef NDEBUG
488 if ((op_code == MLX5_CQE_RESP_ERR) ||
489 (op_code == MLX5_CQE_REQ_ERR)) {
490 volatile struct mlx5_err_cqe *err_cqe = (volatile void *)cqe;
491 uint8_t syndrome = err_cqe->syndrome;
492
493 if ((syndrome == MLX5_CQE_SYNDROME_LOCAL_LENGTH_ERR) ||
494 (syndrome == MLX5_CQE_SYNDROME_REMOTE_ABORTED_ERR))
495 return 0;
496 if (!check_cqe_seen(cqe)) {
497 DRV_LOG(ERR,
498 "unexpected CQE error %u (0x%02x) syndrome"
499 " 0x%02x",
500 op_code, op_code, syndrome);
501 rte_hexdump(stderr, "MLX5 Error CQE:",
502 (const void *)((uintptr_t)err_cqe),
503 sizeof(*cqe));
504 }
505 return 1;
506 } else if ((op_code != MLX5_CQE_RESP_SEND) &&
507 (op_code != MLX5_CQE_REQ)) {
508 if (!check_cqe_seen(cqe)) {
509 DRV_LOG(ERR, "unexpected CQE opcode %u (0x%02x)",
510 op_code, op_code);
511 rte_hexdump(stderr, "MLX5 CQE:",
512 (const void *)((uintptr_t)cqe),
513 sizeof(*cqe));
514 }
515 return 1;
516 }
517 #endif /* NDEBUG */
518 return 0;
519 }
520
521 /**
522 * Return the address of the WQE.
523 *
524 * @param txq
525 * Pointer to TX queue structure.
526 * @param wqe_ci
527 * WQE consumer index.
528 *
529 * @return
530 * WQE address.
531 */
532 static inline uintptr_t *
533 tx_mlx5_wqe(struct mlx5_txq_data *txq, uint16_t ci)
534 {
535 ci &= ((1 << txq->wqe_n) - 1);
536 return (uintptr_t *)((uintptr_t)txq->wqes + ci * MLX5_WQE_SIZE);
537 }
538
539 /**
540 * Manage TX completions.
541 *
542 * When sending a burst, mlx5_tx_burst() posts several WRs.
543 *
544 * @param txq
545 * Pointer to TX queue structure.
546 */
547 static __rte_always_inline void
548 mlx5_tx_complete(struct mlx5_txq_data *txq)
549 {
550 const uint16_t elts_n = 1 << txq->elts_n;
551 const uint16_t elts_m = elts_n - 1;
552 const unsigned int cqe_n = 1 << txq->cqe_n;
553 const unsigned int cqe_cnt = cqe_n - 1;
554 uint16_t elts_free = txq->elts_tail;
555 uint16_t elts_tail;
556 uint16_t cq_ci = txq->cq_ci;
557 volatile struct mlx5_cqe *cqe = NULL;
558 volatile struct mlx5_wqe_ctrl *ctrl;
559 struct rte_mbuf *m, *free[elts_n];
560 struct rte_mempool *pool = NULL;
561 unsigned int blk_n = 0;
562
563 cqe = &(*txq->cqes)[cq_ci & cqe_cnt];
564 if (unlikely(check_cqe(cqe, cqe_n, cq_ci)))
565 return;
566 #ifndef NDEBUG
567 if ((MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_RESP_ERR) ||
568 (MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_REQ_ERR)) {
569 if (!check_cqe_seen(cqe)) {
570 DRV_LOG(ERR, "unexpected error CQE, Tx stopped");
571 rte_hexdump(stderr, "MLX5 TXQ:",
572 (const void *)((uintptr_t)txq->wqes),
573 ((1 << txq->wqe_n) *
574 MLX5_WQE_SIZE));
575 }
576 return;
577 }
578 #endif /* NDEBUG */
579 ++cq_ci;
580 rte_cio_rmb();
581 txq->wqe_pi = rte_be_to_cpu_16(cqe->wqe_counter);
