]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/qede/base/ecore_int.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / qede / base / ecore_int.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright (c) 2016 - 2018 Cavium Inc.
3 * All rights reserved.
4 * www.cavium.com
5 */
6
7 #include <rte_string_fns.h>
8
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "ecore_gtt_reg_addr.h"
13 #include "ecore_init_ops.h"
14 #include "ecore_rt_defs.h"
15 #include "ecore_int.h"
16 #include "reg_addr.h"
17 #include "ecore_hw.h"
18 #include "ecore_sriov.h"
19 #include "ecore_vf.h"
20 #include "ecore_hw_defs.h"
21 #include "ecore_hsi_common.h"
22 #include "ecore_mcp.h"
23
24 struct ecore_pi_info {
25 ecore_int_comp_cb_t comp_cb;
26 void *cookie; /* Will be sent to the compl cb function */
27 };
28
29 struct ecore_sb_sp_info {
30 struct ecore_sb_info sb_info;
31 /* per protocol index data */
32 struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
33 };
34
35 enum ecore_attention_type {
36 ECORE_ATTN_TYPE_ATTN,
37 ECORE_ATTN_TYPE_PARITY,
38 };
39
40 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
41 ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
42
43 struct aeu_invert_reg_bit {
44 char bit_name[30];
45
46 #define ATTENTION_PARITY (1 << 0)
47
48 #define ATTENTION_LENGTH_MASK (0x00000ff0)
49 #define ATTENTION_LENGTH_SHIFT (4)
50 #define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \
51 ATTENTION_LENGTH_SHIFT)
52 #define ATTENTION_SINGLE (1 << ATTENTION_LENGTH_SHIFT)
53 #define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY)
54 #define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \
55 ATTENTION_PARITY)
56
57 /* Multiple bits start with this offset */
58 #define ATTENTION_OFFSET_MASK (0x000ff000)
59 #define ATTENTION_OFFSET_SHIFT (12)
60
61 #define ATTENTION_BB_MASK (0x00700000)
62 #define ATTENTION_BB_SHIFT (20)
63 #define ATTENTION_BB(value) ((value) << ATTENTION_BB_SHIFT)
64 #define ATTENTION_BB_DIFFERENT (1 << 23)
65
66 #define ATTENTION_CLEAR_ENABLE (1 << 28)
67 unsigned int flags;
68
69 /* Callback to call if attention will be triggered */
70 enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
71
72 enum block_id block_index;
73 };
74
75 struct aeu_invert_reg {
76 struct aeu_invert_reg_bit bits[32];
77 };
78
79 #define MAX_ATTN_GRPS (8)
80 #define NUM_ATTN_REGS (9)
81
82 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
83 {
84 u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
85
86 DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
87 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
88
89 return ECORE_SUCCESS;
90 }
91
92 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK (0x3c000)
93 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT (14)
94 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK (0x03fc0)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT (6)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK (0x00020)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT (5)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK (0x0001e)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT (1)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK (0x1)
101 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT (0)
102 #define ECORE_PSWHST_ATTENTION_VF_DISABLED (0x1)
103 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1)
104 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0x1e)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x20)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0x3fc0)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0x3c000)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0x3fc0000)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18)
116 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
117 {
118 u32 tmp =
119 ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
120 PSWHST_REG_VF_DISABLED_ERROR_VALID);
121
122 /* Disabled VF access */
123 if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
124 u32 addr, data;
125
126 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
127 PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
128 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129 PSWHST_REG_VF_DISABLED_ERROR_DATA);
130 DP_INFO(p_hwfn->p_dev,
131 "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
132 " Write [0x%02x] Addr [0x%08x]\n",
133 (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
134 >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
135 (u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
136 >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
137 (u8)((data &
138 ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
139 ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
140 (u8)((data &
141 ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
142 ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
143 (u8)((data &
144 ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
145 ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
146 addr);
147 }
148
149 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 PSWHST_REG_INCORRECT_ACCESS_VALID);
151 if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
152 u32 addr, data, length;
153
154 addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
155 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
156 data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
157 PSWHST_REG_INCORRECT_ACCESS_DATA);
158 length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
159 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
160
161 DP_INFO(p_hwfn->p_dev,
162 "Incorrect access to %08x of length %08x - PF [%02x]"
163 " VF [%04x] [valid %02x] client [%02x] write [%02x]"
164 " Byte-Enable [%04x] [%08x]\n",
165 addr, length,
166 (u8)((data &
167 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
168 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
169 (u8)((data &
170 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
171 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
172 (u8)((data &
173 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
174 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
175 (u8)((data &
176 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
177 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
178 (u8)((data &
179 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
180 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
181 (u8)((data &
182 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
183 ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
184 data);
185 }
186
187 /* TODO - We know 'some' of these are legal due to virtualization,
188 * but is it true for all of them?
189 */
190 return ECORE_SUCCESS;
191 }
192
193 #define ECORE_GRC_ATTENTION_VALID_BIT (1 << 0)
194 #define ECORE_GRC_ATTENTION_ADDRESS_MASK (0x7fffff << 0)
195 #define ECORE_GRC_ATTENTION_RDWR_BIT (1 << 23)
196 #define ECORE_GRC_ATTENTION_MASTER_MASK (0xf << 24)
197 #define ECORE_GRC_ATTENTION_MASTER_SHIFT (24)
198 #define ECORE_GRC_ATTENTION_PF_MASK (0xf)
199 #define ECORE_GRC_ATTENTION_VF_MASK (0xff << 4)
200 #define ECORE_GRC_ATTENTION_VF_SHIFT (4)
201 #define ECORE_GRC_ATTENTION_PRIV_MASK (0x3 << 14)
202 #define ECORE_GRC_ATTENTION_PRIV_SHIFT (14)
203 #define ECORE_GRC_ATTENTION_PRIV_VF (0)
204 static const char *grc_timeout_attn_master_to_str(u8 master)
205 {
206 switch (master) {
207 case 1:
208 return "PXP";
209 case 2:
210 return "MCP";
211 case 3:
212 return "MSDM";
213 case 4:
214 return "PSDM";
215 case 5:
216 return "YSDM";
217 case 6:
218 return "USDM";
219 case 7:
220 return "TSDM";
221 case 8:
222 return "XSDM";
223 case 9:
224 return "DBU";
225 case 10:
226 return "DMAE";
227 default:
228 return "Unknown";
229 }
230 }
231
232 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
233 {
234 enum _ecore_status_t rc = ECORE_SUCCESS;
235 u32 tmp, tmp2;
236
237 /* We've already cleared the timeout interrupt register, so we learn
238 * of interrupts via the validity register.
239 * Any attention which is not for a timeout event is treated as fatal.
240 */
241 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
242 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
243 if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT)) {
244 rc = ECORE_INVAL;
245 goto out;
246 }
247
248 /* Read the GRC timeout information */
249 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
250 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
251 tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
252 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
253
254 DP_NOTICE(p_hwfn->p_dev, false,
255 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
256 tmp2, tmp,
257 (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
258 : "Read from",
259 (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
260 grc_timeout_attn_master_to_str(
261 (tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
262 ECORE_GRC_ATTENTION_MASTER_SHIFT),
263 (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
264 (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
265 ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
266 ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
267 (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
268 ECORE_GRC_ATTENTION_VF_SHIFT);
269
270 /* Clean the validity bit */
271 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
272 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
273 out:
274 return rc;
275 }
276
277 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
278 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
280 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
281 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
282 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
283 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
284 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
285 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME (1 << 22)
286 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
287 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
288 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
289 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
290
291 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
292 struct ecore_ptt *p_ptt,
293 bool is_hw_init)
294 {
295 u32 tmp;
296 char str[512] = {0};
297
298 tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
299 if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
300 u32 addr_lo, addr_hi, details;
301
302 addr_lo = ecore_rd(p_hwfn, p_ptt,
303 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
304 addr_hi = ecore_rd(p_hwfn, p_ptt,
305 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
306 details = ecore_rd(p_hwfn, p_ptt,
307 PGLUE_B_REG_TX_ERR_WR_DETAILS);
308 OSAL_SNPRINTF(str, 512,
309 "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
310 addr_hi, addr_lo, details,
311 (u8)((details &
312 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
313 ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
314 (u8)((details &
315 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
316 ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
317 (u8)((details &
318 ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
319 tmp,
320 (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
321 1 : 0),
322 (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
323 1 : 0),
324 (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
325 1 : 0));
326 if (is_hw_init)
327 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "%s", str);
328 else
329 DP_NOTICE(p_hwfn, false, "%s", str);
330 }
331
332 tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
333 if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
334 u32 addr_lo, addr_hi, details;
335
336 addr_lo = ecore_rd(p_hwfn, p_ptt,
337 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
338 addr_hi = ecore_rd(p_hwfn, p_ptt,
339 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
340 details = ecore_rd(p_hwfn, p_ptt,
341 PGLUE_B_REG_TX_ERR_RD_DETAILS);
342
343 DP_NOTICE(p_hwfn, false,
344 "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
345 addr_hi, addr_lo, details,
346 (u8)((details &
347 ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
348 ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
349 (u8)((details &
350 ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
351 ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
352 (u8)((details &
353 ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
354 tmp,
355 (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
356 1 : 0),
357 (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
358 1 : 0),
359 (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
360 1 : 0));
361 }
362
363 tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
364 if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
365 DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
366
367 tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
368 if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
369 u32 addr_hi, addr_lo;
370
371 addr_lo = ecore_rd(p_hwfn, p_ptt,
372 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
373 addr_hi = ecore_rd(p_hwfn, p_ptt,
374 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
375
376 DP_NOTICE(p_hwfn, false,
377 "ICPL erorr - %08x [Address %08x:%08x]\n",
378 tmp, addr_hi, addr_lo);
379 }
380
381 tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
382 if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
383 u32 addr_hi, addr_lo, details;
384
385 addr_lo = ecore_rd(p_hwfn, p_ptt,
386 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
387 addr_hi = ecore_rd(p_hwfn, p_ptt,
388 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
389 details = ecore_rd(p_hwfn, p_ptt,
390 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
391
392 DP_NOTICE(p_hwfn, false,
393 "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
394 details, tmp, addr_hi, addr_lo);
395 }
396
397 /* Clear the indications */
398 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
399
400 return ECORE_SUCCESS;
401 }
402
403 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
404 {
405 return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
406 }
407
408 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
409 {
410 DP_NOTICE(p_hwfn, false, "FW assertion!\n");
411
412 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
413
414 return ECORE_INVAL;
415 }
416
417 static enum _ecore_status_t
418 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
419 {
420 DP_INFO(p_hwfn, "General attention 35!\n");
421
422 return ECORE_SUCCESS;
423 }
424
425 #define ECORE_DORQ_ATTENTION_REASON_MASK (0xfffff)
426 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
427 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
428 #define ECORE_DORQ_ATTENTION_SIZE_MASK (0x7f)
429 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT (16)
430
431 #define ECORE_DB_REC_COUNT 1000
432 #define ECORE_DB_REC_INTERVAL 100
433
434 static enum _ecore_status_t ecore_db_rec_flush_queue(struct ecore_hwfn *p_hwfn,
435 struct ecore_ptt *p_ptt)
436 {
437 u32 count = ECORE_DB_REC_COUNT;
438 u32 usage = 1;
439
440 /* wait for usage to zero or count to run out. This is necessary since
441 * EDPM doorbell transactions can take multiple 64b cycles, and as such
442 * can "split" over the pci. Possibly, the doorbell drop can happen with
443 * half an EDPM in the queue and other half dropped. Another EDPM
444 * doorbell to the same address (from doorbell recovery mechanism or
445 * from the doorbelling entity) could have first half dropped and second
446 * half interperted as continuation of the first. To prevent such
447 * malformed doorbells from reaching the device, flush the queue before
448 * releaseing the overflow sticky indication.
