]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/sfc/base/mcdi_mon.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / sfc / base / mcdi_mon.c
1 /*
2 * Copyright (c) 2009-2016 Solarflare Communications Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
24 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * The views and conclusions contained in the software and documentation are
27 * those of the authors and should not be interpreted as representing official
28 * policies, either expressed or implied, of the FreeBSD Project.
29 */
30
31 #include "efx.h"
32 #include "efx_impl.h"
33
34 #if EFSYS_OPT_MON_MCDI
35
36 #if EFSYS_OPT_MON_STATS
37
38 #define MCDI_MON_NEXT_PAGE ((uint16_t)0xfffe)
39 #define MCDI_MON_INVALID_SENSOR ((uint16_t)0xfffd)
40 #define MCDI_MON_PAGE_SIZE 0x20
41
42 /* Bitmasks of valid port(s) for each sensor */
43 #define MCDI_MON_PORT_NONE (0x00)
44 #define MCDI_MON_PORT_P1 (0x01)
45 #define MCDI_MON_PORT_P2 (0x02)
46 #define MCDI_MON_PORT_P3 (0x04)
47 #define MCDI_MON_PORT_P4 (0x08)
48 #define MCDI_MON_PORT_Px (0xFFFF)
49
50 /* Get port mask from one-based MCDI port number */
51 #define MCDI_MON_PORT_MASK(_emip) (1U << ((_emip)->emi_port - 1))
52
53 /* Entry for MCDI sensor in sensor map */
54 #define STAT(portmask, stat) \
55 { (MCDI_MON_PORT_##portmask), (EFX_MON_STAT_##stat) }
56
57 /* Entry for sensor next page flag in sensor map */
58 #define STAT_NEXT_PAGE() \
59 { MCDI_MON_PORT_NONE, MCDI_MON_NEXT_PAGE }
60
61 /* Placeholder for gaps in the array */
62 #define STAT_NO_SENSOR() \
63 { MCDI_MON_PORT_NONE, MCDI_MON_INVALID_SENSOR }
64
65 /* Map from MC sensors to monitor statistics */
66 static const struct mcdi_sensor_map_s {
67 uint16_t msm_port_mask;
68 uint16_t msm_stat;
69 } mcdi_sensor_map[] = {
70 /* Sensor page 0 MC_CMD_SENSOR_xxx */
71 STAT(Px, INT_TEMP), /* 0x00 CONTROLLER_TEMP */
72 STAT(Px, EXT_TEMP), /* 0x01 PHY_COMMON_TEMP */
73 STAT(Px, INT_COOLING), /* 0x02 CONTROLLER_COOLING */
74 STAT(P1, EXT_TEMP), /* 0x03 PHY0_TEMP */
75 STAT(P1, EXT_COOLING), /* 0x04 PHY0_COOLING */
76 STAT(P2, EXT_TEMP), /* 0x05 PHY1_TEMP */
77 STAT(P2, EXT_COOLING), /* 0x06 PHY1_COOLING */
78 STAT(Px, 1V), /* 0x07 IN_1V0 */
79 STAT(Px, 1_2V), /* 0x08 IN_1V2 */
80 STAT(Px, 1_8V), /* 0x09 IN_1V8 */
81 STAT(Px, 2_5V), /* 0x0a IN_2V5 */
82 STAT(Px, 3_3V), /* 0x0b IN_3V3 */
83 STAT(Px, 12V), /* 0x0c IN_12V0 */
84 STAT(Px, 1_2VA), /* 0x0d IN_1V2A */
85 STAT(Px, VREF), /* 0x0e IN_VREF */
86 STAT(Px, VAOE), /* 0x0f OUT_VAOE */
87 STAT(Px, AOE_TEMP), /* 0x10 AOE_TEMP */
88 STAT(Px, PSU_AOE_TEMP), /* 0x11 PSU_AOE_TEMP */
89 STAT(Px, PSU_TEMP), /* 0x12 PSU_TEMP */
