]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/qede/base/ecore_dev.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / qede / base / ecore_dev.c
1 /*
2 * Copyright (c) 2016 QLogic Corporation.
3 * All rights reserved.
4 * www.qlogic.com
5 *
6 * See LICENSE.qede_pmd for copyright and licensing details.
7 */
8
9 #include "bcm_osal.h"
10 #include "reg_addr.h"
11 #include "ecore_gtt_reg_addr.h"
12 #include "ecore.h"
13 #include "ecore_chain.h"
14 #include "ecore_status.h"
15 #include "ecore_hw.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_init_ops.h"
18 #include "ecore_int.h"
19 #include "ecore_cxt.h"
20 #include "ecore_spq.h"
21 #include "ecore_init_fw_funcs.h"
22 #include "ecore_sp_commands.h"
23 #include "ecore_dev_api.h"
24 #include "ecore_sriov.h"
25 #include "ecore_vf.h"
26 #include "ecore_mcp.h"
27 #include "ecore_hw_defs.h"
28 #include "mcp_public.h"
29 #include "ecore_iro.h"
30 #include "nvm_cfg.h"
31 #include "ecore_dev_api.h"
32 #include "ecore_dcbx.h"
33 #include "ecore_l2.h"
34
35 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
36 * registers involved are not split and thus configuration is a race where
37 * some of the PFs configuration might be lost.
38 * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
39 * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
40 * there's more than a single compiled ecore component in system].
41 */
42 static osal_spinlock_t qm_lock;
43 static bool qm_lock_init;
44
45 /* Configurable */
46 #define ECORE_MIN_DPIS (4) /* The minimal num of DPIs required to
47 * load the driver. The number was
48 * arbitrarily set.
49 */
50
51 /* Derived */
52 #define ECORE_MIN_PWM_REGION ((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
53
54 enum BAR_ID {
55 BAR_ID_0, /* used for GRC */
56 BAR_ID_1 /* Used for doorbells */
57 };
58
59 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
60 {
61 u32 bar_reg = (bar_id == BAR_ID_0 ?
62 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
63 u32 val;
64
65 if (IS_VF(p_hwfn->p_dev)) {
66 /* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
67 * read from actual register, but we're currently not using
68 * it for actual doorbelling.
69 */
70 return 1 << 17;
71 }
72
73 val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
74 if (val)
75 return 1 << (val + 15);
76
77 /* The above registers were updated in the past only in CMT mode. Since
78 * they were found to be useful MFW started updating them from 8.7.7.0.
79 * In older MFW versions they are set to 0 which means disabled.
80 */
81 if (p_hwfn->p_dev->num_hwfns > 1) {
82 DP_NOTICE(p_hwfn, false,
83 "BAR size not configured. Assuming BAR size of 256kB"
84 " for GRC and 512kB for DB\n");
85 val = BAR_ID_0 ? 256 * 1024 : 512 * 1024;
86 } else {
87 DP_NOTICE(p_hwfn, false,
88 "BAR size not configured. Assuming BAR size of 512kB"
89 " for GRC and 512kB for DB\n");
90 val = 512 * 1024;
91 }
92
93 return val;
94 }
95
96 void ecore_init_dp(struct ecore_dev *p_dev,
97 u32 dp_module, u8 dp_level, void *dp_ctx)
98 {
99 u32 i;
100
101 p_dev->dp_level = dp_level;
102 p_dev->dp_module = dp_module;
103 p_dev->dp_ctx = dp_ctx;
104 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
105 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
106
107 p_hwfn->dp_level = dp_level;
108 p_hwfn->dp_module = dp_module;
109 p_hwfn->dp_ctx = dp_ctx;
110 }
111 }
112
113 void ecore_init_struct(struct ecore_dev *p_dev)
114 {
115 u8 i;
116
117 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
118 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
119
120 p_hwfn->p_dev = p_dev;
121 p_hwfn->my_id = i;
122 p_hwfn->b_active = false;
123
124 OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
125 OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
126 }
127
128 /* hwfn 0 is always active */
129 p_dev->hwfns[0].b_active = true;
130
131 /* set the default cache alignment to 128 (may be overridden later) */
132 p_dev->cache_shift = 7;
133 }
134
135 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
136 {
137 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
138
139 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
140 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
141 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
142 OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
143 }
144
145 void ecore_resc_free(struct ecore_dev *p_dev)
146 {
147 int i;
148
149 if (IS_VF(p_dev)) {
150 for_each_hwfn(p_dev, i)
151 ecore_l2_free(&p_dev->hwfns[i]);
152 return;
153 }
154
155 OSAL_FREE(p_dev, p_dev->fw_data);
156
157 OSAL_FREE(p_dev, p_dev->reset_stats);
158
159 for_each_hwfn(p_dev, i) {
160 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
161
162 ecore_cxt_mngr_free(p_hwfn);
163 ecore_qm_info_free(p_hwfn);
164 ecore_spq_free(p_hwfn);
165 ecore_eq_free(p_hwfn);
166 ecore_consq_free(p_hwfn);
167 ecore_int_free(p_hwfn);
168 ecore_iov_free(p_hwfn);
169 ecore_l2_free(p_hwfn);
170 ecore_dmae_info_free(p_hwfn);
171 ecore_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
172 /* @@@TBD Flush work-queue ? */
173 }
174 }
175
176 /******************** QM initialization *******************/
177
178 /* bitmaps for indicating active traffic classes.
179 * Special case for Arrowhead 4 port
180 */
181 /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
182 #define ACTIVE_TCS_BMAP 0x9f
183 /* 0..3 actually used, OOO and high priority stuff all use 3 */
184 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
185
186 /* determines the physical queue flags for a given PF. */
187 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
188 {
189 u32 flags;
190
191 /* common flags */
192 flags = PQ_FLAGS_LB;
193
194 /* feature flags */
195 if (IS_ECORE_SRIOV(p_hwfn->p_dev))
196 flags |= PQ_FLAGS_VFS;
197
198 /* protocol flags */
199 switch (p_hwfn->hw_info.personality) {
200 case ECORE_PCI_ETH:
201 flags |= PQ_FLAGS_MCOS;
202 break;
203 case ECORE_PCI_FCOE:
204 flags |= PQ_FLAGS_OFLD;
205 break;
206 case ECORE_PCI_ISCSI:
207 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
208 break;
209 case ECORE_PCI_ETH_ROCE:
210 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD;
211 break;
212 case ECORE_PCI_ETH_IWARP:
213 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
214 PQ_FLAGS_OFLD;
215 break;
216 default:
217 DP_ERR(p_hwfn, "unknown personality %d\n",
218 p_hwfn->hw_info.personality);
219 return 0;
220 }
221 return flags;
222 }
223
224 /* Getters for resource amounts necessary for qm initialization */
225 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
226 {
227 return p_hwfn->hw_info.num_hw_tc;
228 }
229
230 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
231 {
232 return IS_ECORE_SRIOV(p_hwfn->p_dev) ?
233 p_hwfn->p_dev->p_iov_info->total_vfs : 0;
234 }
235
236 #define NUM_DEFAULT_RLS 1
237
238 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
239 {
240 u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
241
242 /* @DPDK */
243 /* num RLs can't exceed resource amount of rls or vports or the
244 * dcqcn qps
245 */
246 num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
247 (u16)RESC_NUM(p_hwfn, ECORE_VPORT));
248
249 /* make sure after we reserve the default and VF rls we'll have
250 * something left
251 */
252 if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
253 DP_NOTICE(p_hwfn, false,
254 "no rate limiters left for PF rate limiting"
255 " [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
256 return 0;
257 }
258
259 /* subtract rls necessary for VFs and one default one for the PF */
260 num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
261
262 return num_pf_rls;
263 }
264
265 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
266 {
267 u32 pq_flags = ecore_get_pq_flags(p_hwfn);
268
269 /* all pqs share the same vport (hence the 1 below), except for vfs
270 * and pf_rl pqs
271 */
272 return (!!(PQ_FLAGS_RLS & pq_flags)) *
273 ecore_init_qm_get_num_pf_rls(p_hwfn) +
274 (!!(PQ_FLAGS_VFS & pq_flags)) *
275 ecore_init_qm_get_num_vfs(p_hwfn) + 1;
276 }
277
278 /* calc amount of PQs according to the requested flags */
279 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
280 {
281 u32 pq_flags = ecore_get_pq_flags(p_hwfn);
282
283 return (!!(PQ_FLAGS_RLS & pq_flags)) *
284 ecore_init_qm_get_num_pf_rls(p_hwfn) +
285 (!!(PQ_FLAGS_MCOS & pq_flags)) *
286 ecore_init_qm_get_num_tcs(p_hwfn) +
287 (!!(PQ_FLAGS_LB & pq_flags)) +
288 (!!(PQ_FLAGS_OOO & pq_flags)) +
289 (!!(PQ_FLAGS_ACK & pq_flags)) +
290 (!!(PQ_FLAGS_OFLD & pq_flags)) +
291 (!!(PQ_FLAGS_VFS & pq_flags)) *
292 ecore_init_qm_get_num_vfs(p_hwfn);
293 }
294
295 /* initialize the top level QM params */
296 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
297 {
298 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
299 bool four_port;
300
301 /* pq and vport bases for this PF */
302 qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
303 qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
304
305 /* rate limiting and weighted fair queueing are always enabled */
306 qm_info->vport_rl_en = 1;
307 qm_info->vport_wfq_en = 1;
308
309 /* TC config is different for AH 4 port */
310 four_port = p_hwfn->p_dev->num_ports_in_engines == MAX_NUM_PORTS_K2;
311
312 /* in AH 4 port we have fewer TCs per port */
313 qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
314 NUM_OF_PHYS_TCS;
315
316 /* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and
317 * 4 otherwise
318 */
319 if (!qm_info->ooo_tc)
320 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
321 DCBX_TCP_OOO_TC;
322 }
323
324 /* initialize qm vport params */
325 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
326 {
327 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
328 u8 i;
329
330 /* all vports participate in weighted fair queueing */
331 for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
332 qm_info->qm_vport_params[i].vport_wfq = 1;
333 }
334
335 /* initialize qm port params */
336 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
337 {
338 /* Initialize qm port parameters */
339 u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engines;
340
341 /* indicate how ooo and high pri traffic is dealt with */
342 active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
343 ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
344
345 for (i = 0; i < num_ports; i++) {
346 struct init_qm_port_params *p_qm_port =
347 &p_hwfn->qm_info.qm_port_params[i];
348
349 p_qm_port->active = 1;
350 p_qm_port->active_phys_tcs = active_phys_tcs;
351 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
352 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
353 }
354 }
355
356 /* Reset the params which must be reset for qm init. QM init may be called as
357 * a result of flows other than driver load (e.g. dcbx renegotiation). Other
358 * params may be affected by the init but would simply recalculate to the same
359 * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
360 * affected as these amounts stay the same.
361 */
362 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
363 {
364 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
365
366 qm_info->num_pqs = 0;
367 qm_info->num_vports = 0;
368 qm_info->num_pf_rls = 0;
369 qm_info->num_vf_pqs = 0;
370 qm_info->first_vf_pq = 0;
371 qm_info->first_mcos_pq = 0;
372 qm_info->first_rl_pq = 0;
373 }
374
375 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
376 {
377 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
378
379 qm_info->num_vports++;
380
381 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
382 DP_ERR(p_hwfn,
383 "vport overflow! qm_info->num_vports %d,"
384 " qm_init_get_num_vports() %d\n",
385 qm_info->num_vports,
386 ecore_init_qm_get_num_vports(p_hwfn));
387 }
388
389 /* initialize a single pq and manage qm_info resources accounting.
390 * The pq_init_flags param determines whether the PQ is rate limited
391 * (for VF or PF)
392 * and whether a new vport is allocated to the pq or not (i.e. vport will be
393 * shared)
394 */
395
396 /* flags for pq init */
397 #define PQ_INIT_SHARE_VPORT (1 << 0)
398 #define PQ_INIT_PF_RL (1 << 1)
399 #define PQ_INIT_VF_RL (1 << 2)
400
401 /* defines for pq init */
402 #define PQ_INIT_DEFAULT_WRR_GROUP 1
403 #define PQ_INIT_DEFAULT_TC 0
404 #define PQ_INIT_OFLD_TC (p_hwfn->hw_info.offload_tc)
405
406 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
407 struct ecore_qm_info *qm_info,
408 u8 tc, u32 pq_init_flags)
409 {
410 u16 pq_idx = qm_info->num_pqs, max_pq =
411 ecore_init_qm_get_num_pqs(p_hwfn);
412
413 if (pq_idx > max_pq)
414 DP_ERR(p_hwfn,
415 "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
416
417 /* init pq params */
418 qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
419 qm_info->num_vports;
420 qm_info->qm_pq_params[pq_idx].tc_id = tc;
421 qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
422 qm_info->qm_pq_params[pq_idx].rl_valid =
423 (pq_init_flags & PQ_INIT_PF_RL ||
424 pq_init_flags & PQ_INIT_VF_RL);
425
426 /* qm params accounting */
427 qm_info->num_pqs++;
428 if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
429 qm_info->num_vports++;
430
431 if (pq_init_flags & PQ_INIT_PF_RL)
432 qm_info->num_pf_rls++;
433
434 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
435 DP_ERR(p_hwfn,
436 "vport overflow! qm_info->num_vports %d,"
437 " qm_init_get_num_vports() %d\n",
438 qm_info->num_vports,
439 ecore_init_qm_get_num_vports(p_hwfn));
440
441 if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
442 DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d,"
443 " qm_init_get_num_pf_rls() %d\n",
444 qm_info->num_pf_rls,
445 ecore_init_qm_get_num_pf_rls(p_hwfn));
446 }
447
448 /* get pq index according to PQ_FLAGS */
449 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
450 u32 pq_flags)
451 {
452 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
453
454 /* Can't have multiple flags set here */
455 if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags,
456 sizeof(pq_flags)) > 1)
457 goto err;
458
459 switch (pq_flags) {
460 case PQ_FLAGS_RLS:
461 return &qm_info->first_rl_pq;
462 case PQ_FLAGS_MCOS:
463 return &qm_info->first_mcos_pq;
464 case PQ_FLAGS_LB:
465 return &qm_info->pure_lb_pq;
466 case PQ_FLAGS_OOO:
467 return &qm_info->ooo_pq;
468 case PQ_FLAGS_ACK:
469 return &qm_info->pure_ack_pq;
470 case PQ_FLAGS_OFLD:
471 return &qm_info->offload_pq;
472 case PQ_FLAGS_VFS:
473 return &qm_info->first_vf_pq;
474 default:
475 goto err;
476 }
477
478 err:
479 DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
480 return OSAL_NULL;
481 }
482
483 /* save pq index in qm info */
484 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
485 u32 pq_flags, u16 pq_val)
486 {
487 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
488
489 *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
490 }
491
492 /* get tx pq index, with the PQ TX base already set (ready for context init) */
493 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
494 {
495 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
496
497 return *base_pq_idx + CM_TX_PQ_BASE;
498 }
499
500 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
501 {
502 u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
503
504 if (tc > max_tc)
505 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
506
507 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
508 }
509
510 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
511 {
512 u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
513
514 if (vf > max_vf)
515 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
516
517 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
518 }
519
520 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
521 {
522 u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
523
524 if (rl > max_rl)
525 DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
526
527 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
528 }
529
530 /* Functions for creating specific types of pqs */
531 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
532 {
533 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
534
535 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
536 return;
537
538 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
539 ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
540 }
541
542 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
543 {
544 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
545
546 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
547 return;
548
549 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
550 ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
551 }
552
553 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
554 {
555 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
556
557 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
558 return;
559
560 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
561 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
562 }
563
564 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
565 {
566 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
567
568 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
569 return;
570
571 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
572 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
573 }
574
575 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
576 {
577 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
578 u8 tc_idx;
579
580 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
581 return;
582
583 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
584 for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
585 ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
586 }
587
588 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
589 {
590 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
591 u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
592
593 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
594 return;
595
596 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
597
598 qm_info->num_vf_pqs = num_vfs;
599 for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
600 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC,
601 PQ_INIT_VF_RL);
602 }
603
604 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
605 {
606 u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
607 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
608
609 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
610 return;
611
612 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
613 for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
614 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC,
615 PQ_INIT_PF_RL);
616 }
617
618 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
619 {
620 /* rate limited pqs, must come first (FW assumption) */
621 ecore_init_qm_rl_pqs(p_hwfn);
622
623 /* pqs for multi cos */
624 ecore_init_qm_mcos_pqs(p_hwfn);
625
626 /* pure loopback pq */
627 ecore_init_qm_lb_pq(p_hwfn);
628
629 /* out of order pq */
630 ecore_init_qm_ooo_pq(p_hwfn);
631
632 /* pure ack pq */
633 ecore_init_qm_pure_ack_pq(p_hwfn);
634
635 /* pq for offloaded protocol */
636 ecore_init_qm_offload_pq(p_hwfn);
637
638 /* done sharing vports */
639 ecore_init_qm_advance_vport(p_hwfn);
640
641 /* pqs for vfs */
642 ecore_init_qm_vf_pqs(p_hwfn);
643 }
644
645 /* compare values of getters against resources amounts */
646 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
647 {
648 if (ecore_init_qm_get_num_vports(p_hwfn) >
649 RESC_NUM(p_hwfn, ECORE_VPORT)) {
650 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
651 return ECORE_INVAL;
652 }
653
654 if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
655 DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
656 return ECORE_INVAL;
657 }
658
659 return ECORE_SUCCESS;
660 }
661
662 /*
663 * Function for verbose printing of the qm initialization results
664 */
665 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
666 {
667 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
668 struct init_qm_vport_params *vport;
669 struct init_qm_port_params *port;
670 struct init_qm_pq_params *pq;
671 int i, tc;
672
673 /* top level params */
674 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
675 "qm init top level params: start_pq %d, start_vport %d,"
676 " pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
677 qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq,
678 qm_info->offload_pq, qm_info->pure_ack_pq);
679 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
680 "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d,"
681 " num_vports %d, max_phys_tcs_per_port %d\n",
682 qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs,
683 qm_info->num_vf_pqs, qm_info->num_vports,
684 qm_info->max_phys_tcs_per_port);
685 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
686 "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d,"
687 " pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
688 qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en,
689 qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl,
690 qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
691
692 /* port table */
693 for (i = 0; i < p_hwfn->p_dev->num_ports_in_engines; i++) {
694 port = &qm_info->qm_port_params[i];
695 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
696 "port idx %d, active %d, active_phys_tcs %d,"
697 " num_pbf_cmd_lines %d, num_btb_blocks %d,"
698 " reserved %d\n",
699 i, port->active, port->active_phys_tcs,
700 port->num_pbf_cmd_lines, port->num_btb_blocks,
701 port->reserved);
702 }
703
704 /* vport table */
705 for (i = 0; i < qm_info->num_vports; i++) {
706 vport = &qm_info->qm_vport_params[i];
707 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
708 "vport idx %d, vport_rl %d, wfq %d,"
709 " first_tx_pq_id [ ",
710 qm_info->start_vport + i, vport->vport_rl,
711 vport->vport_wfq);
712 for (tc = 0; tc < NUM_OF_TCS; tc++)
713 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ",
714 vport->first_tx_pq_id[tc]);
715 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
716 }
717
718 /* pq table */
719 for (i = 0; i < qm_info->num_pqs; i++) {
720 pq = &qm_info->qm_pq_params[i];
721 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
722 "pq idx %d, vport_id %d, tc %d, wrr_grp %d,"
723 " rl_valid %d\n",
724 qm_info->start_pq + i, pq->vport_id, pq->tc_id,
725 pq->wrr_group, pq->rl_valid);
726 }
727 }
728
729 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
730 {
731 /* reset params required for init run */
732 ecore_init_qm_reset_params(p_hwfn);
733
734 /* init QM top level params */
735 ecore_init_qm_params(p_hwfn);
736
737 /* init QM port params */
738 ecore_init_qm_port_params(p_hwfn);
739
740 /* init QM vport params */
741 ecore_init_qm_vport_params(p_hwfn);
742
743 /* init QM physical queue params */
744 ecore_init_qm_pq_params(p_hwfn);
745
746 /* display all that init */
747 ecore_dp_init_qm_params(p_hwfn);
748 }
749
750 /* This function reconfigures the QM pf on the fly.