449 */
450 while (count-- && usage) {
451 usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
452 OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
453 }
454
455 /* should have been depleted by now */
456 if (usage) {
457 DP_NOTICE(p_hwfn->p_dev, false,
458 "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
459 ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
460 return ECORE_TIMEOUT;
461 }
462
463 return ECORE_SUCCESS;
464 }
465
466 enum _ecore_status_t ecore_db_rec_handler(struct ecore_hwfn *p_hwfn,
467 struct ecore_ptt *p_ptt)
468 {
469 u32 overflow;
470 enum _ecore_status_t rc;
471
472 overflow = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
473 DP_NOTICE(p_hwfn, false, "PF Overflow sticky 0x%x\n", overflow);
474 if (!overflow) {
475 ecore_db_recovery_execute(p_hwfn, DB_REC_ONCE);
476 return ECORE_SUCCESS;
477 }
478
479 if (ecore_edpm_enabled(p_hwfn)) {
480 rc = ecore_db_rec_flush_queue(p_hwfn, p_ptt);
481 if (rc != ECORE_SUCCESS)
482 return rc;
483 }
484
485 /* flush any pedning (e)dpm as they may never arrive */
486 ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
487
488 /* release overflow sticky indication (stop silently dropping
489 * everything)
490 */
491 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
492
493 /* repeat all last doorbells (doorbell drop recovery) */
494 ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
495
496 return ECORE_SUCCESS;
497 }
498
499 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
500 {
501 u32 int_sts, first_drop_reason, details, address, all_drops_reason;
502 struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
503 enum _ecore_status_t rc;
504
505 int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
506 DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
507 int_sts);
508
509 /* int_sts may be zero since all PFs were interrupted for doorbell
510 * overflow but another one already handled it. Can abort here. If
511 * This PF also requires overflow recovery we will be interrupted again
512 */
513 if (!int_sts)
514 return ECORE_SUCCESS;
515
516 /* check if db_drop or overflow happened */
517 if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
518 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
519 /* obtain data about db drop/overflow */
520 first_drop_reason = ecore_rd(p_hwfn, p_ptt,
521 DORQ_REG_DB_DROP_REASON) &
522 ECORE_DORQ_ATTENTION_REASON_MASK;
523 details = ecore_rd(p_hwfn, p_ptt,
524 DORQ_REG_DB_DROP_DETAILS);
525 address = ecore_rd(p_hwfn, p_ptt,
526 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
527 all_drops_reason = ecore_rd(p_hwfn, p_ptt,
528 DORQ_REG_DB_DROP_DETAILS_REASON);
529
530 /* log info */
531 DP_NOTICE(p_hwfn->p_dev, false,
532 "Doorbell drop occurred\n"
533 "Address\t\t0x%08x\t(second BAR address)\n"
534 "FID\t\t0x%04x\t\t(Opaque FID)\n"
535 "Size\t\t0x%04x\t\t(in bytes)\n"
536 "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
537 "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
538 address,
539 GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
540 GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
541 first_drop_reason, all_drops_reason);
542
543 rc = ecore_db_rec_handler(p_hwfn, p_ptt);
544 OSAL_DB_REC_OCCURRED(p_hwfn);
545 if (rc != ECORE_SUCCESS)
546 return rc;
547
548 /* clear the doorbell drop details and prepare for next drop */
549 ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
550
551 /* mark interrupt as handeld (note: even if drop was due to a
552 * different reason than overflow we mark as handled)
553 */
554 ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
555 DORQ_REG_INT_STS_DB_DROP |
556 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
557
558 /* if there are no indications otherthan drop indications,
559 * success
560 */
561 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
562 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
563 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
564 return ECORE_SUCCESS;
565 }
566
567 /* some other indication was present - non recoverable */
568 DP_INFO(p_hwfn, "DORQ fatal attention\n");
569
570 return ECORE_INVAL;
571 }
572
573 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
574 {
575 #ifndef ASIC_ONLY
576 if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
577 u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
578 TM_REG_INT_STS_1);
579
580 if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
581 TM_REG_INT_STS_1_PEND_CONN_SCAN))
582 return ECORE_INVAL;
583
584 if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
585 TM_REG_INT_STS_1_PEND_CONN_SCAN))
586 DP_INFO(p_hwfn,
587 "TM attention on emulation - most likely"
588 " results of clock-ratios\n");
589 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
590 val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
591 TM_REG_INT_MASK_1_PEND_TASK_SCAN;
592 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
593
594 return ECORE_SUCCESS;
595 }
596 #endif
597
598 return ECORE_INVAL;
599 }
600
601 /* Instead of major changes to the data-structure, we have a some 'special'
602 * identifiers for sources that changed meaning between adapters.