90 STAT(Px, FAN0), /* 0x13 FAN_0 */
91 STAT(Px, FAN1), /* 0x14 FAN_1 */
92 STAT(Px, FAN2), /* 0x15 FAN_2 */
93 STAT(Px, FAN3), /* 0x16 FAN_3 */
94 STAT(Px, FAN4), /* 0x17 FAN_4 */
95 STAT(Px, VAOE_IN), /* 0x18 IN_VAOE */
96 STAT(Px, IAOE), /* 0x19 OUT_IAOE */
97 STAT(Px, IAOE_IN), /* 0x1a IN_IAOE */
98 STAT(Px, NIC_POWER), /* 0x1b NIC_POWER */
99 STAT(Px, 0_9V), /* 0x1c IN_0V9 */
100 STAT(Px, I0_9V), /* 0x1d IN_I0V9 */
101 STAT(Px, I1_2V), /* 0x1e IN_I1V2 */
102 STAT_NEXT_PAGE(), /* 0x1f Next page flag (not a sensor) */
103
104 /* Sensor page 1 MC_CMD_SENSOR_xxx */
105 STAT(Px, 0_9V_ADC), /* 0x20 IN_0V9_ADC */
106 STAT(Px, INT_TEMP2), /* 0x21 CONTROLLER_2_TEMP */
107 STAT(Px, VREG_TEMP), /* 0x22 VREG_INTERNAL_TEMP */
108 STAT(Px, VREG_0_9V_TEMP), /* 0x23 VREG_0V9_TEMP */
109 STAT(Px, VREG_1_2V_TEMP), /* 0x24 VREG_1V2_TEMP */
110 STAT(Px, INT_VPTAT), /* 0x25 CTRLR. VPTAT */
111 STAT(Px, INT_ADC_TEMP), /* 0x26 CTRLR. INTERNAL_TEMP */
112 STAT(Px, EXT_VPTAT), /* 0x27 CTRLR. VPTAT_EXTADC */
113 STAT(Px, EXT_ADC_TEMP), /* 0x28 CTRLR. INTERNAL_TEMP_EXTADC */
114 STAT(Px, AMBIENT_TEMP), /* 0x29 AMBIENT_TEMP */
115 STAT(Px, AIRFLOW), /* 0x2a AIRFLOW */
116 STAT(Px, VDD08D_VSS08D_CSR), /* 0x2b VDD08D_VSS08D_CSR */
117 STAT(Px, VDD08D_VSS08D_CSR_EXTADC), /* 0x2c VDD08D_VSS08D_CSR_EXTADC */
118 STAT(Px, HOTPOINT_TEMP), /* 0x2d HOTPOINT_TEMP */
119 STAT(P1, PHY_POWER_SWITCH_PORT0), /* 0x2e PHY_POWER_SWITCH_PORT0 */
120 STAT(P2, PHY_POWER_SWITCH_PORT1), /* 0x2f PHY_POWER_SWITCH_PORT1 */
121 STAT(Px, MUM_VCC), /* 0x30 MUM_VCC */
122 STAT(Px, 0V9_A), /* 0x31 0V9_A */
123 STAT(Px, I0V9_A), /* 0x32 I0V9_A */
124 STAT(Px, 0V9_A_TEMP), /* 0x33 0V9_A_TEMP */
125 STAT(Px, 0V9_B), /* 0x34 0V9_B */
126 STAT(Px, I0V9_B), /* 0x35 I0V9_B */
127 STAT(Px, 0V9_B_TEMP), /* 0x36 0V9_B_TEMP */
128 STAT(Px, CCOM_AVREG_1V2_SUPPLY), /* 0x37 CCOM_AVREG_1V2_SUPPLY */
129 STAT(Px, CCOM_AVREG_1V2_SUPPLY_EXT_ADC),
130 /* 0x38 CCOM_AVREG_1V2_SUPPLY_EXT_ADC */
131 STAT(Px, CCOM_AVREG_1V8_SUPPLY), /* 0x39 CCOM_AVREG_1V8_SUPPLY */
132 STAT(Px, CCOM_AVREG_1V8_SUPPLY_EXT_ADC),
133 /* 0x3a CCOM_AVREG_1V8_SUPPLY_EXT_ADC */
134 STAT_NO_SENSOR(), /* 0x3b (no sensor) */
135 STAT_NO_SENSOR(), /* 0x3c (no sensor) */
136 STAT_NO_SENSOR(), /* 0x3d (no sensor) */
137 STAT_NO_SENSOR(), /* 0x3e (no sensor) */
138 STAT_NEXT_PAGE(), /* 0x3f Next page flag (not a sensor) */
139
140 /* Sensor page 2 MC_CMD_SENSOR_xxx */
141 STAT(Px, CONTROLLER_MASTER_VPTAT), /* 0x40 MASTER_VPTAT */
142 STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP), /* 0x41 MASTER_INT_TEMP */
143 STAT(Px, CONTROLLER_MASTER_VPTAT_EXT_ADC), /* 0x42 MAST_VPTAT_EXT_ADC */