751 * For this purpose we:
752 * 1. reconfigure the QM database
753 * 2. set new values to runtime array
754 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
755 * 4. activate init tool in QM_PF stage
756 * 5. send an sdm_qm_cmd through rbc interface to release the QM
757 */
758 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
759 struct ecore_ptt *p_ptt)
760 {
761 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
762 bool b_rc;
763 enum _ecore_status_t rc;
764
765 /* initialize ecore's qm data structure */
766 ecore_init_qm_info(p_hwfn);
767
768 /* stop PF's qm queues */
769 OSAL_SPIN_LOCK(&qm_lock);
770 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
771 qm_info->start_pq, qm_info->num_pqs);
772 OSAL_SPIN_UNLOCK(&qm_lock);
773 if (!b_rc)
774 return ECORE_INVAL;
775
776 /* clear the QM_PF runtime phase leftovers from previous init */
777 ecore_init_clear_rt_data(p_hwfn);
778
779 /* prepare QM portion of runtime array */
780 ecore_qm_init_pf(p_hwfn);
781
782 /* activate init tool on runtime array */
783 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
784 p_hwfn->hw_info.hw_mode);
785 if (rc != ECORE_SUCCESS)
786 return rc;
787
788 /* start PF's qm queues */
789 OSAL_SPIN_LOCK(&qm_lock);
790 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
791 qm_info->start_pq, qm_info->num_pqs);
792 OSAL_SPIN_UNLOCK(&qm_lock);
793 if (!b_rc)
794 return ECORE_INVAL;
795
796 return ECORE_SUCCESS;
797 }
798
799 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
800 {
801 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
802 enum _ecore_status_t rc;
803
804 rc = ecore_init_qm_sanity(p_hwfn);
805 if (rc != ECORE_SUCCESS)
806 goto alloc_err;
807
808 qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
809 sizeof(struct init_qm_pq_params) *
810 ecore_init_qm_get_num_pqs(p_hwfn));
811 if (!qm_info->qm_pq_params)
812 goto alloc_err;
813
814 qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
815 sizeof(struct init_qm_vport_params) *
816 ecore_init_qm_get_num_vports(p_hwfn));
817 if (!qm_info->qm_vport_params)
818 goto alloc_err;
819
820 qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
821 sizeof(struct init_qm_port_params) *
822 p_hwfn->p_dev->num_ports_in_engines);
823 if (!qm_info->qm_port_params)
824 goto alloc_err;
825
826 qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
827 sizeof(struct ecore_wfq_data) *
828 ecore_init_qm_get_num_vports(p_hwfn));
829 if (!qm_info->wfq_data)
830 goto alloc_err;
831
832 return ECORE_SUCCESS;
833
834 alloc_err:
835 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
836 ecore_qm_info_free(p_hwfn);
837 return ECORE_NOMEM;
838 }
839 /******************** End QM initialization ***************/
840
841 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
842 {
843 enum _ecore_status_t rc = ECORE_SUCCESS;
844 int i;
845
846 if (IS_VF(p_dev)) {
847 for_each_hwfn(p_dev, i) {
848 rc = ecore_l2_alloc(&p_dev->hwfns[i]);
849 if (rc != ECORE_SUCCESS)
850 return rc;
851 }
852 return rc;
853 }
854
855 p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
856 sizeof(*p_dev->fw_data));
857 if (!p_dev->fw_data)
858 return ECORE_NOMEM;
859
860 for_each_hwfn(p_dev, i) {
861 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
862 u32 n_eqes, num_cons;
863
864 /* First allocate the context manager structure */
865 rc = ecore_cxt_mngr_alloc(p_hwfn);
866 if (rc)
867 goto alloc_err;
868
869 /* Set the HW cid/tid numbers (in the contest manager)
870 * Must be done prior to any further computations.
871 */
872 rc = ecore_cxt_set_pf_params(p_hwfn);
873 if (rc)
874 goto alloc_err;
875
876 rc = ecore_alloc_qm_data(p_hwfn);
877 if (rc)
878 goto alloc_err;
879
880 /* init qm info */
881 ecore_init_qm_info(p_hwfn);
882
883 /* Compute the ILT client partition */
884 rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
885 if (rc)
886 goto alloc_err;
887
888 /* CID map / ILT shadow table / T2
889 * The talbes sizes are determined by the computations above
890 */
891 rc = ecore_cxt_tables_alloc(p_hwfn);
892 if (rc)
893 goto alloc_err;
894
895 /* SPQ, must follow ILT because initializes SPQ context */
896 rc = ecore_spq_alloc(p_hwfn);
897 if (rc)
898 goto alloc_err;
899
900 /* SP status block allocation */
901 p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
902 RESERVED_PTT_DPC);
903
904 rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
905 if (rc)
906 goto alloc_err;
907
908 rc = ecore_iov_alloc(p_hwfn);
909 if (rc)
910 goto alloc_err;
911
912 /* EQ */
913 n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
914 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
915 /* Calculate the EQ size
916 * ---------------------
917 * Each ICID may generate up to one event at a time i.e.
918 * the event must be handled/cleared before a new one
919 * can be generated. We calculate the sum of events per
920 * protocol and create an EQ deep enough to handle the
921 * worst case:
922 * - Core - according to SPQ.
923 * - RoCE - per QP there are a couple of ICIDs, one
924 * responder and one requester, each can
925 * generate an EQE => n_eqes_qp = 2 * n_qp.
926 * Each CQ can generate an EQE. There are 2 CQs
927 * per QP => n_eqes_cq = 2 * n_qp.
928 * Hence the RoCE total is 4 * n_qp or
929 * 2 * num_cons.
930 * - ENet - There can be up to two events per VF. One
931 * for VF-PF channel and another for VF FLR
932 * initial cleanup. The number of VFs is
933 * bounded by MAX_NUM_VFS_BB, and is much
934 * smaller than RoCE's so we avoid exact
935 * calculation.
936 */
937 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
938 num_cons =
939 ecore_cxt_get_proto_cid_count(
940 p_hwfn,
941 PROTOCOLID_ROCE,
942 OSAL_NULL);
943 num_cons *= 2;
944 } else {
945 num_cons = ecore_cxt_get_proto_cid_count(
946 p_hwfn,
947 PROTOCOLID_IWARP,
948 OSAL_NULL);
949 }
950 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
951 } else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
952 num_cons =
953 ecore_cxt_get_proto_cid_count(p_hwfn,
954 PROTOCOLID_ISCSI,
955 OSAL_NULL);
956 n_eqes += 2 * num_cons;
957 }
958
959 if (n_eqes > 0xFFFF) {
960 DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
961 "The maximum of a u16 chain is 0x%x\n",
962 n_eqes, 0xFFFF);
963 goto alloc_no_mem;
964 }
965
966 rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
967 if (rc)
968 goto alloc_err;
969
970 rc = ecore_consq_alloc(p_hwfn);
971 if (rc)
972 goto alloc_err;
973
974 rc = ecore_l2_alloc(p_hwfn);
975 if (rc != ECORE_SUCCESS)
976 goto alloc_err;
977
978 /* DMA info initialization */
979 rc = ecore_dmae_info_alloc(p_hwfn);
980 if (rc) {
981 DP_NOTICE(p_hwfn, true,
982 "Failed to allocate memory for dmae_info"
983 " structure\n");
984 goto alloc_err;
985 }
986
987 /* DCBX initialization */
988 rc = ecore_dcbx_info_alloc(p_hwfn);
989 if (rc) {
990 DP_NOTICE(p_hwfn, true,
991 "Failed to allocate memory for dcbx structure\n");
992 goto alloc_err;
993 }
994 }
995
996 p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
997 sizeof(*p_dev->reset_stats));
998 if (!p_dev->reset_stats) {
999 DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
1000 goto alloc_no_mem;
1001 }
1002
1003 return ECORE_SUCCESS;
1004
1005 alloc_no_mem:
1006 rc = ECORE_NOMEM;
1007 alloc_err:
1008 ecore_resc_free(p_dev);
1009 return rc;
1010 }
1011
1012 void ecore_resc_setup(struct ecore_dev *p_dev)
1013 {
1014 int i;
1015
1016 if (IS_VF(p_dev)) {
1017 for_each_hwfn(p_dev, i)
1018 ecore_l2_setup(&p_dev->hwfns[i]);
1019 return;
1020 }
1021
1022 for_each_hwfn(p_dev, i) {
1023 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1024
1025 ecore_cxt_mngr_setup(p_hwfn);
1026 ecore_spq_setup(p_hwfn);
1027 ecore_eq_setup(p_hwfn);
1028 ecore_consq_setup(p_hwfn);
1029
1030 /* Read shadow of current MFW mailbox */
1031 ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
1032 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1033 p_hwfn->mcp_info->mfw_mb_cur,
1034 p_hwfn->mcp_info->mfw_mb_length);
1035
1036 ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
1037
1038 ecore_l2_setup(p_hwfn);
1039 ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
1040 }
1041 }
1042
1043 #define FINAL_CLEANUP_POLL_CNT (100)
1044 #define FINAL_CLEANUP_POLL_TIME (10)
1045 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
1046 struct ecore_ptt *p_ptt,
1047 u16 id, bool is_vf)
1048 {
1049 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
1050 enum _ecore_status_t rc = ECORE_TIMEOUT;
1051
1052 #ifndef ASIC_ONLY
1053 if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
1054 CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1055 DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
1056 return ECORE_SUCCESS;
1057 }
1058 #endif
1059
1060 addr = GTT_BAR0_MAP_REG_USDM_RAM +
1061 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
1062
1063 if (is_vf)
1064 id += 0x10;
1065
1066 command |= X_FINAL_CLEANUP_AGG_INT <<
1067 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
1068 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
1069 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
1070 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
1071
1072 /* Make sure notification is not set before initiating final cleanup */
1073
1074 if (REG_RD(p_hwfn, addr)) {
1075 DP_NOTICE(p_hwfn, false,
1076 "Unexpected; Found final cleanup notification");
1077 DP_NOTICE(p_hwfn, false,
1078 " before initiating final cleanup\n");
1079 REG_WR(p_hwfn, addr, 0);
1080 }
1081
1082 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
1083 "Sending final cleanup for PFVF[%d] [Command %08x\n]",
1084 id, command);
1085
1086 ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
1087
1088 /* Poll until completion */
1089 while (!REG_RD(p_hwfn, addr) && count--)
1090 OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
1091
1092 if (REG_RD(p_hwfn, addr))
1093 rc = ECORE_SUCCESS;
1094 else
1095 DP_NOTICE(p_hwfn, true,
1096 "Failed to receive FW final cleanup notification\n");
1097
1098 /* Cleanup afterwards */
1099 REG_WR(p_hwfn, addr, 0);
1100
1101 return rc;
1102 }
1103
1104 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
1105 {
1106 int hw_mode = 0;
1107
1108 if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
1109 hw_mode |= 1 << MODE_BB;
1110 } else if (ECORE_IS_AH(p_hwfn->p_dev)) {
1111 hw_mode |= 1 << MODE_K2;
1112 } else {
1113 DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
1114 p_hwfn->p_dev->type);
1115 return ECORE_INVAL;
1116 }
1117
1118 /* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
1119 switch (p_hwfn->p_dev->num_ports_in_engines) {
1120 case 1:
1121 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
1122 break;
1123 case 2:
1124 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
1125 break;
1126 case 4:
1127 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
1128 break;
1129 default:
1130 DP_NOTICE(p_hwfn, true,
1131 "num_ports_in_engine = %d not supported\n",
1132 p_hwfn->p_dev->num_ports_in_engines);
1133 return ECORE_INVAL;
1134 }
1135
1136 switch (p_hwfn->p_dev->mf_mode) {
1137 case ECORE_MF_DEFAULT:
1138 case ECORE_MF_NPAR:
1139 hw_mode |= 1 << MODE_MF_SI;
1140 break;
1141 case ECORE_MF_OVLAN:
1142 hw_mode |= 1 << MODE_MF_SD;
1143 break;
1144 default:
1145 DP_NOTICE(p_hwfn, true,
1146 "Unsupported MF mode, init as DEFAULT\n");
1147 hw_mode |= 1 << MODE_MF_SI;
1148 }
1149
1150 #ifndef ASIC_ONLY
1151 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1152 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1153 hw_mode |= 1 << MODE_FPGA;
1154 } else {
1155 if (p_hwfn->p_dev->b_is_emul_full)
1156 hw_mode |= 1 << MODE_EMUL_FULL;
1157 else
1158 hw_mode |= 1 << MODE_EMUL_REDUCED;
1159 }
1160 } else
1161 #endif
1162 hw_mode |= 1 << MODE_ASIC;
1163
1164 if (p_hwfn->p_dev->num_hwfns > 1)
1165 hw_mode |= 1 << MODE_100G;
1166
1167 p_hwfn->hw_info.hw_mode = hw_mode;
1168
1169 DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
1170 "Configuring function for hw_mode: 0x%08x\n",
1171 p_hwfn->hw_info.hw_mode);
1172
1173 return ECORE_SUCCESS;
1174 }
1175
1176 #ifndef ASIC_ONLY
1177 /* MFW-replacement initializations for non-ASIC */
1178 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
1179 struct ecore_ptt *p_ptt)
1180 {
1181 struct ecore_dev *p_dev = p_hwfn->p_dev;
1182 u32 pl_hv = 1;
1183 int i;
1184
1185 if (CHIP_REV_IS_EMUL(p_dev)) {
1186 if (ECORE_IS_AH(p_dev))
1187 pl_hv |= 0x600;
1188 }
1189
1190 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
1191
1192 if (CHIP_REV_IS_EMUL(p_dev) &&
1193 (ECORE_IS_AH(p_dev)))
1194 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
1195 0x3ffffff);
1196
1197 /* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
1198 /* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
1199 if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
1200 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
1201
1202 if (CHIP_REV_IS_EMUL(p_dev)) {
1203 if (ECORE_IS_AH(p_dev)) {
1204 /* 2 for 4-port, 1 for 2-port, 0 for 1-port */
1205 ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
1206 (p_dev->num_ports_in_engines >> 1));
1207
1208 ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
1209 p_dev->num_ports_in_engines == 4 ? 0 : 3);
1210 }
1211 }
1212
1213 /* Poll on RBC */
1214 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
1215 for (i = 0; i < 100; i++) {
1216 OSAL_UDELAY(50);
1217 if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
1218 break;
1219 }
1220 if (i == 100)
1221 DP_NOTICE(p_hwfn, true,
1222 "RBC done failed to complete in PSWRQ2\n");
1223
1224 return ECORE_SUCCESS;
1225 }
1226 #endif
1227
1228 /* Init run time data for all PFs and their VFs on an engine.
1229 * TBD - for VFs - Once we have parent PF info for each VF in
1230 * shmem available as CAU requires knowledge of parent PF for each VF.