603 */
604 enum aeu_invert_reg_special_type {
605 AEU_INVERT_REG_SPECIAL_CNIG_0,
606 AEU_INVERT_REG_SPECIAL_CNIG_1,
607 AEU_INVERT_REG_SPECIAL_CNIG_2,
608 AEU_INVERT_REG_SPECIAL_CNIG_3,
609 AEU_INVERT_REG_SPECIAL_MAX,
610 };
611
612 static struct aeu_invert_reg_bit
613 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
614 {"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
615 {"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
616 {"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
617 {"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
618 };
619
620 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
621 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
622 {
623 { /* After Invert 1 */
624 {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
625 MAX_BLOCK_ID},
626 }
627 },
628
629 {
630 { /* After Invert 2 */
631 {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
632 {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
633 {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
634 BLOCK_PGLUE_B},
635 {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
636 {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
637 {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
638 {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
639 {"SW timers #%d",
640 (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
641 OSAL_NULL, MAX_BLOCK_ID},
642 {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
643 BLOCK_PGLCS},
644 }
645 },
646
647 {
648 { /* After Invert 3 */
649 {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
650 MAX_BLOCK_ID},
651 }
652 },
653
654 {
655 { /* After Invert 4 */
656 {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
657 ecore_fw_assertion, MAX_BLOCK_ID},
658 {"General Attention %d",
659 (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
660 OSAL_NULL, MAX_BLOCK_ID},
661 {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
662 ecore_general_attention_35, MAX_BLOCK_ID},
663 {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
664 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
665 OSAL_NULL, BLOCK_NWS},
666 {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
667 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
668 OSAL_NULL, BLOCK_NWS},
669 {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
670 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
671 OSAL_NULL, BLOCK_NWM},
672 {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
673 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
674 OSAL_NULL, BLOCK_NWM},
675 {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
676 {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
677 {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
678 {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
679 {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
680 {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
681 {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
682 MAX_BLOCK_ID},
683 {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
684 {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
685 {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
686 {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
687 {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
688 }
689 },
690
691 {
692 { /* After Invert 5 */
693 {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
694 {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
695 {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
696 {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
697 {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
698 {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
699 {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
700 {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
701 {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
702 {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
703 {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
704 {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
705 {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
706 {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
707 {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
708 {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
709 }
710 },
711
712 {
713 { /* After Invert 6 */
714 {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
715 {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
716 {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
717 {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
718 {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
719 {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
720 {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
721 {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
722 {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
723 {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
724 {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
725 {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
726 {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
727 {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
728 {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
729 {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
730 }
731 },
732
733 {
734 { /* After Invert 7 */
735 {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
736 {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
737 {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
738 {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
739 {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
740 {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
741 {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
742 {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
743 {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
744 {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
745 {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
746 {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
747 {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
748 {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
749 {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
750 {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
751 {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
752 }
753 },
754
755 {
756 { /* After Invert 8 */
757 {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
758 {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
759 {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
760 {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
761 {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
762 {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
763 {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
764 {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
765 {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
766 {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
767 {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
768 {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
769 {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
770 {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
771 {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
772 {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
773 {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
774 {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
775 {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
776 {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
777 {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
778 MAX_BLOCK_ID},
779 }
780 },
781
782 {
783 { /* After Invert 9 */
784 {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
785 {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
786 MAX_BLOCK_ID},
787 {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
788 {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
789 {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
790 MAX_BLOCK_ID},
791 }
792 },
793
794 };
795
796 static struct aeu_invert_reg_bit *
797 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
798 struct aeu_invert_reg_bit *p_bit)
799 {
800 if (!ECORE_IS_BB(p_hwfn->p_dev))
801 return p_bit;
802
803 if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
804 return p_bit;
805
806 return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
807 ATTENTION_BB_SHIFT];
808 }
809
810 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
811 struct aeu_invert_reg_bit *p_bit)
812 {
813 return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
814 ATTENTION_PARITY);
815 }
816
817 #define ATTN_STATE_BITS (0xfff)
818 #define ATTN_BITS_MASKABLE (0x3ff)
819 struct ecore_sb_attn_info {
820 /* Virtual & Physical address of the SB */
821 struct atten_status_block *sb_attn;
822 dma_addr_t sb_phys;
823
824 /* Last seen running index */
825 u16 index;
826
827 /* A mask of the AEU bits resulting in a parity error */
828 u32 parity_mask[NUM_ATTN_REGS];
829
830 /* A pointer to the attention description structure */
831 struct aeu_invert_reg *p_aeu_desc;
832
833 /* Previously asserted attentions, which are still unasserted */
834 u16 known_attn;
835
836 /* Cleanup address for the link's general hw attention */
837 u32 mfw_attn_addr;
838 };
839
840 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
841 struct ecore_sb_attn_info *p_sb_desc)
842 {
843 u16 rc = 0, index;
844
845 OSAL_MMIOWB(p_hwfn->p_dev);
846
847 index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
848 if (p_sb_desc->index != index) {
849 p_sb_desc->index = index;
850 rc = ECORE_SB_ATT_IDX;
851 }
852
853 OSAL_MMIOWB(p_hwfn->p_dev);
854
855 return rc;
856 }
857
858 /**
859 * @brief ecore_int_assertion - handles asserted attention bits
860 *
861 * @param p_hwfn
862 * @param asserted_bits newly asserted bits
863 * @return enum _ecore_status_t
864 */
865 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
866 u16 asserted_bits)
867 {
868 struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
869 u32 igu_mask;
870
871 /* Mask the source of the attention in the IGU */
872 igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
873 IGU_REG_ATTENTION_ENABLE);
874 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
875 igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
876 igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
877 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
878
879 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
880 "inner known ATTN state: 0x%04x --> 0x%04x\n",
881 sb_attn_sw->known_attn,
882 sb_attn_sw->known_attn | asserted_bits);
883 sb_attn_sw->known_attn |= asserted_bits;
884
885 /* Handle MCP events */
886 if (asserted_bits & 0x100) {
887 ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
888 /* Clean the MCP attention */
889 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
890 sb_attn_sw->mfw_attn_addr, 0);
891 }
892
893 /* FIXME - this will change once we'll have GOOD gtt definitions */
894 DIRECT_REG_WR(p_hwfn,
895 (u8 OSAL_IOMEM *) p_hwfn->regview +
896 GTT_BAR0_MAP_REG_IGU_CMD +
897 ((IGU_CMD_ATTN_BIT_SET_UPPER -
898 IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
899
900 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
901 asserted_bits);
902
903 return ECORE_SUCCESS;
904 }
905
906 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
907 enum block_id id, enum dbg_attn_type type,
908 bool b_clear)
909 {
910 /* @DPDK */
911 DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
912 }
913
914 /**
915 * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
916 * cause of the attention
917 *
918 * @param p_hwfn
919 * @param p_aeu - descriptor of an AEU bit which caused the attention
920 * @param aeu_en_reg - register offset of the AEU enable reg. which configured
921 * this bit to this group.
922 * @param bit_index - index of this bit in the aeu_en_reg
923 *
924 * @return enum _ecore_status_t
925 */
926 static enum _ecore_status_t
927 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
928 struct aeu_invert_reg_bit *p_aeu,
929 u32 aeu_en_reg,
930 const char *p_bit_name,
931 u32 bitmask)
932 {
933 enum _ecore_status_t rc = ECORE_INVAL;
934 bool b_fatal = false;
935
936 DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
937 p_bit_name, bitmask);
938
939 /* Call callback before clearing the interrupt status */
940 if (p_aeu->cb) {
941 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
942 p_bit_name);
943 rc = p_aeu->cb(p_hwfn);
944 }
945
946 if (rc != ECORE_SUCCESS)
947 b_fatal = true;
948
949 /* Print HW block interrupt registers */
950 if (p_aeu->block_index != MAX_BLOCK_ID) {
951 ecore_int_attn_print(p_hwfn, p_aeu->block_index,
952 ATTN_TYPE_INTERRUPT, !b_fatal);
953 }
954
955 /* @DPDK */
956 /* Reach assertion if attention is fatal */
957 if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
958 DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
959 p_bit_name);
960
961 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
962 }
963
964 /* Prevent this Attention from being asserted in the future */
965 if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
966 p_hwfn->p_dev->attn_clr_en) {
967 u32 val;
968 u32 mask = ~bitmask;
969 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
970 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
971 DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
972 p_bit_name);
973 }
974
975 return rc;
976 }
977
978 /**
979 * @brief ecore_int_deassertion_parity - handle a single parity AEU source
980 *
981 * @param p_hwfn
982 * @param p_aeu - descriptor of an AEU bit which caused the parity
983 * @param aeu_en_reg - address of the AEU enable register
984 * @param bit_index
985 */
986 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
987 struct aeu_invert_reg_bit *p_aeu,
988 u32 aeu_en_reg, u8 bit_index)
989 {
990 u32 block_id = p_aeu->block_index, mask, val;
991
992 DP_NOTICE(p_hwfn->p_dev, false,
993 "%s parity attention is set [address 0x%08x, bit %d]\n",
994 p_aeu->bit_name, aeu_en_reg, bit_index);
995
996 if (block_id != MAX_BLOCK_ID) {
997 ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
998
999 /* In A0, there's a single parity bit for several blocks */
1000 if (block_id == BLOCK_BTB) {
1001 ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
1002 ATTN_TYPE_PARITY, false);
1003 ecore_int_attn_print(p_hwfn, BLOCK_MCP,
1004 ATTN_TYPE_PARITY, false);
1005 }
1006 }
1007
1008 /* Prevent this parity error from being re-asserted */
1009 mask = ~(0x1 << bit_index);
1010 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
1011 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
1012 DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
1013 p_aeu->bit_name);
1014 }
1015
1016 /**
1017 * @brief - handles deassertion of previously asserted attentions.
1018 *
1019 * @param p_hwfn
1020 * @param deasserted_bits - newly deasserted bits
1021 * @return enum _ecore_status_t
1022 *
1023 */
1024 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1025 u16 deasserted_bits)
1026 {
1027 struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1028 u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1029 u8 i, j, k, bit_idx;
1030 enum _ecore_status_t rc = ECORE_SUCCESS;
1031
1032 /* Read the attention registers in the AEU */
1033 for (i = 0; i < NUM_ATTN_REGS; i++) {
1034 aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1035 MISC_REG_AEU_AFTER_INVERT_1_IGU +
1036 i * 0x4);
1037 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1038 "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1039 }
1040
1041 /* Handle parity attentions first */
1042 for (i = 0; i < NUM_ATTN_REGS; i++) {
1043 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1044 u32 parities;
1045
1046 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1047 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1048 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1049
1050 /* Skip register in which no parity bit is currently set */
1051 if (!parities)
1052 continue;
1053
1054 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1055 struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1056
1057 if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1058 !!(parities & (1 << bit_idx)))
1059 ecore_int_deassertion_parity(p_hwfn, p_bit,
1060 aeu_en, bit_idx);
1061
1062 bit_idx += ATTENTION_LENGTH(p_bit->flags);
1063 }
1064 }
1065
1066 /* Find non-parity cause for attention and act */
1067 for (k = 0; k < MAX_ATTN_GRPS; k++) {
1068 struct aeu_invert_reg_bit *p_aeu;
1069
1070 /* Handle only groups whose attention is currently deasserted */
1071 if (!(deasserted_bits & (1 << k)))
1072 continue;
1073
1074 for (i = 0; i < NUM_ATTN_REGS; i++) {
1075 u32 bits;
1076
1077 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1078 i * sizeof(u32) +
1079 k * sizeof(u32) * NUM_ATTN_REGS;
1080 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1081 bits = aeu_inv_arr[i] & en;
1082
1083 /* Skip if no bit from this group is currently set */
1084 if (!bits)
1085 continue;
1086
1087 /* Find all set bits from current register which belong
1088 * to current group, making them responsible for the
1089 * previous assertion.