144 STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP_EXT_ADC),
145 /* 0x43 MASTER_INTERNAL_TEMP_EXT_ADC */
146 STAT(Px, CONTROLLER_SLAVE_VPTAT), /* 0x44 SLAVE_VPTAT */
147 STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP), /* 0x45 SLAVE_INTERNAL_TEMP */
148 STAT(Px, CONTROLLER_SLAVE_VPTAT_EXT_ADC), /* 0x46 SLAVE_VPTAT_EXT_ADC */
149 STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP_EXT_ADC),
150 /* 0x47 SLAVE_INTERNAL_TEMP_EXT_ADC */
151 STAT_NO_SENSOR(), /* 0x48 (no sensor) */
152 STAT(Px, SODIMM_VOUT), /* 0x49 SODIMM_VOUT */
153 STAT(Px, SODIMM_0_TEMP), /* 0x4a SODIMM_0_TEMP */
154 STAT(Px, SODIMM_1_TEMP), /* 0x4b SODIMM_1_TEMP */
155 STAT(Px, PHY0_VCC), /* 0x4c PHY0_VCC */
156 STAT(Px, PHY1_VCC), /* 0x4d PHY1_VCC */
157 STAT(Px, CONTROLLER_TDIODE_TEMP), /* 0x4e CONTROLLER_TDIODE_TEMP */
158 STAT(Px, BOARD_FRONT_TEMP), /* 0x4f BOARD_FRONT_TEMP */
159 STAT(Px, BOARD_BACK_TEMP), /* 0x50 BOARD_BACK_TEMP */
160 };
161
162 #define MCDI_STATIC_SENSOR_ASSERT(_field) \
163 EFX_STATIC_ASSERT(MC_CMD_SENSOR_STATE_ ## _field \
164 == EFX_MON_STAT_STATE_ ## _field)
165
166 static void
167 mcdi_mon_decode_stats(
168 __in efx_nic_t *enp,
169 __in_bcount(sensor_mask_size) uint32_t *sensor_mask,
170 __in size_t sensor_mask_size,
171 __in_opt efsys_mem_t *esmp,
172 __out_bcount_opt(sensor_mask_size) uint32_t *stat_maskp,
173 __inout_ecount_opt(EFX_MON_NSTATS) efx_mon_stat_value_t *stat)
174 {
175 efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
176 uint16_t port_mask;
177 uint16_t sensor;
178 size_t sensor_max;
179 uint32_t stat_mask[(EFX_ARRAY_SIZE(mcdi_sensor_map) + 31) / 32];
180 uint32_t idx = 0;
181 uint32_t page = 0;
182
183 /* Assert the MC_CMD_SENSOR and EFX_MON_STATE namespaces agree */
184 MCDI_STATIC_SENSOR_ASSERT(OK);
185 MCDI_STATIC_SENSOR_ASSERT(WARNING);
186 MCDI_STATIC_SENSOR_ASSERT(FATAL);
187 MCDI_STATIC_SENSOR_ASSERT(BROKEN);
188 MCDI_STATIC_SENSOR_ASSERT(NO_READING);
189
190 EFX_STATIC_ASSERT(sizeof (stat_mask[0]) * 8 ==
191 EFX_MON_MASK_ELEMENT_SIZE);
192 sensor_max =
193 MIN((8 * sensor_mask_size), EFX_ARRAY_SIZE(mcdi_sensor_map));
194
195 EFSYS_ASSERT(emip->emi_port > 0); /* MCDI port number is one-based */
196 port_mask = MCDI_MON_PORT_MASK(emip);
197
198 memset(stat_mask, 0, sizeof (stat_mask));
199
200 /*
201 * The MCDI sensor readings in the DMA buffer are a packed array of
202 * MC_CMD_SENSOR_VALUE_ENTRY structures, which only includes entries for
203 * supported sensors (bit set in sensor_mask). The sensor_mask and
204 * sensor readings do not include entries for the per-page NEXT_PAGE
205 * flag.