1231 */
1232 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
1233 {
1234 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
1235 int i, sb_id;
1236
1237 for_each_hwfn(p_dev, i) {
1238 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1239 struct ecore_igu_info *p_igu_info;
1240 struct ecore_igu_block *p_block;
1241 struct cau_sb_entry sb_entry;
1242
1243 p_igu_info = p_hwfn->hw_info.p_igu_info;
1244
1245 for (sb_id = 0; sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
1246 sb_id++) {
1247 p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
1248
1249 if (!p_block->is_pf)
1250 continue;
1251
1252 ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
1253 p_block->function_id, 0, 0);
1254 STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
1255 }
1256 }
1257 }
1258
1259 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
1260 struct ecore_ptt *p_ptt,
1261 int hw_mode)
1262 {
1263 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1264 struct ecore_dev *p_dev = p_hwfn->p_dev;
1265 u8 vf_id, max_num_vfs;
1266 u16 num_pfs, pf_id;
1267 u32 concrete_fid;
1268 enum _ecore_status_t rc = ECORE_SUCCESS;
1269
1270 ecore_init_cau_rt_data(p_dev);
1271
1272 /* Program GTT windows */
1273 ecore_gtt_init(p_hwfn);
1274
1275 #ifndef ASIC_ONLY
1276 if (CHIP_REV_IS_EMUL(p_dev)) {
1277 rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
1278 if (rc != ECORE_SUCCESS)
1279 return rc;
1280 }
1281 #endif
1282
1283 if (p_hwfn->mcp_info) {
1284 if (p_hwfn->mcp_info->func_info.bandwidth_max)
1285 qm_info->pf_rl_en = 1;
1286 if (p_hwfn->mcp_info->func_info.bandwidth_min)
1287 qm_info->pf_wfq_en = 1;
1288 }
1289
1290 ecore_qm_common_rt_init(p_hwfn,
1291 p_dev->num_ports_in_engines,
1292 qm_info->max_phys_tcs_per_port,
1293 qm_info->pf_rl_en, qm_info->pf_wfq_en,
1294 qm_info->vport_rl_en, qm_info->vport_wfq_en,
1295 qm_info->qm_port_params);
1296
1297 ecore_cxt_hw_init_common(p_hwfn);
1298
1299 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1300 if (rc != ECORE_SUCCESS)
1301 return rc;
1302
1303 /* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1304 * need to decide with which value, maybe runtime
1305 */
1306 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1307 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1308
1309 if (ECORE_IS_BB(p_dev)) {
1310 /* Workaround clears ROCE search for all functions to prevent
1311 * involving non initialized function in processing ROCE packet.
1312 */
1313 num_pfs = NUM_OF_ENG_PFS(p_dev);
1314 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1315 ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1316 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1317 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1318 }
1319 /* pretend to original PF */
1320 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1321 }
1322
1323 /* Workaround for avoiding CCFC execution error when getting packets
1324 * with CRC errors, and allowing instead the invoking of the FW error
1325 * handler.
1326 * This is not done inside the init tool since it currently can't
1327 * perform a pretending to VFs.
1328 */
1329 max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1330 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1331 concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1332 ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1333 ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1334 ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1335 ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1336 ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1337 }
1338 /* pretend to original PF */
1339 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1340
1341 return rc;
1342 }
1343
1344 #ifndef ASIC_ONLY
1345 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
1346 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
1347
1348 #define PMEG_IF_BYTE_COUNT 8
1349
1350 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
1351 struct ecore_ptt *p_ptt,
1352 u32 addr, u64 data, u8 reg_type, u8 port)
1353 {
1354 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1355 "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1356 ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
1357 (8 << PMEG_IF_BYTE_COUNT),
1358 (reg_type << 25) | (addr << 8) | port,
1359 (u32)((data >> 32) & 0xffffffff),
1360 (u32)(data & 0xffffffff));
1361
1362 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
1363 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
1364 0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
1365 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
1366 (reg_type << 25) | (addr << 8) | port);
1367 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
1368 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
1369 (data >> 32) & 0xffffffff);
1370 }
1371
1372 #define XLPORT_MODE_REG (0x20a)
1373 #define XLPORT_MAC_CONTROL (0x210)
1374 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1375 #define XLPORT_ENABLE_REG (0x20b)
1376
1377 #define XLMAC_CTRL (0x600)
1378 #define XLMAC_MODE (0x601)
1379 #define XLMAC_RX_MAX_SIZE (0x608)
1380 #define XLMAC_TX_CTRL (0x604)
1381 #define XLMAC_PAUSE_CTRL (0x60d)
1382 #define XLMAC_PFC_CTRL (0x60e)
1383
1384 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
1385 struct ecore_ptt *p_ptt)
1386 {
1387 u8 loopback = 0, port = p_hwfn->port_id * 2;
1388
1389 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1390
1391 /* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
1392 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
1393 port);
1394 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1395 /* XLMAC: SOFT RESET */
1396 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
1397 /* XLMAC: Port Speed >= 10Gbps */
1398 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
1399 /* XLMAC: Max Size */
1400 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
1401 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1402 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1403 0, port);
1404 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
1405 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1406 0x30ffffc000ULL, 0, port);
1407 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
1408 port); /* XLMAC: TX_EN, RX_EN */
1409 /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1410 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1411 0x1003 | (loopback << 2), 0, port);
1412 /* Enabled Parallel PFC interface */
1413 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
1414
1415 /* XLPORT port enable */
1416 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
1417 }
1418
1419 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
1420 struct ecore_ptt *p_ptt)
1421 {
1422 u8 port = p_hwfn->port_id;
1423 u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
1424
1425 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1426
1427 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
1428 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
1429 (port <<
1430 CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
1431 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
1432
1433 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
1434 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
1435
1436 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
1437 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
1438
1439 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
1440 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
1441
1442 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
1443 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
1444
1445 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
1446 (0xA <<
1447 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
1448 (8 <<
1449 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
1450
1451 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
1452 0xa853);
1453 }
1454
1455 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1456 struct ecore_ptt *p_ptt)
1457 {
1458 if (ECORE_IS_AH(p_hwfn->p_dev))
1459 ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
1460 else /* BB */
1461 ecore_emul_link_init_bb(p_hwfn, p_ptt);
1462 }
1463
1464 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
1465 struct ecore_ptt *p_ptt, u8 port)
1466 {
1467 int port_offset = port ? 0x800 : 0;
1468 u32 xmac_rxctrl = 0;
1469
1470 /* Reset of XMAC */
1471 /* FIXME: move to common start */
1472 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1473 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
1474 OSAL_MSLEEP(1);
1475 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1476 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
1477
1478 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
1479
1480 /* Set the number of ports on the Warp Core to 10G */
1481 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
1482
1483 /* Soft reset of XMAC */
1484 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1485 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1486 OSAL_MSLEEP(1);
1487 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1488 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1489
1490 /* FIXME: move to common end */
1491 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1492 ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
1493
1494 /* Set Max packet size: initialize XMAC block register for port 0 */
1495 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
1496
1497 /* CRC append for Tx packets: init XMAC block register for port 1 */
1498 ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
1499
1500 /* Enable TX and RX: initialize XMAC block register for port 1 */
1501 ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
1502 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
1503 xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
1504 XMAC_REG_RX_CTRL_BB + port_offset);
1505 xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
1506 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
1507 }
1508 #endif
1509
1510 static enum _ecore_status_t
1511 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1512 struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1513 {
1514 u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1515 u32 dpi_bit_shift, dpi_count;
1516 u32 min_dpis;
1517
1518 /* Calculate DPI size
1519 * ------------------
1520 * The PWM region contains Doorbell Pages. The first is reserverd for
1521 * the kernel for, e.g, L2. The others are free to be used by non-
1522 * trusted applications, typically from user space. Each page, called a
1523 * doorbell page is sectioned into windows that allow doorbells to be
1524 * issued in parallel by the kernel/application. The size of such a
1525 * window (a.k.a. WID) is 1kB.
1526 * Summary:
1527 * 1kB WID x N WIDS = DPI page size
1528 * DPI page size x N DPIs = PWM region size
1529 * Notes:
1530 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1531 * in order to ensure that two applications won't share the same page.
1532 * It also must contain at least one WID per CPU to allow parallelism.
1533 * It also must be a power of 2, since it is stored as a bit shift.
1534 *
1535 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1536 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1537 * containing 4 WIDs.
1538 */
1539 dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1540 dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1541 dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1542 dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
1543 dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1544
1545 dpi_count = pwm_region_size / dpi_page_size;
1546
1547 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1548 min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1549
1550 /* Update hwfn */
1551 p_hwfn->dpi_size = dpi_page_size;
1552 p_hwfn->dpi_count = dpi_count;
1553
1554 /* Update registers */
1555 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1556
1557 if (dpi_count < min_dpis)
1558 return ECORE_NORESOURCES;
1559
1560 return ECORE_SUCCESS;
1561 }
1562
1563 enum ECORE_ROCE_EDPM_MODE {
1564 ECORE_ROCE_EDPM_MODE_ENABLE = 0,
1565 ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
1566 ECORE_ROCE_EDPM_MODE_DISABLE = 2,
1567 };
1568
1569 static enum _ecore_status_t
1570 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1571 struct ecore_ptt *p_ptt)
1572 {
1573 u32 pwm_regsize, norm_regsize;
1574 u32 non_pwm_conn, min_addr_reg1;
1575 u32 db_bar_size, n_cpus;
1576 u32 roce_edpm_mode;
1577 u32 pf_dems_shift;
1578 enum _ecore_status_t rc = ECORE_SUCCESS;
1579 u8 cond;
1580
1581 db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
1582 if (p_hwfn->p_dev->num_hwfns > 1)
1583 db_bar_size /= 2;
1584
1585 /* Calculate doorbell regions
1586 * -----------------------------------
1587 * The doorbell BAR is made of two regions. The first is called normal
1588 * region and the second is called PWM region. In the normal region
1589 * each ICID has its own set of addresses so that writing to that
1590 * specific address identifies the ICID. In the Process Window Mode
1591 * region the ICID is given in the data written to the doorbell. The
1592 * above per PF register denotes the offset in the doorbell BAR in which
1593 * the PWM region begins.
1594 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1595 * non-PWM connection. The calculation below computes the total non-PWM
1596 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1597 * in units of 4,096 bytes.
1598 */
1599 non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1600 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1601 OSAL_NULL) +
1602 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
1603 norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
1604 min_addr_reg1 = norm_regsize / 4096;
1605 pwm_regsize = db_bar_size - norm_regsize;
1606
1607 /* Check that the normal and PWM sizes are valid */
1608 if (db_bar_size < norm_regsize) {
1609 DP_ERR(p_hwfn->p_dev,
1610 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1611 db_bar_size, norm_regsize);
1612 return ECORE_NORESOURCES;
1613 }
1614 if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1615 DP_ERR(p_hwfn->p_dev,
1616 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1617 pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
1618 norm_regsize);
1619 return ECORE_NORESOURCES;
1620 }
1621
1622 /* Calculate number of DPIs */
1623 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1624 if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1625 ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1626 /* Either EDPM is mandatory, or we are attempting to allocate a
1627 * WID per CPU.
1628 */
1629 n_cpus = OSAL_NUM_ACTIVE_CPU();
1630 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1631 }
1632
1633 cond = ((rc != ECORE_SUCCESS) &&
1634 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1635 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1636 if (cond || p_hwfn->dcbx_no_edpm) {
1637 /* Either EDPM is disabled from user configuration, or it is
1638 * disabled via DCBx, or it is not mandatory and we failed to
1639 * allocated a WID per CPU.
1640 */
1641 n_cpus = 1;
1642 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1643
1644 /* If we entered this flow due to DCBX then the DPM register is
1645 * already configured.
1646 */
1647 }
1648
1649 DP_INFO(p_hwfn,
1650 "doorbell bar: normal_region_size=%d, pwm_region_size=%d",
1651 norm_regsize, pwm_regsize);
1652 DP_INFO(p_hwfn,
1653 " dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1654 p_hwfn->dpi_size, p_hwfn->dpi_count,
1655 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1656 "disabled" : "enabled");
1657
1658 /* Check return codes from above calls */
1659 if (rc != ECORE_SUCCESS) {
1660 DP_ERR(p_hwfn,
1661 "Failed to allocate enough DPIs\n");
1662 return ECORE_NORESOURCES;
1663 }
1664
1665 /* Update hwfn */
1666 p_hwfn->dpi_start_offset = norm_regsize;
1667
1668 /* Update registers */
1669 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1670 pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
1671 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1672 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1673
1674 return ECORE_SUCCESS;
1675 }
1676
1677 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
1678 struct ecore_ptt *p_ptt,
1679 int hw_mode)
1680 {
1681 enum _ecore_status_t rc = ECORE_SUCCESS;
1682
1683 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
1684 hw_mode);
1685 if (rc != ECORE_SUCCESS)
1686 return rc;
1687 #ifndef ASIC_ONLY
1688 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
1689 return ECORE_SUCCESS;
1690
1691 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1692 if (ECORE_IS_AH(p_hwfn->p_dev))
1693 return ECORE_SUCCESS;
1694 else if (ECORE_IS_BB(p_hwfn->p_dev))
1695 ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
1696 } else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
1697 if (p_hwfn->p_dev->num_hwfns > 1) {
1698 /* Activate OPTE in CMT */
1699 u32 val;
1700
1701 val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
1702 val |= 0x10;
1703 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
1704 ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
1705 ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
1706 ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
1707 ecore_wr(p_hwfn, p_ptt,
1708 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
1709 ecore_wr(p_hwfn, p_ptt,
1710 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
1711 ecore_wr(p_hwfn, p_ptt,
1712 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
1713 0x55555555);
1714 }
1715
1716 ecore_emul_link_init(p_hwfn, p_ptt);
1717 } else {
1718 DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
1719 }
1720 #endif
1721
1722 return rc;
1723 }
1724
1725 static enum _ecore_status_t
1726 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
1727 struct ecore_ptt *p_ptt,
1728 struct ecore_tunnel_info *p_tunn,
1729 int hw_mode,
1730 bool b_hw_start,
1731 enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
1732 {
1733 u8 rel_pf_id = p_hwfn->rel_pf_id;
1734 u32 prs_reg;
1735 enum _ecore_status_t rc = ECORE_SUCCESS;
1736 u16 ctrl;
1737 int pos;
1738
1739 if (p_hwfn->mcp_info) {
1740 struct ecore_mcp_function_info *p_info;
1741
1742 p_info = &p_hwfn->mcp_info->func_info;
1743 if (p_info->bandwidth_min)
1744 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1745
1746 /* Update rate limit once we'll actually have a link */
1747 p_hwfn->qm_info.pf_rl = 100000;
1748 }
1749 ecore_cxt_hw_init_pf(p_hwfn);
1750
1751 ecore_int_igu_init_rt(p_hwfn);
1752
1753 /* Set VLAN in NIG if needed */
1754 if (hw_mode & (1 << MODE_MF_SD)) {
1755 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1756 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1757 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1758 p_hwfn->hw_info.ovlan);
1759 }
1760
1761 /* Enable classification by MAC if needed */
1762 if (hw_mode & (1 << MODE_MF_SI)) {
1763 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1764 "Configuring TAGMAC_CLS_TYPE\n");
1765 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
1766 1);
1767 }
1768
1769 /* Protocl Configuration - @@@TBD - should we set 0 otherwise? */
1770 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1771 (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
1772 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1773 (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
1774 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1775
1776 /* perform debug configuration when chip is out of reset */
1777 OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
1778
1779 /* Cleanup chip from previous driver if such remains exist */
1780 rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1781 if (rc != ECORE_SUCCESS) {
1782 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
1783 return rc;
1784 }
1785
1786 /* PF Init sequence */
1787 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1788 if (rc)
1789 return rc;
1790
1791 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1792 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1793 if (rc)
1794 return rc;
1795
1796 /* Pure runtime initializations - directly to the HW */
1797 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1798
1799 /* PCI relaxed ordering causes a decrease in the performance on some
1800 * systems. Till a root cause is found, disable this attribute in the
1801 * PCI config space.
1802 */
1803 /* Not in use @DPDK
1804 * pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
1805 * if (!pos) {
1806 * DP_NOTICE(p_hwfn, true,
1807 * "Failed to find the PCIe Cap\n");
1808 * return ECORE_IO;
1809 * }
1810 * OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
1811 * ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
1812 * OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
1813 */
1814
1815 rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1816 if (rc)
1817 return rc;
1818 if (b_hw_start) {
1819 /* enable interrupts */
1820 rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
1821 if (rc != ECORE_SUCCESS)
1822 return rc;
1823
1824 /* send function start command */
1825 rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
1826 allow_npar_tx_switch);
1827 if (rc) {
1828 DP_NOTICE(p_hwfn, true,
1829 "Function start ramrod failed\n");
1830 } else {
1831 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1832 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1833 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1834
1835 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1836 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
1837 (1 << 2));
1838 ecore_wr(p_hwfn, p_ptt,
1839 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1840 0x100);
1841 }
1842 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1843 "PRS_REG_SEARCH registers after start PFn\n");
1844 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
1845 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1846 "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
1847 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
1848 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1849 "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
1850 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
1851 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1852 "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
1853 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
1854 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1855 "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
1856 prs_reg = ecore_rd(p_hwfn, p_ptt,
1857 PRS_REG_SEARCH_TCP_FIRST_FRAG);
1858 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1859 "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
1860 prs_reg);
1861 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1862 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1863 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1864 }
1865 }
1866 return rc;
1867 }
1868
1869 static enum _ecore_status_t
1870 ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
1871 struct ecore_ptt *p_ptt, u8 enable)
1872 {
1873 u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1874
1875 /* Change PF in PXP */
1876 ecore_wr(p_hwfn, p_ptt,
1877 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1878
1879 /* wait until value is set - try for 1 second every 50us */
1880 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1881 val = ecore_rd(p_hwfn, p_ptt,
1882 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1883 if (val == set_val)
1884 break;
1885
1886 OSAL_UDELAY(50);
1887 }
1888
1889 if (val != set_val) {
1890 DP_NOTICE(p_hwfn, true,
1891 "PFID_ENABLE_MASTER wasn't changed after a second\n");
1892 return ECORE_UNKNOWN_ERROR;
1893 }
1894
1895 return ECORE_SUCCESS;
1896 }
1897
1898 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
1899 struct ecore_ptt *p_main_ptt)
1900 {
1901 /* Read shadow of current MFW mailbox */
1902 ecore_mcp_read_mb(p_hwfn, p_main_ptt);
1903 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1904 p_hwfn->mcp_info->mfw_mb_cur,
1905 p_hwfn->mcp_info->mfw_mb_length);
1906 }
1907
1908 enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
1909 struct ecore_hw_init_params *p_params)
1910 {
1911 if (p_params->p_tunn) {
1912 ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
1913 ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
1914 }
1915
1916 p_hwfn->b_int_enabled = 1;
1917
1918 return ECORE_SUCCESS;
1919 }
1920
1921 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
1922 struct ecore_hw_init_params *p_params)
1923 {
1924 struct ecore_load_req_params load_req_params;
1925 u32 load_code, param, drv_mb_param;
1926 bool b_default_mtu = true;
1927 struct ecore_hwfn *p_hwfn;
1928 enum _ecore_status_t rc = ECORE_SUCCESS, mfw_rc;
1929 int i;
1930
1931 if ((p_params->int_mode == ECORE_INT_MODE_MSI) &&
1932 (p_dev->num_hwfns > 1)) {
1933 DP_NOTICE(p_dev, false,
1934 "MSI mode is not supported for CMT devices\n");
1935 return ECORE_INVAL;
1936 }
1937
1938 if (IS_PF(p_dev)) {
1939 rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
1940 if (rc != ECORE_SUCCESS)
1941 return rc;
1942 }
1943
1944 for_each_hwfn(p_dev, i) {
1945 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1946
1947 /* If management didn't provide a default, set one of our own */
1948 if (!p_hwfn->hw_info.mtu) {
1949 p_hwfn->hw_info.mtu = 1500;
1950 b_default_mtu = false;
1951 }
1952
1953 if (IS_VF(p_dev)) {
1954 ecore_vf_start(p_hwfn, p_params);
1955 continue;
1956 }
1957
1958 /* Enable DMAE in PXP */
1959 rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1960 if (rc != ECORE_SUCCESS)
1961 return rc;
1962
1963 rc = ecore_calc_hw_mode(p_hwfn);
1964 if (rc != ECORE_SUCCESS)
1965 return rc;
1966
1967 OSAL_MEM_ZERO(&load_req_params, sizeof(load_req_params));
1968 load_req_params.drv_role = p_params->is_crash_kernel ?