1090 */
1091 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1092 unsigned long int bitmask;
1093 u8 bit, bit_len;
1094
1095 /* Need to account bits with changed meaning */
1096 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1097
1098 bit = bit_idx;
1099 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1100 if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1101 /* Skip Parity */
1102 bit++;
1103 bit_len--;
1104 }
1105
1106 /* Find the bits relating to HW-block, then
1107 * shift so they'll become LSB.
1108 */
1109 bitmask = bits & (((1 << bit_len) - 1) << bit);
1110 bitmask >>= bit;
1111
1112 if (bitmask) {
1113 u32 flags = p_aeu->flags;
1114 char bit_name[30];
1115 u8 num;
1116
1117 num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1118 bit_len);
1119
1120 /* Some bits represent more than a
1121 * a single interrupt. Correctly print
1122 * their name.
1123 */
1124 if (ATTENTION_LENGTH(flags) > 2 ||
1125 ((flags & ATTENTION_PAR_INT) &&
1126 ATTENTION_LENGTH(flags) > 1))
1127 OSAL_SNPRINTF(bit_name, 30,
1128 p_aeu->bit_name,
1129 num);
1130 else
1131 strlcpy(bit_name,
1132 p_aeu->bit_name,
1133 sizeof(bit_name));
1134
1135 /* We now need to pass bitmask in its
1136 * correct position.
1137 */
1138 bitmask <<= bit;
1139
1140 /* Handle source of the attention */
1141 ecore_int_deassertion_aeu_bit(p_hwfn,
1142 p_aeu,
1143 aeu_en,
1144 bit_name,
1145 bitmask);
1146 }
1147
1148 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1149 }
1150 }
1151 }
1152
1153 /* Clear IGU indication for the deasserted bits */
1154 /* FIXME - this will change once we'll have GOOD gtt definitions */
1155 DIRECT_REG_WR(p_hwfn,
1156 (u8 OSAL_IOMEM *) p_hwfn->regview +
1157 GTT_BAR0_MAP_REG_IGU_CMD +
1158 ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1159 IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1160
1161 /* Unmask deasserted attentions in IGU */
1162 aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1163 IGU_REG_ATTENTION_ENABLE);
1164 aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1165 ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1166
1167 /* Clear deassertion from inner state */
1168 sb_attn_sw->known_attn &= ~deasserted_bits;
1169
1170 return rc;
1171 }
1172
1173 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1174 {
1175 struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1176 struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1177 u16 index = 0, asserted_bits, deasserted_bits;
1178 u32 attn_bits = 0, attn_acks = 0;
1179 enum _ecore_status_t rc = ECORE_SUCCESS;
1180
1181 /* Read current attention bits/acks - safeguard against attentions
1182 * by guaranting work on a synchronized timeframe
1183 */
1184 do {
1185 index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1186 attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1187 attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1188 } while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1189 p_sb_attn->sb_index = index;
1190
1191 /* Attention / Deassertion are meaningful (and in correct state)
1192 * only when they differ and consistent with known state - deassertion
1193 * when previous attention & current ack, and assertion when current
1194 * attention with no previous attention
1195 */
1196 asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1197 ~p_sb_attn_sw->known_attn;
1198 deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1199 p_sb_attn_sw->known_attn;
1200
1201 if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1202 DP_INFO(p_hwfn,
1203 "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1204 index, attn_bits, attn_acks, asserted_bits,
1205 deasserted_bits, p_sb_attn_sw->known_attn);
1206 else if (asserted_bits == 0x100)
1207 DP_INFO(p_hwfn, "MFW indication via attention\n");
1208 else
1209 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1210 "MFW indication [deassertion]\n");
1211
1212 if (asserted_bits) {
1213 rc = ecore_int_assertion(p_hwfn, asserted_bits);
1214 if (rc)
1215 return rc;
1216 }
1217
1218 if (deasserted_bits)
1219 rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1220
1221 return rc;
1222 }
1223
1224 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1225 void OSAL_IOMEM *igu_addr, u32 ack_cons)
1226 {
1227 struct igu_prod_cons_update igu_ack;
1228
1229 OSAL_MEMSET(&igu_ack, 0, sizeof(struct igu_prod_cons_update));
1230 igu_ack.sb_id_and_flags =
1231 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1232 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1233 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1234 (IGU_SEG_ACCESS_ATTN <<
1235 IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1236
1237 DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1238
1239 /* Both segments (interrupts & acks) are written to same place address;
1240 * Need to guarantee all commands will be received (in-order) by HW.
1241 */
1242 OSAL_MMIOWB(p_hwfn->p_dev);
1243 OSAL_BARRIER(p_hwfn->p_dev);
1244 }
1245
1246 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1247 {
1248 struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1249 struct ecore_pi_info *pi_info = OSAL_NULL;
1250 struct ecore_sb_attn_info *sb_attn;
1251 struct ecore_sb_info *sb_info;
1252 int arr_size;
1253 u16 rc = 0;
1254
1255 if (!p_hwfn)
1256 return;
1257
1258 if (!p_hwfn->p_sp_sb) {
1259 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1260 return;
1261 }
1262
1263 sb_info = &p_hwfn->p_sp_sb->sb_info;
1264 arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1265 if (!sb_info) {
1266 DP_ERR(p_hwfn->p_dev,
1267 "Status block is NULL - cannot ack interrupts\n");
1268 return;
1269 }
1270
1271 if (!p_hwfn->p_sb_attn) {
1272 DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1273 return;
1274 }
1275 sb_attn = p_hwfn->p_sb_attn;
1276
1277 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1278 p_hwfn, p_hwfn->my_id);
1279
1280 /* Disable ack for def status block. Required both for msix +
1281 * inta in non-mask mode, in inta does no harm.
1282 */
1283 ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1284
1285 /* Gather Interrupts/Attentions information */
1286 if (!sb_info->sb_virt) {
1287 DP_ERR(p_hwfn->p_dev,
1288 "Interrupt Status block is NULL -"
1289 " cannot check for new interrupts!\n");
1290 } else {
1291 u32 tmp_index = sb_info->sb_ack;
1292 rc = ecore_sb_update_sb_idx(sb_info);
1293 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1294 "Interrupt indices: 0x%08x --> 0x%08x\n",
1295 tmp_index, sb_info->sb_ack);
1296 }
1297
1298 if (!sb_attn || !sb_attn->sb_attn) {
1299 DP_ERR(p_hwfn->p_dev,
1300 "Attentions Status block is NULL -"
1301 " cannot check for new attentions!\n");
1302 } else {
1303 u16 tmp_index = sb_attn->index;
1304
1305 rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1306 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1307 "Attention indices: 0x%08x --> 0x%08x\n",
1308 tmp_index, sb_attn->index);
1309 }
1310
1311 /* Check if we expect interrupts at this time. if not just ack them */
1312 if (!(rc & ECORE_SB_EVENT_MASK)) {
1313 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1314 return;
1315 }
1316
1317 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1318
1319 if (!p_hwfn->p_dpc_ptt) {
1320 DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1321 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1322 return;
1323 }
1324
1325 if (rc & ECORE_SB_ATT_IDX)
1326 ecore_int_attentions(p_hwfn);
1327
1328 if (rc & ECORE_SB_IDX) {
1329 int pi;
1330
1331 /* Since we only looked at the SB index, it's possible more
1332 * than a single protocol-index on the SB incremented.
1333 * Iterate over all configured protocol indices and check
1334 * whether something happened for each.
1335 */
1336 for (pi = 0; pi < arr_size; pi++) {
1337 pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1338 if (pi_info->comp_cb != OSAL_NULL)
1339 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1340 }
1341 }
1342
1343 if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1344 /* This should be done before the interrupts are enabled,
1345 * since otherwise a new attention will be generated.