582 ctrl = (volatile struct mlx5_wqe_ctrl *)
583 tx_mlx5_wqe(txq, txq->wqe_pi);
584 elts_tail = ctrl->ctrl3;
585 assert((elts_tail & elts_m) < (1 << txq->wqe_n));
586 /* Free buffers. */
587 while (elts_free != elts_tail) {
588 m = rte_pktmbuf_prefree_seg((*txq->elts)[elts_free++ & elts_m]);
589 if (likely(m != NULL)) {
590 if (likely(m->pool == pool)) {
591 free[blk_n++] = m;
592 } else {
593 if (likely(pool != NULL))
594 rte_mempool_put_bulk(pool,
595 (void *)free,
596 blk_n);
597 free[0] = m;
598 pool = m->pool;
599 blk_n = 1;
600 }
601 }
602 }
603 if (blk_n)
604 rte_mempool_put_bulk(pool, (void *)free, blk_n);
605 #ifndef NDEBUG
606 elts_free = txq->elts_tail;
607 /* Poisoning. */
608 while (elts_free != elts_tail) {
609 memset(&(*txq->elts)[elts_free & elts_m],
610 0x66,
611 sizeof((*txq->elts)[elts_free & elts_m]));
612 ++elts_free;
613 }
614 #endif
615 txq->cq_ci = cq_ci;
616 txq->elts_tail = elts_tail;
617 /* Update the consumer index. */
618 rte_compiler_barrier();
619 *txq->cq_db = rte_cpu_to_be_32(cq_ci);
620 }
621
622 /**
623 * Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which the
624 * cloned mbuf is allocated is returned instead.
625 *
626 * @param buf
627 * Pointer to mbuf.
628 *
629 * @return
630 * Memory pool where data is located for given mbuf.
631 */
632 static inline struct rte_mempool *
633 mlx5_mb2mp(struct rte_mbuf *buf)
634 {
635 if (unlikely(RTE_MBUF_CLONED(buf)))
636 return rte_mbuf_from_indirect(buf)->pool;
637 return buf->pool;
638 }
639
640 /**
641 * Query LKey from a packet buffer for Rx. No need to flush local caches for Rx
642 * as mempool is pre-configured and static.
643 *
644 * @param rxq
645 * Pointer to Rx queue structure.
646 * @param addr
647 * Address to search.
648 *
649 * @return
650 * Searched LKey on success, UINT32_MAX on no match.
651 */
652 static __rte_always_inline uint32_t
653 mlx5_rx_addr2mr(struct mlx5_rxq_data *rxq, uintptr_t addr)
654 {
655 struct mlx5_mr_ctrl *mr_ctrl = &rxq->mr_ctrl;
656 uint32_t lkey;
657
658 /* Linear search on MR cache array. */
659 lkey = mlx5_mr_lookup_cache(mr_ctrl->cache, &mr_ctrl->mru,
660 MLX5_MR_CACHE_N, addr);
661 if (likely(lkey != UINT32_MAX))
662 return lkey;
663 /* Take slower bottom-half (Binary Search) on miss. */
664 return mlx5_rx_addr2mr_bh(rxq, addr);
665 }
666
667 #define mlx5_rx_mb2mr(rxq, mb) mlx5_rx_addr2mr(rxq, (uintptr_t)((mb)->buf_addr))
668
669 /**
670 * Query LKey from a packet buffer for Tx. If not found, add the mempool.
671 *
672 * @param txq
673 * Pointer to Tx queue structure.
674 * @param addr
675 * Address to search.
676 *
677 * @return
678 * Searched LKey on success, UINT32_MAX on no match.