1969 ECORE_DRV_ROLE_KDUMP :
1970 ECORE_DRV_ROLE_OS;
1971 load_req_params.timeout_val = p_params->mfw_timeout_val;
1972 load_req_params.avoid_eng_reset = p_params->avoid_eng_reset;
1973 rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
1974 &load_req_params);
1975 if (rc != ECORE_SUCCESS) {
1976 DP_NOTICE(p_hwfn, true,
1977 "Failed sending a LOAD_REQ command\n");
1978 return rc;
1979 }
1980
1981 load_code = load_req_params.load_code;
1982 DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
1983 "Load request was sent. Load code: 0x%x\n",
1984 load_code);
1985
1986 /* CQ75580:
1987 * When coming back from hiberbate state, the registers from
1988 * which shadow is read initially are not initialized. It turns
1989 * out that these registers get initialized during the call to
1990 * ecore_mcp_load_req request. So we need to reread them here
1991 * to get the proper shadow register value.
1992 * Note: This is a workaround for the missing MFW
1993 * initialization. It may be removed once the implementation
1994 * is done.
1995 */
1996 ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1997
1998 /* Only relevant for recovery:
1999 * Clear the indication after the LOAD_REQ command is responded
2000 * by the MFW.
2001 */
2002 p_dev->recov_in_prog = false;
2003
2004 p_hwfn->first_on_engine = (load_code ==
2005 FW_MSG_CODE_DRV_LOAD_ENGINE);
2006
2007 if (!qm_lock_init) {
2008 OSAL_SPIN_LOCK_INIT(&qm_lock);
2009 qm_lock_init = true;
2010 }
2011
2012 switch (load_code) {
2013 case FW_MSG_CODE_DRV_LOAD_ENGINE:
2014 rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
2015 p_hwfn->hw_info.hw_mode);
2016 if (rc != ECORE_SUCCESS)
2017 break;
2018 /* Fall into */
2019 case FW_MSG_CODE_DRV_LOAD_PORT:
2020 rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
2021 p_hwfn->hw_info.hw_mode);
2022 if (rc != ECORE_SUCCESS)
2023 break;
2024 /* Fall into */
2025 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
2026 rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
2027 p_params->p_tunn,
2028 p_hwfn->hw_info.hw_mode,
2029 p_params->b_hw_start,
2030 p_params->int_mode,
2031 p_params->allow_npar_tx_switch);
2032 break;
2033 default:
2034 DP_NOTICE(p_hwfn, false,
2035 "Unexpected load code [0x%08x]", load_code);
2036 rc = ECORE_NOTIMPL;
2037 break;
2038 }
2039
2040 if (rc != ECORE_SUCCESS)
2041 DP_NOTICE(p_hwfn, true,
2042 "init phase failed for loadcode 0x%x (rc %d)\n",
2043 load_code, rc);
2044
2045 /* ACK mfw regardless of success or failure of initialization */
2046 mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2047 DRV_MSG_CODE_LOAD_DONE,
2048 0, &load_code, &param);
2049 if (rc != ECORE_SUCCESS)
2050 return rc;
2051
2052 if (mfw_rc != ECORE_SUCCESS) {
2053 DP_NOTICE(p_hwfn, true,
2054 "Failed sending a LOAD_DONE command\n");
2055 return mfw_rc;
2056 }
2057
2058 /* send DCBX attention request command */
2059 DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
2060 "sending phony dcbx set command to trigger DCBx attention handling\n");
2061 mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2062 DRV_MSG_CODE_SET_DCBX,
2063 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
2064 &load_code, &param);
2065 if (mfw_rc != ECORE_SUCCESS) {
2066 DP_NOTICE(p_hwfn, true,
2067 "Failed to send DCBX attention request\n");
2068 return mfw_rc;
2069 }
2070
2071 p_hwfn->hw_init_done = true;
2072 }
2073
2074 if (IS_PF(p_dev)) {
2075 p_hwfn = ECORE_LEADING_HWFN(p_dev);
2076 drv_mb_param = STORM_FW_VERSION;
2077 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2078 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
2079 drv_mb_param, &load_code, &param);
2080 if (rc != ECORE_SUCCESS)
2081 DP_INFO(p_hwfn, "Failed to update firmware version\n");
2082
2083 if (!b_default_mtu)
2084 rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
2085 p_hwfn->hw_info.mtu);
2086 if (rc != ECORE_SUCCESS)
2087 DP_INFO(p_hwfn, "Failed to update default mtu\n");
2088
2089 rc = ecore_mcp_ov_update_driver_state(p_hwfn,
2090 p_hwfn->p_main_ptt,
2091 ECORE_OV_DRIVER_STATE_DISABLED);
2092 if (rc != ECORE_SUCCESS)
2093 DP_INFO(p_hwfn, "Failed to update driver state\n");
2094 }
2095
2096 return rc;
2097 }
2098
2099 #define ECORE_HW_STOP_RETRY_LIMIT (10)
2100 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
2101 struct ecore_hwfn *p_hwfn,
2102 struct ecore_ptt *p_ptt)
2103 {
2104 int i;
2105
2106 /* close timers */
2107 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
2108 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
2109 for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
2110 i++) {
2111 if ((!ecore_rd(p_hwfn, p_ptt,
2112 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
2113 (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
2114 break;
2115
2116 /* Dependent on number of connection/tasks, possibly
2117 * 1ms sleep is required between polls
2118 */
2119 OSAL_MSLEEP(1);
2120 }
2121
2122 if (i < ECORE_HW_STOP_RETRY_LIMIT)
2123 return;
2124
2125 DP_NOTICE(p_hwfn, true, "Timers linear scans are not over"
2126 " [Connection %02x Tasks %02x]\n",
2127 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
2128 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
2129 }
2130
2131 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
2132 {
2133 int j;
2134
2135 for_each_hwfn(p_dev, j) {
2136 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2137 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2138
2139 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2140 }
2141 }
2142
2143 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
2144 struct ecore_ptt *p_ptt,
2145 u32 addr, u32 expected_val)
2146 {
2147 u32 val = ecore_rd(p_hwfn, p_ptt, addr);
2148
2149 if (val != expected_val) {
2150 DP_NOTICE(p_hwfn, true,
2151 "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
2152 addr, val, expected_val);
2153 return ECORE_UNKNOWN_ERROR;
2154 }
2155
2156 return ECORE_SUCCESS;
2157 }
2158
2159 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
2160 {
2161 struct ecore_hwfn *p_hwfn;
2162 struct ecore_ptt *p_ptt;
2163 enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
2164 int j;
2165
2166 for_each_hwfn(p_dev, j) {
2167 p_hwfn = &p_dev->hwfns[j];
2168 p_ptt = p_hwfn->p_main_ptt;
2169
2170 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
2171
2172 if (IS_VF(p_dev)) {
2173 ecore_vf_pf_int_cleanup(p_hwfn);
2174 rc = ecore_vf_pf_reset(p_hwfn);
2175 if (rc != ECORE_SUCCESS) {
2176 DP_NOTICE(p_hwfn, true,
2177 "ecore_vf_pf_reset failed. rc = %d.\n",
2178 rc);
2179 rc2 = ECORE_UNKNOWN_ERROR;
2180 }
2181 continue;
2182 }
2183
2184 /* mark the hw as uninitialized... */
2185 p_hwfn->hw_init_done = false;
2186
2187 /* Send unload command to MCP */
2188 if (!p_dev->recov_in_prog) {
2189 rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
2190 if (rc != ECORE_SUCCESS) {
2191 DP_NOTICE(p_hwfn, true,
2192 "Failed sending a UNLOAD_REQ command. rc = %d.\n",
2193 rc);
2194 rc2 = ECORE_UNKNOWN_ERROR;
2195 }
2196 }
2197
2198 OSAL_DPC_SYNC(p_hwfn);
2199
2200 /* After this point no MFW attentions are expected, e.g. prevent
2201 * race between pf stop and dcbx pf update.
2202 */
2203
2204 rc = ecore_sp_pf_stop(p_hwfn);
2205 if (rc != ECORE_SUCCESS) {
2206 DP_NOTICE(p_hwfn, true,
2207 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
2208 rc);
2209 rc2 = ECORE_UNKNOWN_ERROR;
2210 }
2211
2212 /* perform debug action after PF stop was sent */
2213 OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
2214
2215 /* close NIG to BRB gate */
2216 ecore_wr(p_hwfn, p_ptt,
2217 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2218
2219 /* close parser */
2220 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2221 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2222 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2223 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2224 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2225
2226 /* @@@TBD - clean transmission queues (5.b) */
2227 /* @@@TBD - clean BTB (5.c) */
2228
2229 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2230
2231 /* @@@TBD - verify DMAE requests are done (8) */
2232
2233 /* Disable Attention Generation */
2234 ecore_int_igu_disable_int(p_hwfn, p_ptt);
2235 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2236 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2237 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
2238 /* Need to wait 1ms to guarantee SBs are cleared */
2239 OSAL_MSLEEP(1);
2240
2241 if (!p_dev->recov_in_prog) {
2242 ecore_verify_reg_val(p_hwfn, p_ptt,
2243 QM_REG_USG_CNT_PF_TX, 0);
2244 ecore_verify_reg_val(p_hwfn, p_ptt,
2245 QM_REG_USG_CNT_PF_OTHER, 0);
2246 /* @@@TBD - assert on incorrect xCFC values (10.b) */
2247 }
2248
2249 /* Disable PF in HW blocks */
2250 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
2251 ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
2252
2253 if (!p_dev->recov_in_prog) {
2254 ecore_mcp_unload_done(p_hwfn, p_ptt);
2255 if (rc != ECORE_SUCCESS) {
2256 DP_NOTICE(p_hwfn, true,
2257 "Failed sending a UNLOAD_DONE command. rc = %d.\n",
2258 rc);
2259 rc2 = ECORE_UNKNOWN_ERROR;
2260 }
2261 }
2262 } /* hwfn loop */
2263
2264 if (IS_PF(p_dev)) {
2265 p_hwfn = ECORE_LEADING_HWFN(p_dev);
2266 p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
2267
2268 /* Disable DMAE in PXP - in CMT, this should only be done for
2269 * first hw-function, and only after all transactions have
2270 * stopped for all active hw-functions.
2271 */
2272 rc = ecore_change_pci_hwfn(p_hwfn, p_ptt, false);
2273 if (rc != ECORE_SUCCESS) {
2274 DP_NOTICE(p_hwfn, true,
2275 "ecore_change_pci_hwfn failed. rc = %d.\n",
2276 rc);
2277 rc2 = ECORE_UNKNOWN_ERROR;
2278 }
2279 }
2280
2281 return rc2;
2282 }
2283
2284 void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
2285 {
2286 int j;
2287
2288 for_each_hwfn(p_dev, j) {
2289 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2290 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2291
2292 if (IS_VF(p_dev)) {
2293 ecore_vf_pf_int_cleanup(p_hwfn);
2294 continue;
2295 }
2296
2297 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2298 "Shutting down the fastpath\n");
2299
2300 ecore_wr(p_hwfn, p_ptt,
2301 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2302
2303 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2304 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2305 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2306 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2307 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2308
2309 /* @@@TBD - clean transmission queues (5.b) */
2310 /* @@@TBD - clean BTB (5.c) */
2311
2312 /* @@@TBD - verify DMAE requests are done (8) */
2313
2314 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
2315 /* Need to wait 1ms to guarantee SBs are cleared */
2316 OSAL_MSLEEP(1);
2317 }
2318 }
2319
2320 void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
2321 {
2322 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2323
2324 if (IS_VF(p_hwfn->p_dev))
2325 return;
2326
2327 /* If roce info is allocated it means roce is initialized and should
2328 * be enabled in searcher.
2329 */
2330 if (p_hwfn->p_rdma_info) {
2331 if (p_hwfn->b_rdma_enabled_in_prs)
2332 ecore_wr(p_hwfn, p_ptt,
2333 p_hwfn->rdma_prs_search_reg, 0x1);
2334 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
2335 }
2336
2337 /* Re-open incoming traffic */
2338 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2339 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
2340 }
2341
2342 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2343 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2344 {
2345 ecore_ptt_pool_free(p_hwfn);
2346 OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2347 }
2348
2349 /* Setup bar access */
2350 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2351 {
2352 /* clear indirect access */
2353 if (ECORE_IS_AH(p_hwfn->p_dev)) {
2354 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2355 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
2356 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2357 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
2358 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2359 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
2360 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2361 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
2362 } else {
2363 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2364 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
2365 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2366 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
2367 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2368 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
2369 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2370 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
2371 }
2372
2373 /* Clean Previous errors if such exist */
2374 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2375 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
2376
2377 /* enable internal target-read */
2378 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2379 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2380 }
2381
2382 static void get_function_id(struct ecore_hwfn *p_hwfn)
2383 {
2384 /* ME Register */
2385 p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
2386 PXP_PF_ME_OPAQUE_ADDR);
2387
2388 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2389
2390 /* Bits 16-19 from the ME registers are the pf_num */
2391 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2392 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2393 PXP_CONCRETE_FID_PFID);
2394 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2395 PXP_CONCRETE_FID_PORT);
2396
2397 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2398 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2399 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2400 }
2401
2402 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2403 {
2404 u32 *feat_num = p_hwfn->hw_info.feat_num;
2405 struct ecore_sb_cnt_info sb_cnt_info;
2406 int num_features = 1;
2407
2408 /* L2 Queues require each: 1 status block. 1 L2 queue */
2409 feat_num[ECORE_PF_L2_QUE] =
2410 OSAL_MIN_T(u32,
2411 RESC_NUM(p_hwfn, ECORE_SB) / num_features,
2412 RESC_NUM(p_hwfn, ECORE_L2_QUEUE));
2413
2414 OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2415 ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2416 feat_num[ECORE_VF_L2_QUE] =
2417 OSAL_MIN_T(u32,
2418 RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
2419 FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
2420 sb_cnt_info.sb_iov_cnt);
2421
2422 feat_num[ECORE_FCOE_CQ] = OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_SB),
2423 RESC_NUM(p_hwfn, ECORE_CMDQS_CQS));
2424 feat_num[ECORE_ISCSI_CQ] = OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_SB),
2425 RESC_NUM(p_hwfn, ECORE_CMDQS_CQS));
2426
2427 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2428 "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
2429 (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
2430 (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
2431 (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
2432 (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
2433 (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
2434 RESC_NUM(p_hwfn, ECORE_SB));
2435 }
2436
2437 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2438 {
2439 switch (res_id) {
2440 case ECORE_SB:
2441 return "SB";
2442 case ECORE_L2_QUEUE:
2443 return "L2_QUEUE";
2444 case ECORE_VPORT:
2445 return "VPORT";
2446 case ECORE_RSS_ENG:
2447 return "RSS_ENG";
2448 case ECORE_PQ:
2449 return "PQ";
2450 case ECORE_RL:
2451 return "RL";
2452 case ECORE_MAC:
2453 return "MAC";
2454 case ECORE_VLAN:
2455 return "VLAN";
2456 case ECORE_RDMA_CNQ_RAM:
2457 return "RDMA_CNQ_RAM";
2458 case ECORE_ILT:
2459 return "ILT";
2460 case ECORE_LL2_QUEUE:
2461 return "LL2_QUEUE";
2462 case ECORE_CMDQS_CQS:
2463 return "CMDQS_CQS";
2464 case ECORE_RDMA_STATS_QUEUE:
2465 return "RDMA_STATS_QUEUE";
2466 case ECORE_BDQ:
2467 return "BDQ";
2468 default:
2469 return "UNKNOWN_RESOURCE";
2470 }
2471 }
2472
2473 static enum _ecore_status_t
2474 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
2475 enum ecore_resources res_id, u32 resc_max_val,
2476 u32 *p_mcp_resp)
2477 {
2478 enum _ecore_status_t rc;
2479
2480 rc = ecore_mcp_set_resc_max_val(p_hwfn, p_hwfn->p_main_ptt, res_id,
2481 resc_max_val, p_mcp_resp);
2482 if (rc != ECORE_SUCCESS) {
2483 DP_NOTICE(p_hwfn, true,
2484 "MFW response failure for a max value setting of resource %d [%s]\n",
2485 res_id, ecore_hw_get_resc_name(res_id));
2486 return rc;
2487 }
2488
2489 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
2490 DP_INFO(p_hwfn,
2491 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
2492 res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
2493
2494 return ECORE_SUCCESS;
2495 }
2496
2497 static enum _ecore_status_t
2498 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn)
2499 {
2500 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2501 u32 resc_max_val, mcp_resp;
2502 u8 res_id;
2503 enum _ecore_status_t rc;
2504
2505 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2506 /* @DPDK */
2507 switch (res_id) {
2508 case ECORE_LL2_QUEUE:
2509 case ECORE_RDMA_CNQ_RAM:
2510 case ECORE_RDMA_STATS_QUEUE:
2511 case ECORE_BDQ:
2512 resc_max_val = 0;
2513 break;
2514 default:
2515 continue;
2516 }
2517
2518 rc = __ecore_hw_set_soft_resc_size(p_hwfn, res_id,
2519 resc_max_val, &mcp_resp);
2520 if (rc != ECORE_SUCCESS)
2521 return rc;
2522
2523 /* There's no point to continue to the next resource if the
2524 * command is not supported by the MFW.