1346 */
1347 ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1348 }
1349
1350 ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1351 }
1352
1353 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1354 {
1355 struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1356
1357 if (!p_sb)
1358 return;
1359
1360 if (p_sb->sb_attn) {
1361 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1362 p_sb->sb_phys,
1363 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1364 }
1365 OSAL_FREE(p_hwfn->p_dev, p_sb);
1366 }
1367
1368 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1369 struct ecore_ptt *p_ptt)
1370 {
1371 struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1372
1373 OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1374
1375 sb_info->index = 0;
1376 sb_info->known_attn = 0;
1377
1378 /* Configure Attention Status Block in IGU */
1379 ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1380 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1381 ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1382 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1383 }
1384
1385 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1386 struct ecore_ptt *p_ptt,
1387 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1388 {
1389 struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1390 int i, j, k;
1391
1392 sb_info->sb_attn = sb_virt_addr;
1393 sb_info->sb_phys = sb_phy_addr;
1394
1395 /* Set the pointer to the AEU descriptors */
1396 sb_info->p_aeu_desc = aeu_descs;
1397
1398 /* Calculate Parity Masks */
1399 OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1400 for (i = 0; i < NUM_ATTN_REGS; i++) {
1401 /* j is array index, k is bit index */
1402 for (j = 0, k = 0; k < 32; j++) {
1403 struct aeu_invert_reg_bit *p_aeu;
1404
1405 p_aeu = &aeu_descs[i].bits[j];
1406 if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1407 sb_info->parity_mask[i] |= 1 << k;
1408
1409 k += ATTENTION_LENGTH(p_aeu->flags);
1410 }
1411 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1412 "Attn Mask [Reg %d]: 0x%08x\n",
1413 i, sb_info->parity_mask[i]);
1414 }
1415
1416 /* Set the address of cleanup for the mcp attention */
1417 sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1418 MISC_REG_AEU_GENERAL_ATTN_0;
1419
1420 ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1421 }
1422
1423 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1424 struct ecore_ptt *p_ptt)
1425 {
1426 struct ecore_dev *p_dev = p_hwfn->p_dev;
1427 struct ecore_sb_attn_info *p_sb;
1428 dma_addr_t p_phys = 0;
1429 void *p_virt;
1430
1431 /* SB struct */
1432 p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1433 if (!p_sb) {
1434 DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1435 return ECORE_NOMEM;
1436 }
1437
1438 /* SB ring */
1439 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1440 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1441 if (!p_virt) {
1442 DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1443 OSAL_FREE(p_dev, p_sb);
1444 return ECORE_NOMEM;
1445 }
1446
1447 /* Attention setup */
1448 p_hwfn->p_sb_attn = p_sb;
1449 ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1450
1451 return ECORE_SUCCESS;
1452 }
1453
1454 /* coalescing timeout = timeset << (timer_res + 1) */
1455 #define ECORE_CAU_DEF_RX_USECS 24
1456 #define ECORE_CAU_DEF_TX_USECS 48
1457
1458 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1459 struct cau_sb_entry *p_sb_entry,
1460 u8 pf_id, u16 vf_number, u8 vf_valid)
1461 {
1462 struct ecore_dev *p_dev = p_hwfn->p_dev;
1463 u32 cau_state;
1464 u8 timer_res;
1465
1466 OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1467
1468 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1469 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1470 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1471 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1472 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1473
1474 cau_state = CAU_HC_DISABLE_STATE;
1475
1476 if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1477 cau_state = CAU_HC_ENABLE_STATE;
1478 if (!p_dev->rx_coalesce_usecs)
1479 p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1480 if (!p_dev->tx_coalesce_usecs)
1481 p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1482 }
1483
1484 /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1485 if (p_dev->rx_coalesce_usecs <= 0x7F)
1486 timer_res = 0;
1487 else if (p_dev->rx_coalesce_usecs <= 0xFF)
1488 timer_res = 1;
1489 else
1490 timer_res = 2;
1491 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1492
1493 if (p_dev->tx_coalesce_usecs <= 0x7F)
1494 timer_res = 0;
1495 else if (p_dev->tx_coalesce_usecs <= 0xFF)
1496 timer_res = 1;
1497 else
1498 timer_res = 2;
1499 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1500
1501 SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1502 SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1503 }
1504
1505 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1506 struct ecore_ptt *p_ptt,
1507 u16 igu_sb_id, u32 pi_index,
1508 enum ecore_coalescing_fsm coalescing_fsm,
1509 u8 timeset)
1510 {
1511 struct cau_pi_entry pi_entry;
1512 u32 sb_offset, pi_offset;
1513
1514 if (IS_VF(p_hwfn->p_dev))
1515 return;/* @@@TBD MichalK- VF CAU... */
1516
1517 sb_offset = igu_sb_id * PIS_PER_SB_E4;
1518 OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1519
1520 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1521 if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1522 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1523 else
1524 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1525
1526 pi_offset = sb_offset + pi_index;
1527 if (p_hwfn->hw_init_done) {
1528 ecore_wr(p_hwfn, p_ptt,
1529 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1530 *((u32 *)&(pi_entry)));
1531 } else {
1532 STORE_RT_REG(p_hwfn,
1533 CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1534 *((u32 *)&(pi_entry)));
1535 }
1536 }
1537
1538 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1539 struct ecore_ptt *p_ptt,
1540 struct ecore_sb_info *p_sb, u32 pi_index,
1541 enum ecore_coalescing_fsm coalescing_fsm,
1542 u8 timeset)
1543 {
1544 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1545 pi_index, coalescing_fsm, timeset);
1546 }
1547
1548 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1549 struct ecore_ptt *p_ptt,
1550 dma_addr_t sb_phys, u16 igu_sb_id,
1551 u16 vf_number, u8 vf_valid)
1552 {
1553 struct cau_sb_entry sb_entry;
1554
1555 ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1556 vf_number, vf_valid);
1557
1558 if (p_hwfn->hw_init_done) {
1559 /* Wide-bus, initialize via DMAE */
1560 u64 phys_addr = (u64)sb_phys;
1561
1562 ecore_dmae_host2grc(p_hwfn, p_ptt,
1563 (u64)(osal_uintptr_t)&phys_addr,
1564 CAU_REG_SB_ADDR_MEMORY +
1565 igu_sb_id * sizeof(u64), 2,
1566 OSAL_NULL /* default parameters */);
1567 ecore_dmae_host2grc(p_hwfn, p_ptt,
1568 (u64)(osal_uintptr_t)&sb_entry,
1569 CAU_REG_SB_VAR_MEMORY +
1570 igu_sb_id * sizeof(u64), 2,
1571 OSAL_NULL /* default parameters */);
1572 } else {
1573 /* Initialize Status Block Address */
1574 STORE_RT_REG_AGG(p_hwfn,
1575 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1576 igu_sb_id * 2, sb_phys);
1577
1578 STORE_RT_REG_AGG(p_hwfn,
1579 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1580 igu_sb_id * 2, sb_entry);
1581 }
1582
1583 /* Configure pi coalescing if set */
1584 if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1585 /* eth will open queues for all tcs, so configure all of them
1586 * properly, rather than just the active ones
1587 */
1588 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1589
1590 u8 timeset, timer_res;
1591 u8 i;
1592
1593 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1594 if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1595 timer_res = 0;
1596 else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1597 timer_res = 1;
1598 else
1599 timer_res = 2;
1600 timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1601 _ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1602 ECORE_COAL_RX_STATE_MACHINE,
1603 timeset);
1604
1605 if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1606 timer_res = 0;
1607 else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1608 timer_res = 1;
1609 else
1610 timer_res = 2;
1611 timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1612 for (i = 0; i < num_tc; i++) {
1613 _ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1614 igu_sb_id, TX_PI(i),
1615 ECORE_COAL_TX_STATE_MACHINE,
1616 timeset);
1617 }
1618 }
1619 }
1620
1621 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1622 struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1623 {
1624 /* zero status block and ack counter */
1625 sb_info->sb_ack = 0;
1626 OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1627
1628 if (IS_PF(p_hwfn->p_dev))
1629 ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1630 sb_info->igu_sb_id, 0, 0);
1631 }
1632
1633 struct ecore_igu_block *
1634 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1635 {
1636 struct ecore_igu_block *p_block;
1637 u16 igu_id;
1638
1639 for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1640 igu_id++) {
1641 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1642
1643 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1644 !(p_block->status & ECORE_IGU_STATUS_FREE))
1645 continue;
1646
1647 if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1648 b_is_pf)
1649 return p_block;
1650 }
1651
1652 return OSAL_NULL;
1653 }
1654
1655 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1656 u16 vector_id)
1657 {
1658 struct ecore_igu_block *p_block;
1659 u16 igu_id;
1660
1661 for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1662 igu_id++) {
1663 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1664
1665 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1666 !p_block->is_pf ||
1667 p_block->vector_number != vector_id)
1668 continue;
1669
1670 return igu_id;
1671 }
1672
1673 return ECORE_SB_INVALID_IDX;
1674 }
1675
1676 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1677 {
1678 u16 igu_sb_id;
1679
1680 /* Assuming continuous set of IGU SBs dedicated for given PF */
1681 if (sb_id == ECORE_SP_SB_ID)
1682 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1683 else if (IS_PF(p_hwfn->p_dev))
1684 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1685 else
1686 igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1687
1688 if (igu_sb_id == ECORE_SB_INVALID_IDX)
1689 DP_NOTICE(p_hwfn, true,
1690 "Slowpath SB vector %04x doesn't exist\n",
1691 sb_id);
1692 else if (sb_id == ECORE_SP_SB_ID)
1693 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1694 "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1695 else
1696 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1697 "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1698
1699 return igu_sb_id;
1700 }
1701
1702 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1703 struct ecore_ptt *p_ptt,
1704 struct ecore_sb_info *sb_info,
1705 void *sb_virt_addr,
1706 dma_addr_t sb_phy_addr, u16 sb_id)
1707 {
1708 sb_info->sb_virt = sb_virt_addr;
1709 sb_info->sb_phys = sb_phy_addr;
1710
1711 sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1712
1713 if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1714 return ECORE_INVAL;
1715
1716 /* Let the igu info reference the client's SB info */
1717 if (sb_id != ECORE_SP_SB_ID) {
1718 if (IS_PF(p_hwfn->p_dev)) {
1719 struct ecore_igu_info *p_info;
1720 struct ecore_igu_block *p_block;
1721
1722 p_info = p_hwfn->hw_info.p_igu_info;
1723 p_block = &p_info->entry[sb_info->igu_sb_id];
1724
1725 p_block->sb_info = sb_info;
1726 p_block->status &= ~ECORE_IGU_STATUS_FREE;
1727 p_info->usage.free_cnt--;
1728 } else {
1729 ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1730 }
1731 }
1732 #ifdef ECORE_CONFIG_DIRECT_HWFN
1733 sb_info->p_hwfn = p_hwfn;
1734 #endif
1735 sb_info->p_dev = p_hwfn->p_dev;