206 *
207 * sensor_mask may legitimately contain MCDI sensors that the driver
208 * does not understand.
209 */
210 for (sensor = 0; sensor < sensor_max; ++sensor) {
211 efx_mon_stat_t id = mcdi_sensor_map[sensor].msm_stat;
212
213 if ((sensor % MCDI_MON_PAGE_SIZE) == MC_CMD_SENSOR_PAGE0_NEXT) {
214 EFSYS_ASSERT3U(id, ==, MCDI_MON_NEXT_PAGE);
215 page++;
216 continue;
217 }
218 if (~(sensor_mask[page]) & (1U << sensor))
219 continue;
220 idx++;
221
222 if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0)
223 continue;
224 EFSYS_ASSERT(id < EFX_MON_NSTATS);
225
226 /*
227 * stat_mask is a bitmask indexed by EFX_MON_* monitor statistic
228 * identifiers from efx_mon_stat_t (without NEXT_PAGE bits).
229 *
230 * If there is an entry in the MCDI sensor to monitor statistic
231 * map then the sensor reading is used for the value of the
232 * monitor statistic.
233 */
234 stat_mask[id / EFX_MON_MASK_ELEMENT_SIZE] |=
235 (1U << (id % EFX_MON_MASK_ELEMENT_SIZE));
236
237 if (stat != NULL && esmp != NULL && !EFSYS_MEM_IS_NULL(esmp)) {
238 efx_dword_t dword;
239
240 /* Get MCDI sensor reading from DMA buffer */
241 EFSYS_MEM_READD(esmp, 4 * (idx - 1), &dword);
242
243 /* Update EFX monitor stat from MCDI sensor reading */
244 stat[id].emsv_value = (uint16_t)EFX_DWORD_FIELD(dword,
245 MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE);
246
247 stat[id].emsv_state = (uint16_t)EFX_DWORD_FIELD(dword,
248 MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE);
249 }
250 }
251
252 if (stat_maskp != NULL) {
253 memcpy(stat_maskp, stat_mask, sizeof (stat_mask));
254 }
255 }
256
257 __checkReturn efx_rc_t
258 mcdi_mon_ev(
259 __in efx_nic_t *enp,
260 __in efx_qword_t *eqp,
261 __out efx_mon_stat_t *idp,
262 __out efx_mon_stat_value_t *valuep)
263 {
264 efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
265 efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
266 uint16_t port_mask;
267 uint16_t sensor;
268 uint16_t state;
269 uint16_t value;
270 efx_mon_stat_t id;
271 efx_rc_t rc;
272
273 EFSYS_ASSERT(emip->emi_port > 0); /* MCDI port number is one-based */
274 port_mask = MCDI_MON_PORT_MASK(emip);
275
276 sensor = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_MONITOR);
277 state = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_STATE);
278 value = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_VALUE);
279
280 /* Hardware must support this MCDI sensor */
281 EFSYS_ASSERT3U(sensor, <, (8 * encp->enc_mcdi_sensor_mask_size));
282 EFSYS_ASSERT((sensor % MCDI_MON_PAGE_SIZE) != MC_CMD_SENSOR_PAGE0_NEXT);
283 EFSYS_ASSERT(encp->enc_mcdi_sensor_maskp != NULL);
284 EFSYS_ASSERT((encp->enc_mcdi_sensor_maskp[sensor / MCDI_MON_PAGE_SIZE] &
285 (1U << (sensor % MCDI_MON_PAGE_SIZE))) != 0);
286
287 /* But we don't have to understand it */
288 if (sensor >= EFX_ARRAY_SIZE(mcdi_sensor_map)) {
289 rc = ENOTSUP;
290 goto fail1;
291 }
292 id = mcdi_sensor_map[sensor].msm_stat;
293 if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0)
294 return (ENODEV);
295 EFSYS_ASSERT(id < EFX_MON_NSTATS);
296
297 *idp = id;
298 valuep->emsv_value = value;
299 valuep->emsv_state = state;
300
301 return (0);
302
303 fail1:
304 EFSYS_PROBE1(fail1, efx_rc_t, rc);
305
306 return (rc);
307 }
308
309
310 static __checkReturn efx_rc_t
311 efx_mcdi_read_sensors(
312 __in efx_nic_t *enp,
313 __in efsys_mem_t *esmp,
314 __in uint32_t size)
315 {
316 efx_mcdi_req_t req;
317 uint8_t payload[MAX(MC_CMD_READ_SENSORS_EXT_IN_LEN,
318 MC_CMD_READ_SENSORS_EXT_OUT_LEN)];
319 uint32_t addr_lo, addr_hi;
320
321 req.emr_cmd = MC_CMD_READ_SENSORS;
322 req.emr_in_buf = payload;
323 req.emr_in_length = MC_CMD_READ_SENSORS_EXT_IN_LEN;
324 req.emr_out_buf = payload;
325 req.emr_out_length = MC_CMD_READ_SENSORS_EXT_OUT_LEN;
326
327 addr_lo = (uint32_t)(EFSYS_MEM_ADDR(esmp) & 0xffffffff);
328 addr_hi = (uint32_t)(EFSYS_MEM_ADDR(esmp) >> 32);
329
330 MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_LO, addr_lo);
331 MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_HI, addr_hi);
332 MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_LENGTH, size);
333
334 efx_mcdi_execute(enp, &req);
335
336 return (req.emr_rc);
337 }
338
339 static __checkReturn efx_rc_t
340 efx_mcdi_sensor_info_npages(
341 __in efx_nic_t *enp,
342 __out uint32_t *npagesp)
343 {
344 efx_mcdi_req_t req;
345 uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN,
346 MC_CMD_SENSOR_INFO_OUT_LENMAX)];
347 int page;
348 efx_rc_t rc;
349
350 EFSYS_ASSERT(npagesp != NULL);
351
352 page = 0;
353 do {
354 (void) memset(payload, 0, sizeof (payload));
355 req.emr_cmd = MC_CMD_SENSOR_INFO;
356 req.emr_in_buf = payload;
357 req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
358 req.emr_out_buf = payload;
359 req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
360
361 MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page++);
362
363 efx_mcdi_execute_quiet(enp, &req);
364
365 if (req.emr_rc != 0) {
366 rc = req.emr_rc;
367 goto fail1;
368 }
369 } while (MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK) &
370 (1U << MC_CMD_SENSOR_PAGE0_NEXT));
371
372 *npagesp = page;
373
374 return (0);
375
376 fail1:
377 EFSYS_PROBE1(fail1, efx_rc_t, rc);
378
379 return (rc);
380 }
381
382 static __checkReturn efx_rc_t
383 efx_mcdi_sensor_info(
384 __in efx_nic_t *enp,
385 __out_ecount(npages) uint32_t *sensor_maskp,
386 __in size_t npages)
387 {
388 efx_mcdi_req_t req;
389 uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN,
390 MC_CMD_SENSOR_INFO_OUT_LENMAX)];
391 uint32_t page;
392 efx_rc_t rc;
393
394 EFSYS_ASSERT(sensor_maskp != NULL);
395
396 for (page = 0; page < npages; page++) {
397 uint32_t mask;
398
399 (void) memset(payload, 0, sizeof (payload));
400 req.emr_cmd = MC_CMD_SENSOR_INFO;
401 req.emr_in_buf = payload;
402 req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
403 req.emr_out_buf = payload;
404 req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
405
406 MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page);
407
408 efx_mcdi_execute(enp, &req);
409
410 if (req.emr_rc != 0) {
411 rc = req.emr_rc;
412 goto fail1;
413 }
414
415 mask = MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK);
416
417 if ((page != (npages - 1)) &&
418 ((mask & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) == 0)) {
419 rc = EINVAL;
420 goto fail2;
421 }