2525 * We do continue if the command is supported but the resource
2526 * is unknown to the MFW. Such a resource will be later
2527 * configured with the default allocation values.
2528 */
2529 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
2530 return ECORE_NOTIMPL;
2531 }
2532
2533 return ECORE_SUCCESS;
2534 }
2535
2536 static
2537 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
2538 enum ecore_resources res_id,
2539 u32 *p_resc_num, u32 *p_resc_start)
2540 {
2541 u8 num_funcs = p_hwfn->num_funcs_on_engine;
2542 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2543 struct ecore_sb_cnt_info sb_cnt_info;
2544
2545 switch (res_id) {
2546 case ECORE_SB:
2547 OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2548 ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2549 *p_resc_num = sb_cnt_info.sb_cnt;
2550 break;
2551 case ECORE_L2_QUEUE:
2552 *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2553 MAX_NUM_L2_QUEUES_BB) / num_funcs;
2554 break;
2555 case ECORE_VPORT:
2556 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2557 MAX_NUM_VPORTS_BB) / num_funcs;
2558 break;
2559 case ECORE_RSS_ENG:
2560 *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2561 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2562 break;
2563 case ECORE_PQ:
2564 *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2565 MAX_QM_TX_QUEUES_BB) / num_funcs;
2566 break;
2567 case ECORE_RL:
2568 *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2569 break;
2570 case ECORE_MAC:
2571 case ECORE_VLAN:
2572 /* Each VFC resource can accommodate both a MAC and a VLAN */
2573 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2574 break;
2575 case ECORE_ILT:
2576 *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2577 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2578 break;
2579 case ECORE_LL2_QUEUE:
2580 *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2581 break;
2582 case ECORE_RDMA_CNQ_RAM:
2583 case ECORE_CMDQS_CQS:
2584 /* CNQ/CMDQS are the same resource */
2585 /* @DPDK */
2586 *p_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
2587 break;
2588 case ECORE_RDMA_STATS_QUEUE:
2589 /* @DPDK */
2590 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2591 MAX_NUM_VPORTS_BB) / num_funcs;
2592 break;
2593 case ECORE_BDQ:
2594 /* @DPDK */
2595 *p_resc_num = 0;
2596 break;
2597 default:
2598 break;
2599 }
2600
2601
2602 switch (res_id) {
2603 case ECORE_BDQ:
2604 if (!*p_resc_num)
2605 *p_resc_start = 0;
2606 break;
2607 default:
2608 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
2609 break;
2610 }
2611
2612 return ECORE_SUCCESS;
2613 }
2614
2615 static enum _ecore_status_t
2616 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
2617 bool drv_resc_alloc)
2618 {
2619 u32 dflt_resc_num = 0, dflt_resc_start = 0;
2620 u32 mcp_resp, *p_resc_num, *p_resc_start;
2621 enum _ecore_status_t rc;
2622
2623 p_resc_num = &RESC_NUM(p_hwfn, res_id);
2624 p_resc_start = &RESC_START(p_hwfn, res_id);
2625
2626 rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
2627 &dflt_resc_start);
2628 if (rc != ECORE_SUCCESS) {
2629 DP_ERR(p_hwfn,
2630 "Failed to get default amount for resource %d [%s]\n",
2631 res_id, ecore_hw_get_resc_name(res_id));
2632 return rc;
2633 }
2634
2635 #ifndef ASIC_ONLY
2636 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2637 *p_resc_num = dflt_resc_num;
2638 *p_resc_start = dflt_resc_start;
2639 goto out;
2640 }
2641 #endif
2642
2643 rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
2644 &mcp_resp, p_resc_num, p_resc_start);
2645 if (rc != ECORE_SUCCESS) {
2646 DP_NOTICE(p_hwfn, true,
2647 "MFW response failure for an allocation request for"
2648 " resource %d [%s]\n",
2649 res_id, ecore_hw_get_resc_name(res_id));
2650 return rc;
2651 }
2652
2653 /* Default driver values are applied in the following cases:
2654 * - The resource allocation MB command is not supported by the MFW
2655 * - There is an internal error in the MFW while processing the request
2656 * - The resource ID is unknown to the MFW
2657 */
2658 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
2659 DP_INFO(p_hwfn,
2660 "Failed to receive allocation info for resource %d [%s]."
2661 " mcp_resp = 0x%x. Applying default values"
2662 " [%d,%d].\n",
2663 res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
2664 dflt_resc_num, dflt_resc_start);
2665
2666 *p_resc_num = dflt_resc_num;
2667 *p_resc_start = dflt_resc_start;
2668 goto out;
2669 }
2670
2671 /* TBD - remove this when revising the handling of the SB resource */
2672 if (res_id == ECORE_SB) {
2673 /* Excluding the slowpath SB */
2674 *p_resc_num -= 1;
2675 *p_resc_start -= p_hwfn->enabled_func_idx;
2676 }
2677
2678 if (*p_resc_num != dflt_resc_num || *p_resc_start != dflt_resc_start) {
2679 DP_INFO(p_hwfn,
2680 "MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
2681 res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
2682 *p_resc_start, dflt_resc_num, dflt_resc_start,
2683 drv_resc_alloc ? " - Applying default values" : "");
2684 if (drv_resc_alloc) {
2685 *p_resc_num = dflt_resc_num;
2686 *p_resc_start = dflt_resc_start;
2687 }
2688 }
2689 out:
2690 return ECORE_SUCCESS;
2691 }
2692
2693 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
2694 bool drv_resc_alloc)
2695 {
2696 enum _ecore_status_t rc;
2697 u8 res_id;
2698
2699 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2700 rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
2701 if (rc != ECORE_SUCCESS)
2702 return rc;
2703 }
2704
2705 return ECORE_SUCCESS;
2706 }
2707
2708 #define ECORE_RESC_ALLOC_LOCK_RETRY_CNT 10
2709 #define ECORE_RESC_ALLOC_LOCK_RETRY_INTVL_US 10000 /* 10 msec */
2710
2711 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
2712 bool drv_resc_alloc)
2713 {
2714 struct ecore_resc_unlock_params resc_unlock_params;
2715 struct ecore_resc_lock_params resc_lock_params;
2716 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2717 u8 res_id;
2718 enum _ecore_status_t rc;
2719 #ifndef ASIC_ONLY
2720 u32 *resc_start = p_hwfn->hw_info.resc_start;
2721 u32 *resc_num = p_hwfn->hw_info.resc_num;
2722 /* For AH, an equal share of the ILT lines between the maximal number of
2723 * PFs is not enough for RoCE. This would be solved by the future
2724 * resource allocation scheme, but isn't currently present for
2725 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
2726 * to work - the BB number of ILT lines divided by its max PFs number.
2727 */
2728 u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
2729 #endif
2730
2731 /* Setting the max values of the soft resources and the following
2732 * resources allocation queries should be atomic. Since several PFs can
2733 * run in parallel - a resource lock is needed.
2734 * If either the resource lock or resource set value commands are not
2735 * supported - skip the the max values setting, release the lock if
2736 * needed, and proceed to the queries. Other failures, including a
2737 * failure to acquire the lock, will cause this function to fail.
2738 * Old drivers that don't acquire the lock can run in parallel, and
2739 * their allocation values won't be affected by the updated max values.
2740 */
2741 OSAL_MEM_ZERO(&resc_lock_params, sizeof(resc_lock_params));
2742 resc_lock_params.resource = ECORE_RESC_LOCK_RESC_ALLOC;
2743 resc_lock_params.retry_num = ECORE_RESC_ALLOC_LOCK_RETRY_CNT;
2744 resc_lock_params.retry_interval = ECORE_RESC_ALLOC_LOCK_RETRY_INTVL_US;
2745 resc_lock_params.sleep_b4_retry = true;
2746 OSAL_MEM_ZERO(&resc_unlock_params, sizeof(resc_unlock_params));
2747 resc_unlock_params.resource = ECORE_RESC_LOCK_RESC_ALLOC;
2748
2749 rc = ecore_mcp_resc_lock(p_hwfn, p_hwfn->p_main_ptt, &resc_lock_params);
2750 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
2751 return rc;
2752 } else if (rc == ECORE_NOTIMPL) {
2753 DP_INFO(p_hwfn,
2754 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
2755 } else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
2756 DP_NOTICE(p_hwfn, false,
2757 "Failed to acquire the resource lock for the resource allocation commands\n");
2758 rc = ECORE_BUSY;
2759 goto unlock_and_exit;
2760 } else {
2761 rc = ecore_hw_set_soft_resc_size(p_hwfn);
2762 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
2763 DP_NOTICE(p_hwfn, false,
2764 "Failed to set the max values of the soft resources\n");
2765 goto unlock_and_exit;
2766 } else if (rc == ECORE_NOTIMPL) {
2767 DP_INFO(p_hwfn,
2768 "Skip the max values setting of the soft resources since it is not supported by the MFW\n");
2769 rc = ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt,
2770 &resc_unlock_params);
2771 if (rc != ECORE_SUCCESS)
2772 DP_INFO(p_hwfn,
2773 "Failed to release the resource lock for the resource allocation commands\n");
2774 }
2775 }
2776
2777 rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
2778 if (rc != ECORE_SUCCESS)
2779 goto unlock_and_exit;
2780
2781 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
2782 rc = ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt,
2783 &resc_unlock_params);
2784 if (rc != ECORE_SUCCESS)
2785 DP_INFO(p_hwfn,
2786 "Failed to release the resource lock for the resource allocation commands\n");
2787 }
2788
2789 #ifndef ASIC_ONLY
2790 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2791 /* Reduced build contains less PQs */
2792 if (!(p_hwfn->p_dev->b_is_emul_full)) {
2793 resc_num[ECORE_PQ] = 32;
2794 resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
2795 p_hwfn->enabled_func_idx;
2796 }
2797
2798 /* For AH emulation, since we have a possible maximal number of
2799 * 16 enabled PFs, in case there are not enough ILT lines -
2800 * allocate only first PF as RoCE and have all the other ETH
2801 * only with less ILT lines.
2802 */
2803 if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
2804 resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
2805 resc_num[ECORE_ILT],
2806 roce_min_ilt_lines);
2807 }
2808
2809 /* Correct the common ILT calculation if PF0 has more */
2810 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
2811 p_hwfn->p_dev->b_is_emul_full &&
2812 p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
2813 resc_start[ECORE_ILT] += roce_min_ilt_lines -
2814 resc_num[ECORE_ILT];
2815 #endif
2816
2817 /* Sanity for ILT */
2818 if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2819 (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2820 DP_NOTICE(p_hwfn, true,
2821 "Can't assign ILT pages [%08x,...,%08x]\n",
2822 RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
2823 ECORE_ILT) -
2824 1);
2825 return ECORE_INVAL;
2826 }
2827
2828 ecore_hw_set_feat(p_hwfn);
2829
2830 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2831 "The numbers for each resource are:\n");
2832 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
2833 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
2834 ecore_hw_get_resc_name(res_id),
2835 RESC_NUM(p_hwfn, res_id),
2836 RESC_START(p_hwfn, res_id));
2837
2838 return ECORE_SUCCESS;
2839
2840 unlock_and_exit:
2841 ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt, &resc_unlock_params);
2842 return rc;
2843 }
2844
2845 static enum _ecore_status_t
2846 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
2847 struct ecore_ptt *p_ptt,
2848 struct ecore_hw_prepare_params *p_params)
2849 {
2850 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
2851 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2852 struct ecore_mcp_link_params *link;
2853 enum _ecore_status_t rc;
2854
2855 /* Read global nvm_cfg address */
2856 nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2857
2858 /* Verify MCP has initialized it */
2859 if (!nvm_cfg_addr) {
2860 DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
2861 if (p_params->b_relaxed_probe)
2862 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
2863 return ECORE_INVAL;
2864 }
2865
2866 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
2867
2868 nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2869
2870 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2871 OFFSETOF(struct nvm_cfg1, glob) + OFFSETOF(struct nvm_cfg1_glob,
2872 core_cfg);
2873
2874 core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
2875
2876 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
2877 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
2878 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
2879 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
2880 break;
2881 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
2882 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
2883 break;
2884 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
2885 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
2886 break;
2887 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
2888 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
2889 break;
2890 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
2891 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
2892 break;
2893 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
2894 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
2895 break;
2896 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
2897 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
2898 break;
2899 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
2900 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
2901 break;
2902 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
2903 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
2904 break;
2905 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
2906 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
2907 break;
2908 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
2909 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
2910 break;
2911 default:
2912 DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
2913 core_cfg);
2914 break;
2915 }
2916
2917 /* Read DCBX configuration */
2918 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2919 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2920 dcbx_mode = ecore_rd(p_hwfn, p_ptt,
2921 port_cfg_addr +
2922 OFFSETOF(struct nvm_cfg1_port, generic_cont0));
2923 dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
2924 >> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
2925 switch (dcbx_mode) {
2926 case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
2927 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
2928 break;
2929 case NVM_CFG1_PORT_DCBX_MODE_CEE:
2930 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
2931 break;
2932 case NVM_CFG1_PORT_DCBX_MODE_IEEE:
2933 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
2934 break;
2935 default:
2936 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
2937 }
2938
2939 /* Read default link configuration */
2940 link = &p_hwfn->mcp_info->link_input;
2941 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2942 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2943 link_temp = ecore_rd(p_hwfn, p_ptt,
2944 port_cfg_addr +
2945 OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
2946 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2947 link->speed.advertised_speeds = link_temp;
2948
2949 link_temp = link->speed.advertised_speeds;
2950 p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2951
2952 link_temp = ecore_rd(p_hwfn, p_ptt,
2953 port_cfg_addr +
2954 OFFSETOF(struct nvm_cfg1_port, link_settings));
2955 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2956 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2957 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2958 link->speed.autoneg = true;
2959 break;
2960 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2961 link->speed.forced_speed = 1000;
2962 break;
2963 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2964 link->speed.forced_speed = 10000;
2965 break;
2966 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2967 link->speed.forced_speed = 25000;
2968 break;
2969 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2970 link->speed.forced_speed = 40000;
2971 break;
2972 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2973 link->speed.forced_speed = 50000;
2974 break;
2975 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2976 link->speed.forced_speed = 100000;
2977 break;
2978 default:
2979 DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
2980 }
2981
2982 p_hwfn->mcp_info->link_capabilities.default_speed =
2983 link->speed.forced_speed;
2984 p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
2985 link->speed.autoneg;
2986
2987 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2988 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2989 link->pause.autoneg = !!(link_temp &
2990 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2991 link->pause.forced_rx = !!(link_temp &
2992 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2993 link->pause.forced_tx = !!(link_temp &
2994 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2995 link->loopback_mode = 0;
2996
2997 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
2998 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
2999 link->speed.forced_speed, link->speed.advertised_speeds,
3000 link->speed.autoneg, link->pause.autoneg);
3001
3002 /* Read Multi-function information from shmem */
3003 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3004 OFFSETOF(struct nvm_cfg1, glob) +
3005 OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
3006
3007 generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
3008
3009 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
3010 NVM_CFG1_GLOB_MF_MODE_OFFSET;
3011
3012 switch (mf_mode) {
3013 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
3014 p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
3015 break;
3016 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
3017 p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
3018 break;
3019 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
3020 p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
3021 break;
3022 }
3023 DP_INFO(p_hwfn, "Multi function mode is %08x\n",
3024 p_hwfn->p_dev->mf_mode);
3025
3026 /* Read Multi-function information from shmem */
3027 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3028 OFFSETOF(struct nvm_cfg1, glob) +
3029 OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
3030
3031 device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
3032 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
3033 OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
3034 &p_hwfn->hw_info.device_capabilities);
3035 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
3036 OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
3037 &p_hwfn->hw_info.device_capabilities);
3038 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
3039 OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
3040 &p_hwfn->hw_info.device_capabilities);
3041 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
3042 OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
3043 &p_hwfn->hw_info.device_capabilities);
3044 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
3045 OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
3046 &p_hwfn->hw_info.device_capabilities);
3047
3048 rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
3049 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3050 rc = ECORE_SUCCESS;
3051 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3052 }
3053
3054 return rc;
3055 }
3056
3057 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
3058 struct ecore_ptt *p_ptt)
3059 {
3060 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
3061 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
3062 struct ecore_dev *p_dev = p_hwfn->p_dev;
3063
3064 num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
3065
3066 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
3067 * in the other bits are selected.
3068 * Bits 1-15 are for functions 1-15, respectively, and their value is
3069 * '0' only for enabled functions (function 0 always exists and
3070 * enabled).
3071 * In case of CMT in BB, only the "even" functions are enabled, and thus
3072 * the number of functions for both hwfns is learnt from the same bits.