1736
1737 /* The igu address will hold the absolute address that needs to be
1738 * written to for a specific status block
1739 */
1740 if (IS_PF(p_hwfn->p_dev)) {
1741 sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1742 GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1743
1744 } else {
1745 sb_info->igu_addr =
1746 (u8 OSAL_IOMEM *)p_hwfn->regview +
1747 PXP_VF_BAR0_START_IGU +
1748 ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1749 }
1750
1751 sb_info->flags |= ECORE_SB_INFO_INIT;
1752
1753 ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1754
1755 return ECORE_SUCCESS;
1756 }
1757
1758 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1759 struct ecore_sb_info *sb_info,
1760 u16 sb_id)
1761 {
1762 struct ecore_igu_info *p_info;
1763 struct ecore_igu_block *p_block;
1764
1765 if (sb_info == OSAL_NULL)
1766 return ECORE_SUCCESS;
1767
1768 /* zero status block and ack counter */
1769 sb_info->sb_ack = 0;
1770 OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1771
1772 if (IS_VF(p_hwfn->p_dev)) {
1773 ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1774 return ECORE_SUCCESS;
1775 }
1776
1777 p_info = p_hwfn->hw_info.p_igu_info;
1778 p_block = &p_info->entry[sb_info->igu_sb_id];
1779
1780 /* Vector 0 is reserved to Default SB */
1781 if (p_block->vector_number == 0) {
1782 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1783 return ECORE_INVAL;
1784 }
1785
1786 /* Lose reference to client's SB info, and fix counters */
1787 p_block->sb_info = OSAL_NULL;
1788 p_block->status |= ECORE_IGU_STATUS_FREE;
1789 p_info->usage.free_cnt++;
1790
1791 return ECORE_SUCCESS;
1792 }
1793
1794 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1795 {
1796 struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1797
1798 if (!p_sb)
1799 return;
1800
1801 if (p_sb->sb_info.sb_virt) {
1802 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1803 p_sb->sb_info.sb_virt,
1804 p_sb->sb_info.sb_phys,
1805 SB_ALIGNED_SIZE(p_hwfn));
1806 }
1807
1808 OSAL_FREE(p_hwfn->p_dev, p_sb);
1809 }
1810
1811 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1812 struct ecore_ptt *p_ptt)
1813 {
1814 struct ecore_sb_sp_info *p_sb;
1815 dma_addr_t p_phys = 0;
1816 void *p_virt;
1817
1818 /* SB struct */
1819 p_sb =
1820 OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1821 sizeof(*p_sb));
1822 if (!p_sb) {
1823 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1824 return ECORE_NOMEM;
1825 }
1826
1827 /* SB ring */
1828 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1829 &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1830 if (!p_virt) {
1831 DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1832 OSAL_FREE(p_hwfn->p_dev, p_sb);
1833 return ECORE_NOMEM;
1834 }
1835
1836 /* Status Block setup */
1837 p_hwfn->p_sp_sb = p_sb;
1838 ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1839 p_virt, p_phys, ECORE_SP_SB_ID);
1840
1841 OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1842
1843 return ECORE_SUCCESS;
1844 }
1845
1846 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1847 ecore_int_comp_cb_t comp_cb,
1848 void *cookie,
1849 u8 *sb_idx, __le16 **p_fw_cons)
1850 {
1851 struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1852 enum _ecore_status_t rc = ECORE_NOMEM;
1853 u8 pi;
1854
1855 /* Look for a free index */
1856 for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1857 if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1858 continue;
1859
1860 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1861 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1862 *sb_idx = pi;
1863 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1864 rc = ECORE_SUCCESS;
1865 break;
1866 }
1867
1868 return rc;
1869 }
1870
1871 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1872 {
1873 struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1874
1875 if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1876 return ECORE_NOMEM;
1877
1878 p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1879 p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1880 return ECORE_SUCCESS;
1881 }
1882
1883 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1884 {
1885 return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1886 }
1887
1888 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1889 struct ecore_ptt *p_ptt,
1890 enum ecore_int_mode int_mode)
1891 {
1892 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1893
1894 #ifndef ASIC_ONLY
1895 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1896 DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1897 igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1898 }
1899 #endif
1900
1901 p_hwfn->p_dev->int_mode = int_mode;
1902 switch (p_hwfn->p_dev->int_mode) {
1903 case ECORE_INT_MODE_INTA:
1904 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1905 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1906 break;
1907
1908 case ECORE_INT_MODE_MSI:
1909 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1910 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1911 break;
1912
1913 case ECORE_INT_MODE_MSIX:
1914 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1915 break;
1916 case ECORE_INT_MODE_POLL:
1917 break;
1918 }
1919
1920 ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1921 }
1922
1923 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1924 struct ecore_ptt *p_ptt)
1925 {
1926 #ifndef ASIC_ONLY
1927 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1928 DP_INFO(p_hwfn,
1929 "FPGA - Don't enable Attentions in IGU and MISC\n");
1930 return;
1931 }
1932 #endif
1933
1934 /* Configure AEU signal change to produce attentions */
1935 ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1936 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1937 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1938 ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1939
1940 /* Flush the writes to IGU */
1941 OSAL_MMIOWB(p_hwfn->p_dev);
1942
1943 /* Unmask AEU signals toward IGU */
1944 ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1945 }
1946
1947 enum _ecore_status_t
1948 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1949 enum ecore_int_mode int_mode)
1950 {
1951 enum _ecore_status_t rc = ECORE_SUCCESS;
1952
1953 ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1954
1955 if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1956 rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1957 if (rc != ECORE_SUCCESS) {
1958 DP_NOTICE(p_hwfn, true,
1959 "Slowpath IRQ request failed\n");
1960 return ECORE_NORESOURCES;
1961 }
1962 p_hwfn->b_int_requested = true;
1963 }
1964
1965 /* Enable interrupt Generation */
1966 ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1967
1968 p_hwfn->b_int_enabled = 1;
1969
1970 return rc;
1971 }
1972
1973 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1974 struct ecore_ptt *p_ptt)
1975 {
1976 p_hwfn->b_int_enabled = 0;
1977
1978 if (IS_VF(p_hwfn->p_dev))
1979 return;
1980
1981 ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1982 }
1983
1984 #define IGU_CLEANUP_SLEEP_LENGTH (1000)
1985 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1986 struct ecore_ptt *p_ptt,
1987 u32 igu_sb_id,
1988 bool cleanup_set,
1989 u16 opaque_fid)
1990 {
1991 u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1992 u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1993 u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1994 u8 type = 0; /* FIXME MichalS type??? */
1995
1996 OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1997 IGU_REG_CLEANUP_STATUS_0) != 0x200);
1998
1999 /* USE Control Command Register to perform cleanup. There is an
2000 * option to do this using IGU bar, but then it can't be used for VFs.
2001 */
2002
2003 /* Set the data field */
2004 SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
2005 SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
2006 SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
2007
2008 /* Set the control register */
2009 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
2010 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
2011 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
2012
2013 ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
2014
2015 OSAL_BARRIER(p_hwfn->p_dev);
2016
2017 ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2018
2019 /* Flush the write to IGU */
2020 OSAL_MMIOWB(p_hwfn->p_dev);
2021
2022 /* calculate where to read the status bit from */
2023 sb_bit = 1 << (igu_sb_id % 32);
2024 sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2025
2026 sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2027
2028 /* Now wait for the command to complete */
2029 while (--sleep_cnt) {
2030 val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2031 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2032 break;
2033 OSAL_MSLEEP(5);
2034 }
2035
2036 if (!sleep_cnt)
2037 DP_NOTICE(p_hwfn, true,
2038 "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2039 val, igu_sb_id);
2040 }
2041
2042 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2043 struct ecore_ptt *p_ptt,
2044 u16 igu_sb_id, u16 opaque, bool b_set)
2045 {
2046 struct ecore_igu_block *p_block;
2047 int pi, i;
2048
2049 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2050 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2051 "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2052 igu_sb_id, p_block->function_id, p_block->is_pf,
2053 p_block->vector_number);
2054
2055 /* Set */
2056 if (b_set)
2057 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2058
2059 /* Clear */
2060 ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2061
2062 /* Wait for the IGU SB to cleanup */
2063 for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2064 u32 val;
2065
2066 val = ecore_rd(p_hwfn, p_ptt,
2067 IGU_REG_WRITE_DONE_PENDING +
2068 ((igu_sb_id / 32) * 4));
2069 if (val & (1 << (igu_sb_id % 32)))
2070 OSAL_UDELAY(10);
2071 else
2072 break;
2073 }
2074 if (i == IGU_CLEANUP_SLEEP_LENGTH)
2075 DP_NOTICE(p_hwfn, true,
2076 "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2077 igu_sb_id);
2078
2079 /* Clear the CAU for the SB */
2080 for (pi = 0; pi < 12; pi++)
2081 ecore_wr(p_hwfn, p_ptt,
2082 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2083 }
2084
2085 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2086 struct ecore_ptt *p_ptt,
2087 bool b_set, bool b_slowpath)
2088 {
2089 struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2090 struct ecore_igu_block *p_block;
2091 u16 igu_sb_id = 0;
2092 u32 val = 0;
2093
2094 /* @@@TBD MichalK temporary... should be moved to init-tool... */
2095 val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2096 val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2097 val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2098 ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2099 /* end temporary */
2100
2101 for (igu_sb_id = 0;
2102 igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2103 igu_sb_id++) {
2104 p_block = &p_info->entry[igu_sb_id];
2105
2106 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2107 !p_block->is_pf ||
2108 (p_block->status & ECORE_IGU_STATUS_DSB))
2109 continue;
2110
2111 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2112 p_hwfn->hw_info.opaque_fid,
2113 b_set);
2114 }
2115
2116 if (b_slowpath)
2117 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2118 p_info->igu_dsb_id,
2119 p_hwfn->hw_info.opaque_fid,
2120 b_set);
2121 }
2122
2123 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2124 struct ecore_ptt *p_ptt)
2125 {
2126 struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2127 struct ecore_igu_block *p_block;
2128 int pf_sbs, vf_sbs;
2129 u16 igu_sb_id;
2130 u32 val, rval;
2131
2132 if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2133 /* We're using an old MFW - have to prevent any switching
2134 * of SBs between PF and VFs as later driver wouldn't be
2135 * able to tell which belongs to which.