422 sensor_maskp[page] = mask;
423 }
424
425 if (sensor_maskp[npages - 1] & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) {
426 rc = EINVAL;
427 goto fail3;
428 }
429
430 return (0);
431
432 fail3:
433 EFSYS_PROBE(fail3);
434 fail2:
435 EFSYS_PROBE(fail2);
436 fail1:
437 EFSYS_PROBE1(fail1, efx_rc_t, rc);
438
439 return (rc);
440 }
441
442 __checkReturn efx_rc_t
443 mcdi_mon_stats_update(
444 __in efx_nic_t *enp,
445 __in efsys_mem_t *esmp,
446 __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values)
447 {
448 efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
449 uint32_t size = encp->enc_mon_stat_dma_buf_size;
450 efx_rc_t rc;
451
452 if ((rc = efx_mcdi_read_sensors(enp, esmp, size)) != 0)
453 goto fail1;
454
455 EFSYS_DMA_SYNC_FOR_KERNEL(esmp, 0, size);
456
457 mcdi_mon_decode_stats(enp,
458 encp->enc_mcdi_sensor_maskp,
459 encp->enc_mcdi_sensor_mask_size,
460 esmp, NULL, values);
461
462 return (0);
463
464 fail1:
465 EFSYS_PROBE1(fail1, efx_rc_t, rc);
466
467 return (rc);
468 }
469
470 __checkReturn efx_rc_t
471 mcdi_mon_cfg_build(
472 __in efx_nic_t *enp)
473 {
474 efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
475 uint32_t npages;
476 efx_rc_t rc;
477
478 switch (enp->en_family) {
479 #if EFSYS_OPT_SIENA
480 case EFX_FAMILY_SIENA:
481 encp->enc_mon_type = EFX_MON_SFC90X0;
482 break;
483 #endif
484 #if EFSYS_OPT_HUNTINGTON
485 case EFX_FAMILY_HUNTINGTON:
486 encp->enc_mon_type = EFX_MON_SFC91X0;
487 break;
488 #endif
489 #if EFSYS_OPT_MEDFORD
490 case EFX_FAMILY_MEDFORD:
491 encp->enc_mon_type = EFX_MON_SFC92X0;
492 break;
493 #endif
494 default:
495 rc = EINVAL;
496 goto fail1;
497 }
498
499 /* Get mc sensor mask size */
500 npages = 0;
501 if ((rc = efx_mcdi_sensor_info_npages(enp, &npages)) != 0)
502 goto fail2;
503
504 encp->enc_mon_stat_dma_buf_size = npages * EFX_MON_STATS_PAGE_SIZE;
505 encp->enc_mcdi_sensor_mask_size = npages * sizeof (uint32_t);
506
507 /* Allocate mc sensor mask */
508 EFSYS_KMEM_ALLOC(enp->en_esip,
509 encp->enc_mcdi_sensor_mask_size,
510 encp->enc_mcdi_sensor_maskp);
511
512 if (encp->enc_mcdi_sensor_maskp == NULL) {
513 rc = ENOMEM;
514 goto fail3;
515 }
516
517 /* Read mc sensor mask */
518 if ((rc = efx_mcdi_sensor_info(enp,
519 encp->enc_mcdi_sensor_maskp,
520 npages)) != 0)
521 goto fail4;
522
523 /* Build monitor statistics mask */
524 mcdi_mon_decode_stats(enp,
525 encp->enc_mcdi_sensor_maskp,
526 encp->enc_mcdi_sensor_mask_size,
527 NULL, encp->enc_mon_stat_mask, NULL);
528
529 return (0);
530
531 fail4:
532 EFSYS_PROBE(fail4);
533 EFSYS_KMEM_FREE(enp->en_esip,
534 encp->enc_mcdi_sensor_mask_size,
535 encp->enc_mcdi_sensor_maskp);
536
537 fail3:
538 EFSYS_PROBE(fail3);
539
540 fail2:
541 EFSYS_PROBE(fail2);
542
543 fail1:
544 EFSYS_PROBE1(fail1, efx_rc_t, rc);
545
546 return (rc);
547 }
548
549 void
550 mcdi_mon_cfg_free(
551 __in efx_nic_t *enp)
552 {
553 efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
554
555 if (encp->enc_mcdi_sensor_maskp != NULL) {
556 EFSYS_KMEM_FREE(enp->en_esip,
557 encp->enc_mcdi_sensor_mask_size,
558 encp->enc_mcdi_sensor_maskp);
559 }
560 }
561
562
563 #endif /* EFSYS_OPT_MON_STATS */
564
565 #endif /* EFSYS_OPT_MON_MCDI */