3073 */
3074 if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) {
3075 reg_function_hide = ecore_rd(p_hwfn, p_ptt,
3076 MISCS_REG_FUNCTION_HIDE_BB_K2);
3077 } else { /* E5 */
3078 reg_function_hide = 0;
3079 }
3080
3081 if (reg_function_hide & 0x1) {
3082 if (ECORE_IS_BB(p_dev)) {
3083 if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
3084 num_funcs = 0;
3085 eng_mask = 0xaaaa;
3086 } else {
3087 num_funcs = 1;
3088 eng_mask = 0x5554;
3089 }
3090 } else {
3091 num_funcs = 1;
3092 eng_mask = 0xfffe;
3093 }
3094
3095 /* Get the number of the enabled functions on the engine */
3096 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
3097 while (tmp) {
3098 if (tmp & 0x1)
3099 num_funcs++;
3100 tmp >>= 0x1;
3101 }
3102
3103 /* Get the PF index within the enabled functions */
3104 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
3105 tmp = reg_function_hide & eng_mask & low_pfs_mask;
3106 while (tmp) {
3107 if (tmp & 0x1)
3108 enabled_func_idx--;
3109 tmp >>= 0x1;
3110 }
3111 }
3112
3113 p_hwfn->num_funcs_on_engine = num_funcs;
3114 p_hwfn->enabled_func_idx = enabled_func_idx;
3115
3116 #ifndef ASIC_ONLY
3117 if (CHIP_REV_IS_FPGA(p_dev)) {
3118 DP_NOTICE(p_hwfn, false,
3119 "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
3120 p_hwfn->num_funcs_on_engine = 4;
3121 }
3122 #endif
3123
3124 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3125 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
3126 p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
3127 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
3128 }
3129
3130 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
3131 struct ecore_ptt *p_ptt)
3132 {
3133 u32 port_mode;
3134
3135 #ifndef ASIC_ONLY
3136 /* Read the port mode */
3137 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3138 port_mode = 4;
3139 else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
3140 (p_hwfn->p_dev->num_hwfns > 1))
3141 /* In CMT on emulation, assume 1 port */
3142 port_mode = 1;
3143 else
3144 #endif
3145 port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
3146
3147 if (port_mode < 3) {
3148 p_hwfn->p_dev->num_ports_in_engines = 1;
3149 } else if (port_mode <= 5) {
3150 p_hwfn->p_dev->num_ports_in_engines = 2;
3151 } else {
3152 DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
3153 p_hwfn->p_dev->num_ports_in_engines);
3154
3155 /* Default num_ports_in_engines to something */
3156 p_hwfn->p_dev->num_ports_in_engines = 1;
3157 }
3158 }
3159
3160 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
3161 struct ecore_ptt *p_ptt)
3162 {
3163 u32 port;
3164 int i;
3165
3166 p_hwfn->p_dev->num_ports_in_engines = 0;
3167
3168 #ifndef ASIC_ONLY
3169 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3170 port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
3171 switch ((port & 0xf000) >> 12) {
3172 case 1:
3173 p_hwfn->p_dev->num_ports_in_engines = 1;
3174 break;
3175 case 3:
3176 p_hwfn->p_dev->num_ports_in_engines = 2;
3177 break;
3178 case 0xf:
3179 p_hwfn->p_dev->num_ports_in_engines = 4;
3180 break;
3181 default:
3182 DP_NOTICE(p_hwfn, false,
3183 "Unknown port mode in ECO_RESERVED %08x\n",
3184 port);
3185 }
3186 } else
3187 #endif
3188 for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
3189 port = ecore_rd(p_hwfn, p_ptt,
3190 CNIG_REG_NIG_PORT0_CONF_K2_E5 +
3191 (i * 4));
3192 if (port & 1)
3193 p_hwfn->p_dev->num_ports_in_engines++;
3194 }
3195 }
3196
3197 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
3198 struct ecore_ptt *p_ptt)
3199 {
3200 if (ECORE_IS_BB(p_hwfn->p_dev))
3201 ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
3202 else
3203 ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
3204 }
3205
3206 static enum _ecore_status_t
3207 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3208 enum ecore_pci_personality personality,
3209 struct ecore_hw_prepare_params *p_params)
3210 {
3211 bool drv_resc_alloc = p_params->drv_resc_alloc;
3212 enum _ecore_status_t rc;
3213
3214 /* Since all information is common, only first hwfns should do this */
3215 if (IS_LEAD_HWFN(p_hwfn)) {
3216 rc = ecore_iov_hw_info(p_hwfn);
3217 if (rc != ECORE_SUCCESS) {
3218 if (p_params->b_relaxed_probe)
3219 p_params->p_relaxed_res =
3220 ECORE_HW_PREPARE_BAD_IOV;
3221 else
3222 return rc;
3223 }
3224 }
3225
3226 /* TODO In get_hw_info, amoungst others:
3227 * Get MCP FW revision and determine according to it the supported
3228 * featrues (e.g. DCB)
3229 * Get boot mode
3230 * ecore_get_pcie_width_speed, WOL capability.
3231 * Number of global CQ-s (for storage
3232 */
3233 ecore_hw_info_port_num(p_hwfn, p_ptt);
3234
3235 #ifndef ASIC_ONLY
3236 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
3237 #endif
3238 rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
3239 if (rc != ECORE_SUCCESS)
3240 return rc;
3241 #ifndef ASIC_ONLY
3242 }
3243 #endif
3244
3245 rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
3246 if (rc != ECORE_SUCCESS) {
3247 if (p_params->b_relaxed_probe)
3248 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
3249 else
3250 return rc;
3251 }
3252
3253 #ifndef ASIC_ONLY
3254 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
3255 #endif
3256 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
3257 p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
3258 #ifndef ASIC_ONLY
3259 } else {
3260 static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
3261
3262 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
3263 p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
3264 }
3265 #endif
3266
3267 if (ecore_mcp_is_init(p_hwfn)) {
3268 if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
3269 p_hwfn->hw_info.ovlan =
3270 p_hwfn->mcp_info->func_info.ovlan;
3271
3272 ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
3273 }
3274
3275 if (personality != ECORE_PCI_DEFAULT) {
3276 p_hwfn->hw_info.personality = personality;
3277 } else if (ecore_mcp_is_init(p_hwfn)) {
3278 enum ecore_pci_personality protocol;
3279
3280 protocol = p_hwfn->mcp_info->func_info.protocol;
3281 p_hwfn->hw_info.personality = protocol;
3282 }
3283
3284 #ifndef ASIC_ONLY
3285 /* To overcome ILT lack for emulation, until at least until we'll have
3286 * a definite answer from system about it, allow only PF0 to be RoCE.
3287 */
3288 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
3289 if (!p_hwfn->rel_pf_id)
3290 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
3291 else
3292 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
3293 }
3294 #endif
3295
3296 /* although in BB some constellations may support more than 4 tcs,
3297 * that can result in performance penalty in some cases. 4
3298 * represents a good tradeoff between performance and flexibility.
3299 */
3300 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
3301
3302 /* start out with a single active tc. This can be increased either
3303 * by dcbx negotiation or by upper layer driver
3304 */
3305 p_hwfn->hw_info.num_active_tc = 1;
3306
3307 ecore_get_num_funcs(p_hwfn, p_ptt);
3308
3309 if (ecore_mcp_is_init(p_hwfn))
3310 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
3311
3312 /* In case of forcing the driver's default resource allocation, calling
3313 * ecore_hw_get_resc() should come after initializing the personality
3314 * and after getting the number of functions, since the calculation of
3315 * the resources/features depends on them.
3316 * This order is not harmful if not forcing.
3317 */
3318 rc = ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
3319 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3320 rc = ECORE_SUCCESS;
3321 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3322 }
3323
3324 return rc;
3325 }
3326
3327 static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
3328 {
3329 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3330 u32 tmp;
3331
3332 /* Read Vendor Id / Device Id */
3333 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
3334 &p_dev->vendor_id);
3335 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
3336 &p_dev->device_id);
3337
3338 /* Determine type */
3339 if ((p_dev->device_id & ECORE_DEV_ID_MASK) == ECORE_DEV_ID_MASK_AH)
3340 p_dev->type = ECORE_DEV_TYPE_AH;
3341 else
3342 p_dev->type = ECORE_DEV_TYPE_BB;
3343
3344 p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3345 MISCS_REG_CHIP_NUM);
3346 p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3347 MISCS_REG_CHIP_REV);
3348
3349 MASK_FIELD(CHIP_REV, p_dev->chip_rev);
3350
3351 /* Learn number of HW-functions */
3352 tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3353 MISCS_REG_CMT_ENABLED_FOR_PAIR);
3354
3355 if (tmp & (1 << p_hwfn->rel_pf_id)) {
3356 DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
3357 p_dev->num_hwfns = 2;
3358 } else {
3359 p_dev->num_hwfns = 1;
3360 }
3361
3362 #ifndef ASIC_ONLY
3363 if (CHIP_REV_IS_EMUL(p_dev)) {
3364 /* For some reason we have problems with this register
3365 * in B0 emulation; Simply assume no CMT
3366 */
3367 DP_NOTICE(p_dev->hwfns, false,
3368 "device on emul - assume no CMT\n");
3369 p_dev->num_hwfns = 1;
3370 }
3371 #endif
3372
3373 p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3374 MISCS_REG_CHIP_TEST_REG) >> 4;
3375 MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
3376 p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3377 MISCS_REG_CHIP_METAL);
3378 MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
3379 DP_INFO(p_dev->hwfns,
3380 "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
3381 ECORE_IS_BB(p_dev) ? "BB" : "AH",
3382 'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
3383 p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
3384 p_dev->chip_metal);
3385
3386 if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
3387 DP_NOTICE(p_dev->hwfns, false,
3388 "The chip type/rev (BB A0) is not supported!\n");
3389 return ECORE_ABORTED;
3390 }
3391 #ifndef ASIC_ONLY
3392 if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
3393 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3394 MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
3395
3396 if (CHIP_REV_IS_EMUL(p_dev)) {
3397 tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3398 MISCS_REG_ECO_RESERVED);
3399 if (tmp & (1 << 29)) {
3400 DP_NOTICE(p_hwfn, false,
3401 "Emulation: Running on a FULL build\n");
3402 p_dev->b_is_emul_full = true;
3403 } else {
3404 DP_NOTICE(p_hwfn, false,
3405 "Emulation: Running on a REDUCED build\n");
3406 }
3407 }
3408 #endif
3409
3410 return ECORE_SUCCESS;
3411 }
3412
3413 #ifndef LINUX_REMOVE
3414 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
3415 {
3416 int j;
3417
3418 if (IS_VF(p_dev))
3419 return;
3420
3421 for_each_hwfn(p_dev, j) {
3422 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
3423
3424 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
3425 "Mark hw/fw uninitialized\n");
3426
3427 p_hwfn->hw_init_done = false;
3428 p_hwfn->first_on_engine = false;
3429
3430 ecore_ptt_invalidate(p_hwfn);
3431 }
3432 }
3433 #endif
3434
3435 static enum _ecore_status_t
3436 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
3437 void OSAL_IOMEM * p_regview,
3438 void OSAL_IOMEM * p_doorbells,
3439 struct ecore_hw_prepare_params *p_params)
3440 {
3441 struct ecore_dev *p_dev = p_hwfn->p_dev;
3442 struct ecore_mdump_info mdump_info;
3443 enum _ecore_status_t rc = ECORE_SUCCESS;
3444
3445 /* Split PCI bars evenly between hwfns */
3446 p_hwfn->regview = p_regview;
3447 p_hwfn->doorbells = p_doorbells;
3448
3449 if (IS_VF(p_dev))
3450 return ecore_vf_hw_prepare(p_hwfn);
3451
3452 /* Validate that chip access is feasible */
3453 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
3454 DP_ERR(p_hwfn,
3455 "Reading the ME register returns all Fs; Preventing further chip access\n");
3456 if (p_params->b_relaxed_probe)
3457 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
3458 return ECORE_INVAL;
3459 }
3460
3461 get_function_id(p_hwfn);
3462
3463 /* Allocate PTT pool */
3464 rc = ecore_ptt_pool_alloc(p_hwfn);
3465 if (rc) {
3466 DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
3467 if (p_params->b_relaxed_probe)
3468 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
3469 goto err0;
3470 }
3471
3472 /* Allocate the main PTT */
3473 p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
3474
3475 /* First hwfn learns basic information, e.g., number of hwfns */
3476 if (!p_hwfn->my_id) {
3477 rc = ecore_get_dev_info(p_dev);
3478 if (rc != ECORE_SUCCESS) {
3479 if (p_params->b_relaxed_probe)
3480 p_params->p_relaxed_res =
3481 ECORE_HW_PREPARE_FAILED_DEV;
3482 goto err1;
3483 }
3484 }
3485
3486 ecore_hw_hwfn_prepare(p_hwfn);
3487
3488 /* Initialize MCP structure */
3489 rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
3490 if (rc) {
3491 DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
3492 if (p_params->b_relaxed_probe)
3493 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
3494 goto err1;
3495 }
3496
3497 /* Read the device configuration information from the HW and SHMEM */
3498 rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
3499 p_params->personality, p_params);
3500 if (rc) {
3501 DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
3502 goto err2;
3503 }
3504
3505 /* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
3506 * called, since among others it sets the ports number in an engine.
3507 */
3508 if (p_params->initiate_pf_flr && p_hwfn == ECORE_LEADING_HWFN(p_dev) &&
3509 !p_dev->recov_in_prog) {
3510 rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
3511 if (rc != ECORE_SUCCESS)
3512 DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
3513 }
3514
3515 /* Check if mdump logs are present and update the epoch value */
3516 if (p_hwfn == ECORE_LEADING_HWFN(p_hwfn->p_dev)) {
3517 rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
3518 &mdump_info);
3519 if (rc == ECORE_SUCCESS && mdump_info.num_of_logs > 0) {
3520 DP_NOTICE(p_hwfn, false,
3521 "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
3522 }
3523
3524 ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
3525 p_params->epoch);
3526 }
3527
3528 /* Allocate the init RT array and initialize the init-ops engine */
3529 rc = ecore_init_alloc(p_hwfn);
3530 if (rc) {
3531 DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
3532 if (p_params->b_relaxed_probe)
3533 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
3534 goto err2;
3535 }
3536 #ifndef ASIC_ONLY
3537 if (CHIP_REV_IS_FPGA(p_dev)) {
3538 DP_NOTICE(p_hwfn, false,
3539 "FPGA: workaround; Prevent DMAE parities\n");
3540 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
3541 7);
3542
3543 DP_NOTICE(p_hwfn, false,
3544 "FPGA: workaround: Set VF bar0 size\n");
3545 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3546 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
3547 }
3548 #endif
3549
3550 return rc;
3551 err2:
3552 if (IS_LEAD_HWFN(p_hwfn))
3553 ecore_iov_free_hw_info(p_dev);
3554 ecore_mcp_free(p_hwfn);
3555 err1:
3556 ecore_hw_hwfn_free(p_hwfn);
3557 err0:
3558 return rc;
3559 }
3560
3561 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
3562 struct ecore_hw_prepare_params *p_params)
3563 {
3564 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3565 enum _ecore_status_t rc;
3566
3567 p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
3568
3569 if (p_params->b_relaxed_probe)
3570 p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
3571
3572 /* Store the precompiled init data ptrs */
3573 if (IS_PF(p_dev))
3574 ecore_init_iro_array(p_dev);
3575
3576 /* Initialize the first hwfn - will learn number of hwfns */
3577 rc = ecore_hw_prepare_single(p_hwfn,
3578 p_dev->regview,
3579 p_dev->doorbells, p_params);
3580 if (rc != ECORE_SUCCESS)
3581 return rc;
3582
3583 p_params->personality = p_hwfn->hw_info.personality;
3584
3585 /* initilalize 2nd hwfn if necessary */
3586 if (p_dev->num_hwfns > 1) {
3587 void OSAL_IOMEM *p_regview, *p_doorbell;
3588 u8 OSAL_IOMEM *addr;
3589
3590 /* adjust bar offset for second engine */
3591 addr = (u8 OSAL_IOMEM *)p_dev->regview +
3592 ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
3593 p_regview = (void OSAL_IOMEM *)addr;
3594
3595 addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
3596 ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
3597 p_doorbell = (void OSAL_IOMEM *)addr;
3598
3599 /* prepare second hw function */
3600 rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
3601 p_doorbell, p_params);
3602
3603 /* in case of error, need to free the previously
3604 * initiliazed hwfn 0.