2136 */
2137 p_info->b_allow_pf_vf_change = false;
2138 } else {
2139 /* Use the numbers the MFW have provided -
2140 * don't forget MFW accounts for the default SB as well.
2141 */
2142 p_info->b_allow_pf_vf_change = true;
2143
2144 if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2145 DP_INFO(p_hwfn,
2146 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2147 RESC_NUM(p_hwfn, ECORE_SB) - 1,
2148 p_info->usage.cnt);
2149 p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2150 }
2151
2152 /* TODO - how do we learn about VF SBs from MFW? */
2153 if (IS_PF_SRIOV(p_hwfn)) {
2154 u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2155
2156 if (vfs != p_info->usage.iov_cnt)
2157 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2158 "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2159 p_info->usage.iov_cnt, vfs);
2160
2161 /* At this point we know how many SBs we have totally
2162 * in IGU + number of PF SBs. So we can validate that
2163 * we'd have sufficient for VF.
2164 */
2165 if (vfs > p_info->usage.free_cnt +
2166 p_info->usage.free_cnt_iov -
2167 p_info->usage.cnt) {
2168 DP_NOTICE(p_hwfn, true,
2169 "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2170 p_info->usage.free_cnt +
2171 p_info->usage.free_cnt_iov,
2172 p_info->usage.cnt, vfs);
2173 return ECORE_INVAL;
2174 }
2175 }
2176 }
2177
2178 /* Cap the number of VFs SBs by the number of VFs */
2179 if (IS_PF_SRIOV(p_hwfn))
2180 p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2181
2182 /* Mark all SBs as free, now in the right PF/VFs division */
2183 p_info->usage.free_cnt = p_info->usage.cnt;
2184 p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2185 p_info->usage.orig = p_info->usage.cnt;
2186 p_info->usage.iov_orig = p_info->usage.iov_cnt;
2187
2188 /* We now proceed to re-configure the IGU cam to reflect the initial
2189 * configuration. We can start with the Default SB.
2190 */
2191 pf_sbs = p_info->usage.cnt;
2192 vf_sbs = p_info->usage.iov_cnt;
2193
2194 for (igu_sb_id = p_info->igu_dsb_id;
2195 igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2196 igu_sb_id++) {
2197 p_block = &p_info->entry[igu_sb_id];
2198 val = 0;
2199
2200 if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2201 continue;
2202
2203 if (p_block->status & ECORE_IGU_STATUS_DSB) {
2204 p_block->function_id = p_hwfn->rel_pf_id;
2205 p_block->is_pf = 1;
2206 p_block->vector_number = 0;
2207 p_block->status = ECORE_IGU_STATUS_VALID |
2208 ECORE_IGU_STATUS_PF |
2209 ECORE_IGU_STATUS_DSB;
2210 } else if (pf_sbs) {
2211 pf_sbs--;
2212 p_block->function_id = p_hwfn->rel_pf_id;
2213 p_block->is_pf = 1;
2214 p_block->vector_number = p_info->usage.cnt - pf_sbs;
2215 p_block->status = ECORE_IGU_STATUS_VALID |
2216 ECORE_IGU_STATUS_PF |
2217 ECORE_IGU_STATUS_FREE;
2218 } else if (vf_sbs) {
2219 p_block->function_id =
2220 p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2221 p_info->usage.iov_cnt - vf_sbs;
2222 p_block->is_pf = 0;
2223 p_block->vector_number = 0;
2224 p_block->status = ECORE_IGU_STATUS_VALID |
2225 ECORE_IGU_STATUS_FREE;
2226 vf_sbs--;
2227 } else {
2228 p_block->function_id = 0;
2229 p_block->is_pf = 0;
2230 p_block->vector_number = 0;
2231 }
2232
2233 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2234 p_block->function_id);
2235 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2236 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2237 p_block->vector_number);
2238
2239 /* VF entries would be enabled when VF is initializaed */
2240 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2241
2242 rval = ecore_rd(p_hwfn, p_ptt,
2243 IGU_REG_MAPPING_MEMORY +
2244 sizeof(u32) * igu_sb_id);
2245
2246 if (rval != val) {
2247 ecore_wr(p_hwfn, p_ptt,
2248 IGU_REG_MAPPING_MEMORY +
2249 sizeof(u32) * igu_sb_id,
2250 val);
2251
2252 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2253 "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2254 igu_sb_id, p_block->function_id,
2255 p_block->is_pf, p_block->vector_number,
2256 rval, val);
2257 }
2258 }
2259
2260 return 0;
2261 }
2262
2263 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2264 struct ecore_ptt *p_ptt)
2265 {
2266 struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2267
2268 /* Return all the usage indications to default prior to the reset;
2269 * The reset expects the !orig to reflect the initial status of the
2270 * SBs, and would re-calculate the originals based on those.
2271 */
2272 p_cnt->cnt = p_cnt->orig;
2273 p_cnt->free_cnt = p_cnt->orig;
2274 p_cnt->iov_cnt = p_cnt->iov_orig;
2275 p_cnt->free_cnt_iov = p_cnt->iov_orig;
2276 p_cnt->orig = 0;
2277 p_cnt->iov_orig = 0;
2278
2279 /* TODO - we probably need to re-configure the CAU as well... */
2280 return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2281 }
2282
2283 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2284 struct ecore_ptt *p_ptt,
2285 u16 igu_sb_id)
2286 {
2287 u32 val = ecore_rd(p_hwfn, p_ptt,
2288 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2289 struct ecore_igu_block *p_block;
2290
2291 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2292
2293 /* Fill the block information */
2294 p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2295 p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2296 p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2297
2298 p_block->igu_sb_id = igu_sb_id;
2299 }
2300
2301 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2302 struct ecore_ptt *p_ptt)
2303 {
2304 struct ecore_igu_info *p_igu_info;
2305 struct ecore_igu_block *p_block;
2306 u32 min_vf = 0, max_vf = 0;
2307 u16 igu_sb_id;
2308
2309 p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2310 GFP_KERNEL,
2311 sizeof(*p_igu_info));
2312 if (!p_hwfn->hw_info.p_igu_info)
2313 return ECORE_NOMEM;
2314 p_igu_info = p_hwfn->hw_info.p_igu_info;
2315
2316 /* Distinguish between existent and onn-existent default SB */
2317 p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2318
2319 /* Find the range of VF ids whose SB belong to this PF */
2320 if (p_hwfn->p_dev->p_iov_info) {
2321 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2322
2323 min_vf = p_iov->first_vf_in_pf;
2324 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2325 }
2326
2327 for (igu_sb_id = 0;
2328 igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2329 igu_sb_id++) {
2330 /* Read current entry; Notice it might not belong to this PF */
2331 ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2332 p_block = &p_igu_info->entry[igu_sb_id];
2333
2334 if ((p_block->is_pf) &&
2335 (p_block->function_id == p_hwfn->rel_pf_id)) {
2336 p_block->status = ECORE_IGU_STATUS_PF |
2337 ECORE_IGU_STATUS_VALID |
2338 ECORE_IGU_STATUS_FREE;
2339
2340 if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2341 p_igu_info->usage.cnt++;
2342 } else if (!(p_block->is_pf) &&
2343 (p_block->function_id >= min_vf) &&
2344 (p_block->function_id < max_vf)) {
2345 /* Available for VFs of this PF */
2346 p_block->status = ECORE_IGU_STATUS_VALID |
2347 ECORE_IGU_STATUS_FREE;
2348
2349 if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2350 p_igu_info->usage.iov_cnt++;
2351 }
2352
2353 /* Mark the First entry belonging to the PF or its VFs
2354 * as the default SB [we'll reset IGU prior to first usage].
2355 */
2356 if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2357 (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2358 p_igu_info->igu_dsb_id = igu_sb_id;
2359 p_block->status |= ECORE_IGU_STATUS_DSB;
2360 }
2361
2362 /* While this isn't suitable for all clients, limit number
2363 * of prints by having each PF print only its entries with the
2364 * exception of PF0 which would print everything.
2365 */
2366 if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2367 (p_hwfn->abs_pf_id == 0))
2368 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2369 "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2370 igu_sb_id, p_block->function_id,
2371 p_block->is_pf, p_block->vector_number);
2372 }
2373
2374 if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2375 DP_NOTICE(p_hwfn, true,
2376 "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2377 p_igu_info->igu_dsb_id);
2378 return ECORE_INVAL;
2379 }
2380
2381 /* All non default SB are considered free at this point */
2382 p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2383 p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2384
2385 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2386 "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2387 p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2388 p_igu_info->usage.iov_cnt);
2389
2390 return ECORE_SUCCESS;
2391 }
2392
2393 enum _ecore_status_t
2394 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2395 u16 sb_id, bool b_to_vf)
2396 {
2397 struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2398 struct ecore_igu_block *p_block = OSAL_NULL;
2399 u16 igu_sb_id = 0, vf_num = 0;
2400 u32 val = 0;
2401
2402 if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2403 return ECORE_INVAL;
2404
2405 if (sb_id == ECORE_SP_SB_ID)
2406 return ECORE_INVAL;
2407
2408 if (!p_info->b_allow_pf_vf_change) {
2409 DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2410 return ECORE_INVAL;
2411 }
2412
2413 /* If we're moving a SB from PF to VF, the client had to specify
2414 * which vector it wants to move.