679 */
680 static __rte_always_inline uint32_t
681 mlx5_tx_mb2mr(struct mlx5_txq_data *txq, struct rte_mbuf *mb)
682 {
683 struct mlx5_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
684 uintptr_t addr = (uintptr_t)mb->buf_addr;
685 uint32_t lkey;
686
687 /* Check generation bit to see if there's any change on existing MRs. */
688 if (unlikely(*mr_ctrl->dev_gen_ptr != mr_ctrl->cur_gen))
689 mlx5_mr_flush_local_cache(mr_ctrl);
690 /* Linear search on MR cache array. */
691 lkey = mlx5_mr_lookup_cache(mr_ctrl->cache, &mr_ctrl->mru,
692 MLX5_MR_CACHE_N, addr);
693 if (likely(lkey != UINT32_MAX))
694 return lkey;
695 /* Take slower bottom-half on miss. */
696 return mlx5_tx_mb2mr_bh(txq, mb);
697 }
698
699 /**
700 * Ring TX queue doorbell and flush the update if requested.
701 *
702 * @param txq
703 * Pointer to TX queue structure.
704 * @param wqe
705 * Pointer to the last WQE posted in the NIC.
706 * @param cond
707 * Request for write memory barrier after BlueFlame update.
708 */
709 static __rte_always_inline void
710 mlx5_tx_dbrec_cond_wmb(struct mlx5_txq_data *txq, volatile struct mlx5_wqe *wqe,
711 int cond)
712 {
713 uint64_t *dst = MLX5_TX_BFREG(txq);
714 volatile uint64_t *src = ((volatile uint64_t *)wqe);
715
716 rte_cio_wmb();
717 *txq->qp_db = rte_cpu_to_be_32(txq->wqe_ci);
718 /* Ensure ordering between DB record and BF copy. */
719 rte_wmb();
720 mlx5_uar_write64_relaxed(*src, dst, txq->uar_lock);
721 if (cond)
722 rte_wmb();
723 }
724
725 /**
726 * Ring TX queue doorbell and flush the update by write memory barrier.
727 *
728 * @param txq
729 * Pointer to TX queue structure.
730 * @param wqe
731 * Pointer to the last WQE posted in the NIC.
732 */
733 static __rte_always_inline void
734 mlx5_tx_dbrec(struct mlx5_txq_data *txq, volatile struct mlx5_wqe *wqe)
735 {
736 mlx5_tx_dbrec_cond_wmb(txq, wqe, 1);
737 }
738
739 /**
740 * Convert mbuf to Verb SWP.
741 *
742 * @param txq_data
743 * Pointer to the Tx queue.
744 * @param buf
745 * Pointer to the mbuf.
746 * @param offsets
747 * Pointer to the SWP header offsets.
748 * @param swp_types
749 * Pointer to the SWP header types.
750 */
751 static __rte_always_inline void
752 txq_mbuf_to_swp(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
753 uint8_t *offsets, uint8_t *swp_types)
754 {
755 const uint64_t vlan = buf->ol_flags & PKT_TX_VLAN_PKT;
756 const uint64_t tunnel = buf->ol_flags & PKT_TX_TUNNEL_MASK;
757 const uint64_t tso = buf->ol_flags & PKT_TX_TCP_SEG;
758 const uint64_t csum_flags = buf->ol_flags & PKT_TX_L4_MASK;
759 const uint64_t inner_ip =
760 buf->ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6);
761 const uint64_t ol_flags_mask = PKT_TX_L4_MASK | PKT_TX_IPV6 |
762 PKT_TX_OUTER_IPV6;
763 uint16_t idx;
764 uint16_t off;
765
766 if (likely(!txq->swp_en || (tunnel != PKT_TX_TUNNEL_UDP &&
767 tunnel != PKT_TX_TUNNEL_IP)))
768 return;
769 /*
770 * The index should have:
771 * bit[0:1] = PKT_TX_L4_MASK
772 * bit[4] = PKT_TX_IPV6
773 * bit[8] = PKT_TX_OUTER_IPV6
774 * bit[9] = PKT_TX_OUTER_UDP
775 */
776 idx = (buf->ol_flags & ol_flags_mask) >> 52;
777 if (tunnel == PKT_TX_TUNNEL_UDP)
778 idx |= 1 << 9;
779 *swp_types = mlx5_swp_types_table[idx];
780 /*
781 * Set offsets for SW parser. Since ConnectX-5, SW parser just
782 * complements HW parser. SW parser starts to engage only if HW parser
783 * can't reach a header. For the older devices, HW parser will not kick
784 * in if any of SWP offsets is set. Therefore, all of the L3 offsets
785 * should be set regardless of HW offload.