3605 */
3606 if (rc != ECORE_SUCCESS) {
3607 if (p_params->b_relaxed_probe)
3608 p_params->p_relaxed_res =
3609 ECORE_HW_PREPARE_FAILED_ENG2;
3610
3611 if (IS_PF(p_dev)) {
3612 ecore_init_free(p_hwfn);
3613 ecore_mcp_free(p_hwfn);
3614 ecore_hw_hwfn_free(p_hwfn);
3615 } else {
3616 DP_NOTICE(p_dev, true,
3617 "What do we need to free when VF hwfn1 init fails\n");
3618 }
3619 return rc;
3620 }
3621 }
3622
3623 return rc;
3624 }
3625
3626 void ecore_hw_remove(struct ecore_dev *p_dev)
3627 {
3628 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3629 int i;
3630
3631 if (IS_PF(p_dev))
3632 ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
3633 ECORE_OV_DRIVER_STATE_NOT_LOADED);
3634
3635 for_each_hwfn(p_dev, i) {
3636 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
3637
3638 if (IS_VF(p_dev)) {
3639 ecore_vf_pf_release(p_hwfn);
3640 continue;
3641 }
3642
3643 ecore_init_free(p_hwfn);
3644 ecore_hw_hwfn_free(p_hwfn);
3645 ecore_mcp_free(p_hwfn);
3646
3647 OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
3648 }
3649
3650 ecore_iov_free_hw_info(p_dev);
3651 }
3652
3653 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
3654 struct ecore_chain *p_chain)
3655 {
3656 void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
3657 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3658 struct ecore_chain_next *p_next;
3659 u32 size, i;
3660
3661 if (!p_virt)
3662 return;
3663
3664 size = p_chain->elem_size * p_chain->usable_per_page;
3665
3666 for (i = 0; i < p_chain->page_cnt; i++) {
3667 if (!p_virt)
3668 break;
3669
3670 p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
3671 p_virt_next = p_next->next_virt;
3672 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3673
3674 OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
3675 ECORE_CHAIN_PAGE_SIZE);
3676
3677 p_virt = p_virt_next;
3678 p_phys = p_phys_next;
3679 }
3680 }
3681
3682 static void ecore_chain_free_single(struct ecore_dev *p_dev,
3683 struct ecore_chain *p_chain)
3684 {
3685 if (!p_chain->p_virt_addr)
3686 return;
3687
3688 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
3689 p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
3690 }
3691
3692 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
3693 struct ecore_chain *p_chain)
3694 {
3695 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3696 u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
3697 u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3698
3699 if (!pp_virt_addr_tbl)
3700 return;
3701
3702 if (!p_pbl_virt)
3703 goto out;
3704
3705 for (i = 0; i < page_cnt; i++) {
3706 if (!pp_virt_addr_tbl[i])
3707 break;
3708
3709 OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
3710 *(dma_addr_t *)p_pbl_virt,
3711 ECORE_CHAIN_PAGE_SIZE);
3712
3713 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3714 }
3715
3716 pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3717
3718 if (!p_chain->b_external_pbl)
3719 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
3720 p_chain->pbl_sp.p_phys_table, pbl_size);
3721 out:
3722 OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
3723 }
3724
3725 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3726 {
3727 switch (p_chain->mode) {
3728 case ECORE_CHAIN_MODE_NEXT_PTR:
3729 ecore_chain_free_next_ptr(p_dev, p_chain);
3730 break;
3731 case ECORE_CHAIN_MODE_SINGLE:
3732 ecore_chain_free_single(p_dev, p_chain);
3733 break;
3734 case ECORE_CHAIN_MODE_PBL:
3735 ecore_chain_free_pbl(p_dev, p_chain);
3736 break;
3737 }
3738 }
3739
3740 static enum _ecore_status_t
3741 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
3742 enum ecore_chain_cnt_type cnt_type,
3743 osal_size_t elem_size, u32 page_cnt)
3744 {
3745 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3746
3747 /* The actual chain size can be larger than the maximal possible value
3748 * after rounding up the requested elements number to pages, and after
3749 * taking into acount the unusuable elements (next-ptr elements).
3750 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3751 * size/capacity fields are of a u32 type.
3752 */
3753 if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
3754 chain_size > ((u32)ECORE_U16_MAX + 1)) ||
3755 (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
3756 chain_size > ECORE_U32_MAX)) {
3757 DP_NOTICE(p_dev, true,
3758 "The actual chain size (0x%lx) is larger than the maximal possible value\n",
3759 (unsigned long)chain_size);
3760 return ECORE_INVAL;
3761 }
3762
3763 return ECORE_SUCCESS;
3764 }
3765
3766 static enum _ecore_status_t
3767 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3768 {
3769 void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
3770 dma_addr_t p_phys = 0;
3771 u32 i;
3772
3773 for (i = 0; i < p_chain->page_cnt; i++) {
3774 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3775 ECORE_CHAIN_PAGE_SIZE);
3776 if (!p_virt) {
3777 DP_NOTICE(p_dev, true,
3778 "Failed to allocate chain memory\n");
3779 return ECORE_NOMEM;
3780 }
3781
3782 if (i == 0) {
3783 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3784 ecore_chain_reset(p_chain);
3785 } else {
3786 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3787 p_virt, p_phys);
3788 }
3789
3790 p_virt_prev = p_virt;
3791 }
3792 /* Last page's next element should point to the beginning of the
3793 * chain.
3794 */
3795 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3796 p_chain->p_virt_addr,
3797 p_chain->p_phys_addr);
3798
3799 return ECORE_SUCCESS;
3800 }
3801
3802 static enum _ecore_status_t
3803 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3804 {
3805 dma_addr_t p_phys = 0;
3806 void *p_virt = OSAL_NULL;
3807
3808 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
3809 if (!p_virt) {
3810 DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
3811 return ECORE_NOMEM;
3812 }
3813
3814 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3815 ecore_chain_reset(p_chain);
3816
3817 return ECORE_SUCCESS;
3818 }
3819
3820 static enum _ecore_status_t
3821 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
3822 struct ecore_chain *p_chain,
3823 struct ecore_chain_ext_pbl *ext_pbl)
3824 {
3825 void *p_virt = OSAL_NULL;
3826 u8 *p_pbl_virt = OSAL_NULL;
3827 void **pp_virt_addr_tbl = OSAL_NULL;
3828 dma_addr_t p_phys = 0, p_pbl_phys = 0;
3829 u32 page_cnt = p_chain->page_cnt, size, i;
3830
3831 size = page_cnt * sizeof(*pp_virt_addr_tbl);
3832 pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
3833 if (!pp_virt_addr_tbl) {
3834 DP_NOTICE(p_dev, true,
3835 "Failed to allocate memory for the chain virtual addresses table\n");
3836 return ECORE_NOMEM;
3837 }
3838
3839 /* The allocation of the PBL table is done with its full size, since it
3840 * is expected to be successive.
3841 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
3842 * failure, since pp_virt_addr_tbl was previously allocated, and it
3843 * should be saved to allow its freeing during the error flow.
3844 */
3845 size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3846
3847 if (ext_pbl == OSAL_NULL) {
3848 p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
3849 } else {
3850 p_pbl_virt = ext_pbl->p_pbl_virt;
3851 p_pbl_phys = ext_pbl->p_pbl_phys;
3852 p_chain->b_external_pbl = true;
3853 }
3854
3855 ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3856 pp_virt_addr_tbl);
3857 if (!p_pbl_virt) {
3858 DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
3859 return ECORE_NOMEM;
3860 }
3861
3862 for (i = 0; i < page_cnt; i++) {
3863 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3864 ECORE_CHAIN_PAGE_SIZE);
3865 if (!p_virt) {
3866 DP_NOTICE(p_dev, true,
3867 "Failed to allocate chain memory\n");
3868 return ECORE_NOMEM;
3869 }
3870
3871 if (i == 0) {
3872 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3873 ecore_chain_reset(p_chain);
3874 }
3875
3876 /* Fill the PBL table with the physical address of the page */
3877 *(dma_addr_t *)p_pbl_virt = p_phys;
3878 /* Keep the virtual address of the page */
3879 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3880
3881 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3882 }
3883
3884 return ECORE_SUCCESS;
3885 }
3886
3887 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
3888 enum ecore_chain_use_mode intended_use,
3889 enum ecore_chain_mode mode,
3890 enum ecore_chain_cnt_type cnt_type,
3891 u32 num_elems, osal_size_t elem_size,
3892 struct ecore_chain *p_chain,
3893 struct ecore_chain_ext_pbl *ext_pbl)
3894 {
3895 u32 page_cnt;
3896 enum _ecore_status_t rc = ECORE_SUCCESS;
3897
3898 if (mode == ECORE_CHAIN_MODE_SINGLE)
3899 page_cnt = 1;
3900 else
3901 page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3902
3903 rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
3904 page_cnt);
3905 if (rc) {
3906 DP_NOTICE(p_dev, true,
3907 "Cannot allocate a chain with the given arguments:\n"
3908 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3909 intended_use, mode, cnt_type, num_elems, elem_size);
3910 return rc;
3911 }
3912
3913 ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
3914 mode, cnt_type, p_dev->dp_ctx);
3915
3916 switch (mode) {
3917 case ECORE_CHAIN_MODE_NEXT_PTR:
3918 rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
3919 break;
3920 case ECORE_CHAIN_MODE_SINGLE:
3921 rc = ecore_chain_alloc_single(p_dev, p_chain);
3922 break;
3923 case ECORE_CHAIN_MODE_PBL:
3924 rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
3925 break;
3926 }
3927 if (rc)
3928 goto nomem;
3929
3930 return ECORE_SUCCESS;
3931
3932 nomem:
3933 ecore_chain_free(p_dev, p_chain);
3934 return rc;
3935 }
3936
3937 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
3938 u16 src_id, u16 *dst_id)
3939 {
3940 if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
3941 u16 min, max;
3942
3943 min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
3944 max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
3945 DP_NOTICE(p_hwfn, true,
3946 "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3947 src_id, min, max);
3948
3949 return ECORE_INVAL;
3950 }
3951
3952 *dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
3953
3954 return ECORE_SUCCESS;
3955 }
3956
3957 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
3958 u8 src_id, u8 *dst_id)
3959 {
3960 if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
3961 u8 min, max;
3962
3963 min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
3964 max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
3965 DP_NOTICE(p_hwfn, true,
3966 "vport id [%d] is not valid, available indices [%d - %d]\n",
3967 src_id, min, max);
3968
3969 return ECORE_INVAL;
3970 }
3971
3972 *dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
3973
3974 return ECORE_SUCCESS;
3975 }
3976
3977 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
3978 u8 src_id, u8 *dst_id)
3979 {
3980 if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
3981 u8 min, max;
3982
3983 min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
3984 max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
3985 DP_NOTICE(p_hwfn, true,
3986 "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3987 src_id, min, max);
3988
3989 return ECORE_INVAL;
3990 }
3991
3992 *dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
3993
3994 return ECORE_SUCCESS;
3995 }
3996
3997 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
3998 struct ecore_ptt *p_ptt,
3999 u8 *p_filter)
4000 {
4001 u32 high, low, en;
4002 int i;
4003
4004 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4005 return ECORE_SUCCESS;
4006
4007 high = p_filter[1] | (p_filter[0] << 8);
4008 low = p_filter[5] | (p_filter[4] << 8) |
4009 (p_filter[3] << 16) | (p_filter[2] << 24);
4010
4011 /* Find a free entry and utilize it */
4012 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4013 en = ecore_rd(p_hwfn, p_ptt,
4014 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
4015 if (en)
4016 continue;
4017 ecore_wr(p_hwfn, p_ptt,
4018 NIG_REG_LLH_FUNC_FILTER_VALUE +
4019 2 * i * sizeof(u32), low);
4020 ecore_wr(p_hwfn, p_ptt,
4021 NIG_REG_LLH_FUNC_FILTER_VALUE +
4022 (2 * i + 1) * sizeof(u32), high);
4023 ecore_wr(p_hwfn, p_ptt,
4024 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
4025 ecore_wr(p_hwfn, p_ptt,
4026 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
4027 i * sizeof(u32), 0);
4028 ecore_wr(p_hwfn, p_ptt,
4029 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
4030 break;
4031 }
4032 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
4033 DP_NOTICE(p_hwfn, false,
4034 "Failed to find an empty LLH filter to utilize\n");
4035 return ECORE_INVAL;
4036 }
4037
4038 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4039 "MAC: %x:%x:%x:%x:%x:%x is added at %d\n",
4040 p_filter[0], p_filter[1], p_filter[2],
4041 p_filter[3], p_filter[4], p_filter[5], i);
4042
4043 return ECORE_SUCCESS;
4044 }
4045
4046 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
4047 struct ecore_ptt *p_ptt, u8 *p_filter)
4048 {
4049 u32 high, low;
4050 int i;
4051
4052 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4053 return;
4054
4055 high = p_filter[1] | (p_filter[0] << 8);
4056 low = p_filter[5] | (p_filter[4] << 8) |
4057 (p_filter[3] << 16) | (p_filter[2] << 24);
4058
4059 /* Find the entry and clean it */
4060 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4061 if (ecore_rd(p_hwfn, p_ptt,
4062 NIG_REG_LLH_FUNC_FILTER_VALUE +
4063 2 * i * sizeof(u32)) != low)
4064 continue;
4065 if (ecore_rd(p_hwfn, p_ptt,
4066 NIG_REG_LLH_FUNC_FILTER_VALUE +
4067 (2 * i + 1) * sizeof(u32)) != high)
4068 continue;
4069
4070 ecore_wr(p_hwfn, p_ptt,
4071 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
4072 ecore_wr(p_hwfn, p_ptt,
4073 NIG_REG_LLH_FUNC_FILTER_VALUE +
4074 2 * i * sizeof(u32), 0);
4075 ecore_wr(p_hwfn, p_ptt,
4076 NIG_REG_LLH_FUNC_FILTER_VALUE +
4077 (2 * i + 1) * sizeof(u32), 0);
4078 break;
4079 }
4080 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4081 DP_NOTICE(p_hwfn, false,
4082 "Tried to remove a non-configured filter\n");
4083 }
4084
4085 enum _ecore_status_t
4086 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
4087 struct ecore_ptt *p_ptt,
4088 u16 source_port_or_eth_type,
4089 u16 dest_port,
4090 enum ecore_llh_port_filter_type_t type)
4091 {
4092 u32 high, low, en;
4093 int i;
4094
4095 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4096 return ECORE_SUCCESS;
4097
4098 high = 0;
4099 low = 0;
4100 switch (type) {
4101 case ECORE_LLH_FILTER_ETHERTYPE:
4102 high = source_port_or_eth_type;
4103 break;
4104 case ECORE_LLH_FILTER_TCP_SRC_PORT:
4105 case ECORE_LLH_FILTER_UDP_SRC_PORT:
4106 low = source_port_or_eth_type << 16;
4107 break;
4108 case ECORE_LLH_FILTER_TCP_DEST_PORT:
4109 case ECORE_LLH_FILTER_UDP_DEST_PORT:
4110 low = dest_port;
4111 break;
4112 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4113 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4114 low = (source_port_or_eth_type << 16) | dest_port;
4115 break;
4116 default:
4117 DP_NOTICE(p_hwfn, true,
4118 "Non valid LLH protocol filter type %d\n", type);
4119 return ECORE_INVAL;
4120 }
4121 /* Find a free entry and utilize it */
4122 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4123 en = ecore_rd(p_hwfn, p_ptt,
4124 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
4125 if (en)
4126 continue;
4127 ecore_wr(p_hwfn, p_ptt,
4128 NIG_REG_LLH_FUNC_FILTER_VALUE +
4129 2 * i * sizeof(u32), low);
4130 ecore_wr(p_hwfn, p_ptt,
4131 NIG_REG_LLH_FUNC_FILTER_VALUE +
4132 (2 * i + 1) * sizeof(u32), high);
4133 ecore_wr(p_hwfn, p_ptt,
4134 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
4135 ecore_wr(p_hwfn, p_ptt,
4136 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
4137 i * sizeof(u32), 1 << type);
4138 ecore_wr(p_hwfn, p_ptt,
4139 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
4140 break;
4141 }
4142 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
4143 DP_NOTICE(p_hwfn, false,
4144 "Failed to find an empty LLH filter to utilize\n");
4145 return ECORE_NORESOURCES;
4146 }
4147 switch (type) {
4148 case ECORE_LLH_FILTER_ETHERTYPE:
4149 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4150 "ETH type %x is added at %d\n",
4151 source_port_or_eth_type, i);
4152 break;
4153 case ECORE_LLH_FILTER_TCP_SRC_PORT:
4154 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4155 "TCP src port %x is added at %d\n",
4156 source_port_or_eth_type, i);
4157 break;
4158 case ECORE_LLH_FILTER_UDP_SRC_PORT:
4159 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4160 "UDP src port %x is added at %d\n",
4161 source_port_or_eth_type, i);
4162 break;
4163 case ECORE_LLH_FILTER_TCP_DEST_PORT:
4164 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4165 "TCP dst port %x is added at %d\n", dest_port, i);
4166 break;
4167 case ECORE_LLH_FILTER_UDP_DEST_PORT:
4168 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4169 "UDP dst port %x is added at %d\n", dest_port, i);
4170 break;
4171 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4172 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4173 "TCP src/dst ports %x/%x are added at %d\n",
4174 source_port_or_eth_type, dest_port, i);
4175 break;
4176 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4177 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4178 "UDP src/dst ports %x/%x are added at %d\n",
4179 source_port_or_eth_type, dest_port, i);
4180 break;
4181 }
4182 return ECORE_SUCCESS;
4183 }
4184
4185 void
4186 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
4187 struct ecore_ptt *p_ptt,
4188 u16 source_port_or_eth_type,
4189 u16 dest_port,
4190 enum ecore_llh_port_filter_type_t type)
4191 {
4192 u32 high, low;
4193 int i;
4194
4195 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4196 return;
4197
4198 high = 0;
4199 low = 0;
4200 switch (type) {
4201 case ECORE_LLH_FILTER_ETHERTYPE:
4202 high = source_port_or_eth_type;
4203 break;
4204 case ECORE_LLH_FILTER_TCP_SRC_PORT:
4205 case ECORE_LLH_FILTER_UDP_SRC_PORT:
4206 low = source_port_or_eth_type << 16;
4207 break;
4208 case ECORE_LLH_FILTER_TCP_DEST_PORT:
4209 case ECORE_LLH_FILTER_UDP_DEST_PORT:
4210 low = dest_port;
4211 break;
4212 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4213 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4214 low = (source_port_or_eth_type << 16) | dest_port;
4215 break;
4216 default:
4217 DP_NOTICE(p_hwfn, true,
4218 "Non valid LLH protocol filter type %d\n", type);
4219 return;
4220 }
4221
4222 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4223 if (!ecore_rd(p_hwfn, p_ptt,
4224 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
4225 continue;
4226 if (!ecore_rd(p_hwfn, p_ptt,
4227 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
4228 continue;
4229 if (!(ecore_rd(p_hwfn, p_ptt,
4230 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
4231 i * sizeof(u32)) & (1 << type)))
4232 continue;
4233 if (ecore_rd(p_hwfn, p_ptt,
4234 NIG_REG_LLH_FUNC_FILTER_VALUE +
4235 2 * i * sizeof(u32)) != low)
4236 continue;
4237 if (ecore_rd(p_hwfn, p_ptt,
4238 NIG_REG_LLH_FUNC_FILTER_VALUE +
4239 (2 * i + 1) * sizeof(u32)) != high)
4240 continue;
4241
4242 ecore_wr(p_hwfn, p_ptt,
4243 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
4244 ecore_wr(p_hwfn, p_ptt,
4245 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
4246 ecore_wr(p_hwfn, p_ptt,
4247 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
4248 i * sizeof(u32), 0);
4249 ecore_wr(p_hwfn, p_ptt,
4250 NIG_REG_LLH_FUNC_FILTER_VALUE +
4251 2 * i * sizeof(u32), 0);
4252 ecore_wr(p_hwfn, p_ptt,
4253 NIG_REG_LLH_FUNC_FILTER_VALUE +
4254 (2 * i + 1) * sizeof(u32), 0);
4255 break;
4256 }
4257
4258 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4259 DP_NOTICE(p_hwfn, false,
4260 "Tried to remove a non-configured filter\n");
4261 }
4262
4263 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
4264 struct ecore_ptt *p_ptt)
4265 {
4266 int i;
4267
4268 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4269 return;
4270
4271 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4272 ecore_wr(p_hwfn, p_ptt,
4273 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
4274 ecore_wr(p_hwfn, p_ptt,
4275 NIG_REG_LLH_FUNC_FILTER_VALUE +
4276 2 * i * sizeof(u32), 0);
4277 ecore_wr(p_hwfn, p_ptt,
4278 NIG_REG_LLH_FUNC_FILTER_VALUE +
4279 (2 * i + 1) * sizeof(u32), 0);
4280 }
4281 }
4282
4283 enum _ecore_status_t
4284 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
4285 struct ecore_ptt *p_ptt)
4286 {
4287 if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
4288 ecore_wr(p_hwfn, p_ptt,
4289 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
4290 1 << p_hwfn->abs_pf_id / 2);
4291 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
4292 return ECORE_SUCCESS;
4293 }
4294
4295 DP_NOTICE(p_hwfn, false,
4296 "This function can't be set as default\n");
4297 return ECORE_INVAL;
4298 }
4299
4300 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
4301 struct ecore_ptt *p_ptt,
4302 u32 hw_addr, void *p_eth_qzone,
4303 osal_size_t eth_qzone_size,
4304 u8 timeset)
4305 {
4306 struct coalescing_timeset *p_coal_timeset;
4307
4308 if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
4309 DP_NOTICE(p_hwfn, true,
4310 "Coalescing configuration not enabled\n");
4311 return ECORE_INVAL;
4312 }
4313
4314 p_coal_timeset = p_eth_qzone;
4315 OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
4316 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
4317 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
4318 ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
4319
4320 return ECORE_SUCCESS;
4321 }
4322
4323 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
4324 u16 rx_coal, u16 tx_coal,
4325 void *p_handle)
4326 {
4327 struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
4328 enum _ecore_status_t rc = ECORE_SUCCESS;
4329 struct ecore_ptt *p_ptt;
4330
4331 /* TODO - Configuring a single queue's coalescing but
4332 * claiming all queues are abiding same configuration
4333 * for PF and VF both.