2415 */
2416 if (b_to_vf) {
2417 igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2418 if (igu_sb_id == ECORE_SB_INVALID_IDX)
2419 return ECORE_INVAL;
2420 }
2421
2422 /* If we're moving a SB from VF to PF, need to validate there isn't
2423 * already a line configured for that vector.
2424 */
2425 if (!b_to_vf) {
2426 if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2427 ECORE_SB_INVALID_IDX)
2428 return ECORE_INVAL;
2429 }
2430
2431 /* We need to validate that the SB can actually be relocated.
2432 * This would also handle the previous case where we've explicitly
2433 * stated which IGU SB needs to move.
2434 */
2435 for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2436 igu_sb_id++) {
2437 p_block = &p_info->entry[igu_sb_id];
2438
2439 if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2440 !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2441 (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2442 if (b_to_vf)
2443 return ECORE_INVAL;
2444 else
2445 continue;
2446 }
2447
2448 break;
2449 }
2450
2451 if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2452 DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2453 "Failed to find a free SB to move\n");
2454 return ECORE_INVAL;
2455 }
2456
2457 /* At this point, p_block points to the SB we want to relocate */
2458 if (b_to_vf) {
2459 p_block->status &= ~ECORE_IGU_STATUS_PF;
2460
2461 /* It doesn't matter which VF number we choose, since we're
2462 * going to disable the line; But let's keep it in range.
2463 */
2464 vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2465
2466 p_block->function_id = (u8)vf_num;
2467 p_block->is_pf = 0;
2468 p_block->vector_number = 0;
2469
2470 p_info->usage.cnt--;
2471 p_info->usage.free_cnt--;
2472 p_info->usage.iov_cnt++;
2473 p_info->usage.free_cnt_iov++;
2474
2475 /* TODO - if SBs aren't really the limiting factor,
2476 * then it might not be accurate [in the since that
2477 * we might not need decrement the feature].
2478 */
2479 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2480 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2481 } else {
2482 p_block->status |= ECORE_IGU_STATUS_PF;
2483 p_block->function_id = p_hwfn->rel_pf_id;
2484 p_block->is_pf = 1;
2485 p_block->vector_number = sb_id + 1;
2486
2487 p_info->usage.cnt++;
2488 p_info->usage.free_cnt++;
2489 p_info->usage.iov_cnt--;
2490 p_info->usage.free_cnt_iov--;
2491
2492 p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2493 p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2494 }
2495
2496 /* Update the IGU and CAU with the new configuration */
2497 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2498 p_block->function_id);
2499 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2500 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2501 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2502 p_block->vector_number);
2503
2504 ecore_wr(p_hwfn, p_ptt,
2505 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2506 val);
2507
2508 ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2509 igu_sb_id, vf_num,
2510 p_block->is_pf ? 0 : 1);
2511
2512 DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2513 "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2514 igu_sb_id, p_block->function_id,
2515 p_block->is_pf, p_block->vector_number);
2516
2517 return ECORE_SUCCESS;
2518 }
2519
2520 /**
2521 * @brief Initialize igu runtime registers
2522 *
2523 * @param p_hwfn
2524 */
2525 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2526 {
2527 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2528
2529 STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2530 }
2531
2532 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2533 IGU_CMD_INT_ACK_BASE)
2534 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2535 IGU_CMD_INT_ACK_BASE)
2536 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2537 {
2538 u32 intr_status_hi = 0, intr_status_lo = 0;
2539 u64 intr_status = 0;
2540
2541 intr_status_lo = REG_RD(p_hwfn,
2542 GTT_BAR0_MAP_REG_IGU_CMD +
2543 LSB_IGU_CMD_ADDR * 8);
2544 intr_status_hi = REG_RD(p_hwfn,
2545 GTT_BAR0_MAP_REG_IGU_CMD +
2546 MSB_IGU_CMD_ADDR * 8);
2547 intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2548
2549 return intr_status;
2550 }
2551
2552 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2553 {
2554 OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2555 p_hwfn->b_sp_dpc_enabled = true;
2556 }
2557
2558 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2559 {
2560 p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2561 if (!p_hwfn->sp_dpc)
2562 return ECORE_NOMEM;
2563
2564 return ECORE_SUCCESS;
2565 }
2566
2567 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2568 {
2569 OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2570 }
2571
2572 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2573 struct ecore_ptt *p_ptt)
2574 {
2575 enum _ecore_status_t rc = ECORE_SUCCESS;
2576
2577 rc = ecore_int_sp_dpc_alloc(p_hwfn);
2578 if (rc != ECORE_SUCCESS) {
2579 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2580 return rc;
2581 }
2582
2583 rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2584 if (rc != ECORE_SUCCESS) {
2585 DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2586 return rc;
2587 }
2588
2589 rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2590 if (rc != ECORE_SUCCESS)
2591 DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2592
2593 return rc;
2594 }
2595
2596 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2597 {
2598 ecore_int_sp_sb_free(p_hwfn);
2599 ecore_int_sb_attn_free(p_hwfn);
2600 ecore_int_sp_dpc_free(p_hwfn);
2601 }
2602
2603 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2604 {
2605 if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2606 return;
2607
2608 ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2609 ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2610 ecore_int_sp_dpc_setup(p_hwfn);
2611 }
2612
2613 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2614 struct ecore_sb_cnt_info *p_sb_cnt_info)
2615 {
2616 struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2617
2618 if (!p_igu_info || !p_sb_cnt_info)
2619 return;
2620
2621 OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2622 sizeof(*p_sb_cnt_info));
2623 }
2624
2625 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2626 {
2627 int i;
2628
2629 for_each_hwfn(p_dev, i)
2630 p_dev->hwfns[i].b_int_requested = false;
2631 }
2632
2633 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2634 {
2635 p_dev->attn_clr_en = clr_enable;
2636 }
2637
2638 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2639 struct ecore_ptt *p_ptt,
2640 u8 timer_res, u16 sb_id, bool tx)
2641 {
2642 struct cau_sb_entry sb_entry;
2643 enum _ecore_status_t rc;
2644
2645 if (!p_hwfn->hw_init_done) {
2646 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2647 return ECORE_INVAL;
2648 }
2649
2650 rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2651 sb_id * sizeof(u64),
2652 (u64)(osal_uintptr_t)&sb_entry, 2,
2653 OSAL_NULL /* default parameters */);
2654 if (rc != ECORE_SUCCESS) {
2655 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2656 return rc;
2657 }
2658
2659 if (tx)
2660 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2661 else
2662 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2663
2664 rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2665 (u64)(osal_uintptr_t)&sb_entry,
2666 CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2667 OSAL_NULL /* default parameters */);
2668 if (rc != ECORE_SUCCESS) {
2669 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2670 return rc;
2671 }
2672
2673 return rc;
2674 }
2675
2676 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2677 struct ecore_ptt *p_ptt,
2678 struct ecore_sb_info *p_sb,
2679 struct ecore_sb_info_dbg *p_info)
2680 {
2681 u16 sbid = p_sb->igu_sb_id;
2682 int i;
2683
2684 if (IS_VF(p_hwfn->p_dev))
2685 return ECORE_INVAL;
2686
2687 if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2688 return ECORE_INVAL;
2689
2690 p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2691 IGU_REG_PRODUCER_MEMORY + sbid * 4);
2692 p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2693 IGU_REG_CONSUMER_MEM + sbid * 4);
2694
2695 for (i = 0; i < PIS_PER_SB_E4; i++)
2696 p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2697 CAU_REG_PI_MEMORY +
2698 sbid * 4 * PIS_PER_SB_E4 +
2699 i * 4);
2700
2701 return ECORE_SUCCESS;
2702 }
2703
2704 void ecore_pf_flr_igu_cleanup(struct ecore_hwfn *p_hwfn)
2705 {
2706 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2707 struct ecore_ptt *p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2708 RESERVED_PTT_DPC);
2709 int i;
2710
2711 /* Do not reorder the following cleanup sequence */
2712 /* Ack all attentions */
2713 ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ACK_BITS, 0xfff);
2714
2715 /* Clear driver attention */
2716 ecore_wr(p_hwfn, p_dpc_ptt,
2717 ((p_hwfn->rel_pf_id << 3) + MISC_REG_AEU_GENERAL_ATTN_0), 0);
2718
2719 /* Clear per-PF IGU registers to restore them as if the IGU
2720 * was reset for this PF
2721 */
2722 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2723 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2724 ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
2725
2726 /* Execute IGU clean up*/
2727 ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_FUNCTIONAL_CLEANUP, 1);
2728
2729 /* Clear Stats */
2730 ecore_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_OF_INTA_ASSERTED, 0);
2731
2732 for (i = 0; i < IGU_REG_PBA_STS_PF_SIZE; i++)
2733 ecore_wr(p_hwfn, p_ptt, IGU_REG_PBA_STS_PF + i * 4, 0);
2734 }