786 */
787 off = buf->outer_l2_len + (vlan ? sizeof(struct vlan_hdr) : 0);
788 offsets[1] = off >> 1; /* Outer L3 offset. */
789 off += buf->outer_l3_len;
790 if (tunnel == PKT_TX_TUNNEL_UDP)
791 offsets[0] = off >> 1; /* Outer L4 offset. */
792 if (inner_ip) {
793 off += buf->l2_len;
794 offsets[3] = off >> 1; /* Inner L3 offset. */
795 if (csum_flags == PKT_TX_TCP_CKSUM || tso ||
796 csum_flags == PKT_TX_UDP_CKSUM) {
797 off += buf->l3_len;
798 offsets[2] = off >> 1; /* Inner L4 offset. */
799 }
800 }
801 }
802
803 /**
804 * Convert the Checksum offloads to Verbs.
805 *
806 * @param buf
807 * Pointer to the mbuf.
808 *
809 * @return
810 * Converted checksum flags.
811 */
812 static __rte_always_inline uint8_t
813 txq_ol_cksum_to_cs(struct rte_mbuf *buf)
814 {
815 uint32_t idx;
816 uint8_t is_tunnel = !!(buf->ol_flags & PKT_TX_TUNNEL_MASK);
817 const uint64_t ol_flags_mask = PKT_TX_TCP_SEG | PKT_TX_L4_MASK |
818 PKT_TX_IP_CKSUM | PKT_TX_OUTER_IP_CKSUM;
819
820 /*
821 * The index should have:
822 * bit[0] = PKT_TX_TCP_SEG
823 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
824 * bit[4] = PKT_TX_IP_CKSUM
825 * bit[8] = PKT_TX_OUTER_IP_CKSUM
826 * bit[9] = tunnel
827 */
828 idx = ((buf->ol_flags & ol_flags_mask) >> 50) | (!!is_tunnel << 9);
829 return mlx5_cksum_table[idx];
830 }
831
832 /**
833 * Count the number of contiguous single segment packets.
834 *
835 * @param pkts
836 * Pointer to array of packets.
837 * @param pkts_n
838 * Number of packets.
839 *
840 * @return
841 * Number of contiguous single segment packets.
842 */
843 static __rte_always_inline unsigned int
844 txq_count_contig_single_seg(struct rte_mbuf **pkts, uint16_t pkts_n)
845 {
846 unsigned int pos;
847
848 if (!pkts_n)
849 return 0;
850 /* Count the number of contiguous single segment packets. */
851 for (pos = 0; pos < pkts_n; ++pos)
852 if (NB_SEGS(pkts[pos]) > 1)
853 break;
854 return pos;
855 }
856
857 /**
858 * Count the number of contiguous multi-segment packets.
859 *
860 * @param pkts
861 * Pointer to array of packets.
862 * @param pkts_n
863 * Number of packets.
864 *
865 * @return
866 * Number of contiguous multi-segment packets.
867 */
868 static __rte_always_inline unsigned int
869 txq_count_contig_multi_seg(struct rte_mbuf **pkts, uint16_t pkts_n)
870 {
871 unsigned int pos;
872
873 if (!pkts_n)
874 return 0;
875 /* Count the number of contiguous multi-segment packets. */
876 for (pos = 0; pos < pkts_n; ++pos)
877 if (NB_SEGS(pkts[pos]) == 1)
878 break;
879 return pos;
880 }
881
882 #endif /* RTE_PMD_MLX5_RXTX_H_ */