4334 */
4335
4336 if (IS_VF(p_hwfn->p_dev))
4337 return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
4338 tx_coal, p_cid);
4339
4340 p_ptt = ecore_ptt_acquire(p_hwfn);
4341 if (!p_ptt)
4342 return ECORE_AGAIN;
4343
4344 if (rx_coal) {
4345 rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
4346 if (rc)
4347 goto out;
4348 p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
4349 }
4350
4351 if (tx_coal) {
4352 rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
4353 if (rc)
4354 goto out;
4355 p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
4356 }
4357 out:
4358 ecore_ptt_release(p_hwfn, p_ptt);
4359
4360 return rc;
4361 }
4362
4363 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
4364 struct ecore_ptt *p_ptt,
4365 u16 coalesce,
4366 struct ecore_queue_cid *p_cid)
4367 {
4368 struct ustorm_eth_queue_zone eth_qzone;
4369 u8 timeset, timer_res;
4370 u32 address;
4371 enum _ecore_status_t rc;
4372
4373 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
4374 if (coalesce <= 0x7F) {
4375 timer_res = 0;
4376 } else if (coalesce <= 0xFF) {
4377 timer_res = 1;
4378 } else if (coalesce <= 0x1FF) {
4379 timer_res = 2;
4380 } else {
4381 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
4382 return ECORE_INVAL;
4383 }
4384 timeset = (u8)(coalesce >> timer_res);
4385
4386 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
4387 p_cid->abs.sb_idx, false);
4388 if (rc != ECORE_SUCCESS)
4389 goto out;
4390
4391 address = BAR0_MAP_REG_USDM_RAM +
4392 USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
4393
4394 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
4395 sizeof(struct ustorm_eth_queue_zone), timeset);
4396 if (rc != ECORE_SUCCESS)
4397 goto out;
4398
4399 out:
4400 return rc;
4401 }
4402
4403 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
4404 struct ecore_ptt *p_ptt,
4405 u16 coalesce,
4406 struct ecore_queue_cid *p_cid)
4407 {
4408 struct xstorm_eth_queue_zone eth_qzone;
4409 u8 timeset, timer_res;
4410 u32 address;
4411 enum _ecore_status_t rc;
4412
4413 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
4414 if (coalesce <= 0x7F) {
4415 timer_res = 0;
4416 } else if (coalesce <= 0xFF) {
4417 timer_res = 1;
4418 } else if (coalesce <= 0x1FF) {
4419 timer_res = 2;
4420 } else {
4421 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
4422 return ECORE_INVAL;
4423 }
4424
4425 timeset = (u8)(coalesce >> timer_res);
4426
4427 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
4428 p_cid->abs.sb_idx, true);
4429 if (rc != ECORE_SUCCESS)
4430 goto out;
4431
4432 address = BAR0_MAP_REG_XSDM_RAM +
4433 XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
4434
4435 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
4436 sizeof(struct xstorm_eth_queue_zone), timeset);
4437 out:
4438 return rc;
4439 }
4440
4441 /* Calculate final WFQ values for all vports and configure it.
4442 * After this configuration each vport must have
4443 * approx min rate = vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
4444 */
4445 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
4446 struct ecore_ptt *p_ptt,
4447 u32 min_pf_rate)
4448 {
4449 struct init_qm_vport_params *vport_params;
4450 int i;
4451
4452 vport_params = p_hwfn->qm_info.qm_vport_params;
4453
4454 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4455 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
4456
4457 vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
4458 min_pf_rate;
4459 ecore_init_vport_wfq(p_hwfn, p_ptt,
4460 vport_params[i].first_tx_pq_id,
4461 vport_params[i].vport_wfq);
4462 }
4463 }
4464
4465 static void
4466 ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
4467 {
4468 int i;
4469
4470 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
4471 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
4472 }
4473
4474 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
4475 struct ecore_ptt *p_ptt,
4476 u32 min_pf_rate)
4477 {
4478 struct init_qm_vport_params *vport_params;
4479 int i;
4480
4481 vport_params = p_hwfn->qm_info.qm_vport_params;
4482
4483 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4484 ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
4485 ecore_init_vport_wfq(p_hwfn, p_ptt,
4486 vport_params[i].first_tx_pq_id,
4487 vport_params[i].vport_wfq);
4488 }
4489 }
4490
4491 /* This function performs several validations for WFQ
4492 * configuration and required min rate for a given vport
4493 * 1. req_rate must be greater than one percent of min_pf_rate.
4494 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
4495 * rates to get less than one percent of min_pf_rate.
4496 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
4497 */
4498 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
4499 u16 vport_id, u32 req_rate,
4500 u32 min_pf_rate)
4501 {
4502 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
4503 int non_requested_count = 0, req_count = 0, i, num_vports;
4504
4505 num_vports = p_hwfn->qm_info.num_vports;
4506
4507 /* Accounting for the vports which are configured for WFQ explicitly */
4508
4509 for (i = 0; i < num_vports; i++) {
4510 u32 tmp_speed;
4511
4512 if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
4513 req_count++;
4514 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
4515 total_req_min_rate += tmp_speed;
4516 }
4517 }
4518
4519 /* Include current vport data as well */
4520 req_count++;
4521 total_req_min_rate += req_rate;
4522 non_requested_count = num_vports - req_count;
4523
4524 /* validate possible error cases */
4525 if (req_rate > min_pf_rate) {
4526 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4527 "Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4528 vport_id, req_rate, min_pf_rate);
4529 return ECORE_INVAL;
4530 }
4531
4532 if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
4533 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4534 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4535 vport_id, req_rate, min_pf_rate);
4536 return ECORE_INVAL;
4537 }
4538
4539 /* TBD - for number of vports greater than 100 */
4540 if (num_vports > ECORE_WFQ_UNIT) {
4541 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4542 "Number of vports is greater than %d\n",
4543 ECORE_WFQ_UNIT);
4544 return ECORE_INVAL;
4545 }
4546
4547 if (total_req_min_rate > min_pf_rate) {
4548 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4549 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4550 total_req_min_rate, min_pf_rate);
4551 return ECORE_INVAL;
4552 }
4553
4554 /* Data left for non requested vports */
4555 total_left_rate = min_pf_rate - total_req_min_rate;
4556 left_rate_per_vp = total_left_rate / non_requested_count;
4557
4558 /* validate if non requested get < 1% of min bw */
4559 if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
4560 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4561 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4562 left_rate_per_vp, min_pf_rate);
4563 return ECORE_INVAL;
4564 }
4565
4566 /* now req_rate for given vport passes all scenarios.
4567 * assign final wfq rates to all vports.
4568 */
4569 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
4570 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
4571
4572 for (i = 0; i < num_vports; i++) {
4573 if (p_hwfn->qm_info.wfq_data[i].configured)
4574 continue;
4575
4576 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
4577 }
4578
4579 return ECORE_SUCCESS;
4580 }
4581
4582 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
4583 struct ecore_ptt *p_ptt,
4584 u16 vp_id, u32 rate)
4585 {
4586 struct ecore_mcp_link_state *p_link;
4587 int rc = ECORE_SUCCESS;
4588
4589 p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
4590
4591 if (!p_link->min_pf_rate) {
4592 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
4593 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
4594 return rc;
4595 }
4596
4597 rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
4598
4599 if (rc == ECORE_SUCCESS)
4600 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
4601 p_link->min_pf_rate);
4602 else
4603 DP_NOTICE(p_hwfn, false,
4604 "Validation failed while configuring min rate\n");
4605
4606 return rc;
4607 }
4608
4609 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
4610 struct ecore_ptt *p_ptt,
4611 u32 min_pf_rate)
4612 {
4613 bool use_wfq = false;
4614 int rc = ECORE_SUCCESS;
4615 u16 i;
4616
4617 /* Validate all pre configured vports for wfq */
4618 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4619 u32 rate;
4620
4621 if (!p_hwfn->qm_info.wfq_data[i].configured)
4622 continue;
4623
4624 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
4625 use_wfq = true;
4626
4627 rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
4628 if (rc != ECORE_SUCCESS) {
4629 DP_NOTICE(p_hwfn, false,
4630 "WFQ validation failed while configuring min rate\n");
4631 break;
4632 }
4633 }
4634
4635 if (rc == ECORE_SUCCESS && use_wfq)
4636 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4637 else
4638 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4639
4640 return rc;
4641 }
4642
4643 /* Main API for ecore clients to configure vport min rate.
4644 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
4645 * rate - Speed in Mbps needs to be assigned to a given vport.
4646 */
4647 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
4648 {
4649 int i, rc = ECORE_INVAL;
4650
4651 /* TBD - for multiple hardware functions - that is 100 gig */
4652 if (p_dev->num_hwfns > 1) {
4653 DP_NOTICE(p_dev, false,
4654 "WFQ configuration is not supported for this device\n");
4655 return rc;
4656 }
4657
4658 for_each_hwfn(p_dev, i) {
4659 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4660 struct ecore_ptt *p_ptt;
4661
4662 p_ptt = ecore_ptt_acquire(p_hwfn);
4663 if (!p_ptt)
4664 return ECORE_TIMEOUT;
4665
4666 rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
4667
4668 if (rc != ECORE_SUCCESS) {
4669 ecore_ptt_release(p_hwfn, p_ptt);
4670 return rc;
4671 }
4672
4673 ecore_ptt_release(p_hwfn, p_ptt);
4674 }
4675
4676 return rc;
4677 }
4678
4679 /* API to configure WFQ from mcp link change */
4680 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
4681 u32 min_pf_rate)
4682 {
4683 int i;
4684
4685 /* TBD - for multiple hardware functions - that is 100 gig */
4686 if (p_dev->num_hwfns > 1) {
4687 DP_VERBOSE(p_dev, ECORE_MSG_LINK,
4688 "WFQ configuration is not supported for this device\n");
4689 return;
4690 }
4691
4692 for_each_hwfn(p_dev, i) {
4693 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4694
4695 __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4696 p_hwfn->p_dpc_ptt,
4697 min_pf_rate);
4698 }
4699 }
4700
4701 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
4702 struct ecore_ptt *p_ptt,
4703 struct ecore_mcp_link_state *p_link,
4704 u8 max_bw)
4705 {
4706 int rc = ECORE_SUCCESS;
4707
4708 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
4709
4710 if (!p_link->line_speed && (max_bw != 100))
4711 return rc;
4712
4713 p_link->speed = (p_link->line_speed * max_bw) / 100;
4714 p_hwfn->qm_info.pf_rl = p_link->speed;
4715
4716 /* Since the limiter also affects Tx-switched traffic, we don't want it
4717 * to limit such traffic in case there's no actual limit.
4718 * In that case, set limit to imaginary high boundary.
4719 */
4720 if (max_bw == 100)
4721 p_hwfn->qm_info.pf_rl = 100000;
4722
4723 rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
4724 p_hwfn->qm_info.pf_rl);
4725
4726 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4727 "Configured MAX bandwidth to be %08x Mb/sec\n",
4728 p_link->speed);
4729
4730 return rc;
4731 }
4732
4733 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4734 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
4735 {
4736 int i, rc = ECORE_INVAL;
4737
4738 if (max_bw < 1 || max_bw > 100) {
4739 DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
4740 return rc;
4741 }
4742
4743 for_each_hwfn(p_dev, i) {
4744 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4745 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4746 struct ecore_mcp_link_state *p_link;
4747 struct ecore_ptt *p_ptt;
4748
4749 p_link = &p_lead->mcp_info->link_output;
4750
4751 p_ptt = ecore_ptt_acquire(p_hwfn);
4752 if (!p_ptt)
4753 return ECORE_TIMEOUT;
4754
4755 rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4756 p_link, max_bw);
4757
4758 ecore_ptt_release(p_hwfn, p_ptt);
4759
4760 if (rc != ECORE_SUCCESS)
4761 break;
4762 }
4763
4764 return rc;
4765 }
4766
4767 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
4768 struct ecore_ptt *p_ptt,
4769 struct ecore_mcp_link_state *p_link,
4770 u8 min_bw)
4771 {
4772 int rc = ECORE_SUCCESS;
4773
4774 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4775 p_hwfn->qm_info.pf_wfq = min_bw;
4776
4777 if (!p_link->line_speed)
4778 return rc;
4779
4780 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4781
4782 rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4783
4784 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4785 "Configured MIN bandwidth to be %d Mb/sec\n",
4786 p_link->min_pf_rate);
4787
4788 return rc;
4789 }
4790
4791 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4792 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
4793 {
4794 int i, rc = ECORE_INVAL;
4795
4796 if (min_bw < 1 || min_bw > 100) {
4797 DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
4798 return rc;
4799 }
4800
4801 for_each_hwfn(p_dev, i) {
4802 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4803 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4804 struct ecore_mcp_link_state *p_link;
4805 struct ecore_ptt *p_ptt;
4806
4807 p_link = &p_lead->mcp_info->link_output;
4808
4809 p_ptt = ecore_ptt_acquire(p_hwfn);
4810 if (!p_ptt)
4811 return ECORE_TIMEOUT;
4812
4813 rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4814 p_link, min_bw);
4815 if (rc != ECORE_SUCCESS) {
4816 ecore_ptt_release(p_hwfn, p_ptt);
4817 return rc;
4818 }
4819
4820 if (p_link->min_pf_rate) {
4821 u32 min_rate = p_link->min_pf_rate;
4822
4823 rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4824 p_ptt,
4825 min_rate);
4826 }
4827
4828 ecore_ptt_release(p_hwfn, p_ptt);
4829 }
4830
4831 return rc;
4832 }
4833
4834 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
4835 {
4836 struct ecore_mcp_link_state *p_link;
4837
4838 p_link = &p_hwfn->mcp_info->link_output;
4839
4840 if (p_link->min_pf_rate)
4841 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4842 p_link->min_pf_rate);
4843
4844 OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
4845 sizeof(*p_hwfn->qm_info.wfq_data) *
4846 p_hwfn->qm_info.num_vports);
4847 }
4848
4849 int ecore_device_num_engines(struct ecore_dev *p_dev)
4850 {
4851 return ECORE_IS_BB(p_dev) ? 2 : 1;
4852 }
4853
4854 int ecore_device_num_ports(struct ecore_dev *p_dev)
4855 {
4856 /* in CMT always only one port */
4857 if (p_dev->num_hwfns > 1)
4858 return 1;
4859
4860 return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
4861 }
4862
4863 void ecore_set_fw_mac_addr(__le16 *fw_msb,
4864 __le16 *fw_mid,
4865 __le16 *fw_lsb,
4866 u8 *mac)
4867 {
4868 ((u8 *)fw_msb)[0] = mac[1];
4869 ((u8 *)fw_msb)[1] = mac[0];
4870 ((u8 *)fw_mid)[0] = mac[3];
4871 ((u8 *)fw_mid)[1] = mac[2];
4872 ((u8 *)fw_lsb)[0] = mac[5];
4873 ((u8 *)fw_lsb)[1] = mac[4];
4874 }