]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/sfc/sfc_rx.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / sfc / sfc_rx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 *
3 * Copyright (c) 2016-2018 Solarflare Communications Inc.
4 * All rights reserved.
5 *
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
8 */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23 * Maximum number of Rx queue flush attempt in the case of failure or
24 * flush timeout
25 */
26 #define SFC_RX_QFLUSH_ATTEMPTS (3)
27
28 /*
29 * Time to wait between event queue polling attempts when waiting for Rx
30 * queue flush done or failed events.
31 */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS (1)
33
34 /*
35 * Maximum number of event queue polling attempts when waiting for Rx queue
36 * flush done or failed events. It defines Rx queue flush attempt timeout
37 * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38 */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS (2000)
40
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44 rxq_info->state |= SFC_RXQ_FLUSHED;
45 rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51 rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52 rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58 unsigned int free_space;
59 unsigned int bulks;
60 void *objs[SFC_RX_REFILL_BULK];
61 efsys_dma_addr_t addr[RTE_DIM(objs)];
62 unsigned int added = rxq->added;
63 unsigned int id;
64 unsigned int i;
65 struct sfc_efx_rx_sw_desc *rxd;
66 struct rte_mbuf *m;
67 uint16_t port_id = rxq->dp.dpq.port_id;
68
69 free_space = rxq->max_fill_level - (added - rxq->completed);
70
71 if (free_space < rxq->refill_threshold)
72 return;
73
74 bulks = free_space / RTE_DIM(objs);
75 /* refill_threshold guarantees that bulks is positive */
76 SFC_ASSERT(bulks > 0);
77
78 id = added & rxq->ptr_mask;
79 do {
80 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81 RTE_DIM(objs)) < 0)) {
82 /*
83 * It is hardly a safe way to increment counter
84 * from different contexts, but all PMDs do it.
85 */
86 rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87 RTE_DIM(objs);
88 /* Return if we have posted nothing yet */
89 if (added == rxq->added)
90 return;
91 /* Push posted */
92 break;
93 }
94
95 for (i = 0; i < RTE_DIM(objs);
96 ++i, id = (id + 1) & rxq->ptr_mask) {
97 m = objs[i];
98
99 MBUF_RAW_ALLOC_CHECK(m);
100
101 rxd = &rxq->sw_desc[id];
102 rxd->mbuf = m;
103
104 m->data_off = RTE_PKTMBUF_HEADROOM;
105 m->port = port_id;
106
107 addr[i] = rte_pktmbuf_iova(m);
108 }
109
110 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
111 RTE_DIM(objs), rxq->completed, added);
112 added += RTE_DIM(objs);
113 } while (--bulks > 0);
114
115 SFC_ASSERT(added != rxq->added);
116 rxq->added = added;
117 efx_rx_qpush(rxq->common, added, &rxq->pushed);
118 }
119
120 static uint64_t
121 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
122 {
123 uint64_t mbuf_flags = 0;
124
125 switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
126 case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
127 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
128 break;
129 case EFX_PKT_IPV4:
130 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
131 break;
132 default:
133 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
134 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
135 PKT_RX_IP_CKSUM_UNKNOWN);
136 break;
137 }
138
139 switch ((desc_flags &
140 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
141 case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
142 case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
143 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
144 break;
145 case EFX_PKT_TCP:
146 case EFX_PKT_UDP:
147 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
148 break;
149 default:
150 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
151 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
152 PKT_RX_L4_CKSUM_UNKNOWN);
153 break;
154 }
155
156 return mbuf_flags;
157 }
158
159 static uint32_t
160 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
161 {
162 return RTE_PTYPE_L2_ETHER |
163 ((desc_flags & EFX_PKT_IPV4) ?
164 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
165 ((desc_flags & EFX_PKT_IPV6) ?
166 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
167 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
168 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
169 }
170
171 static const uint32_t *
172 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
173 {
174 static const uint32_t ptypes[] = {
175 RTE_PTYPE_L2_ETHER,
176 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
177 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
178 RTE_PTYPE_L4_TCP,
179 RTE_PTYPE_L4_UDP,
180 RTE_PTYPE_UNKNOWN
181 };
182
183 return ptypes;
184 }
185
186 static void
187 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
188 struct rte_mbuf *m)
189 {
190 uint8_t *mbuf_data;
191
192
193 if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
194 return;
195
196 mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
197
198 if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
199 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
200 EFX_RX_HASHALG_TOEPLITZ,
201 mbuf_data);
202
203 m->ol_flags |= PKT_RX_RSS_HASH;
204 }
205 }
206
207 static uint16_t
208 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
209 {
210 struct sfc_dp_rxq *dp_rxq = rx_queue;
211 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
212 unsigned int completed;
213 unsigned int prefix_size = rxq->prefix_size;
214 unsigned int done_pkts = 0;
215 boolean_t discard_next = B_FALSE;
216 struct rte_mbuf *scatter_pkt = NULL;
217
218 if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
219 return 0;
220
221 sfc_ev_qpoll(rxq->evq);
222
223 completed = rxq->completed;
224 while (completed != rxq->pending && done_pkts < nb_pkts) {
225 unsigned int id;
226 struct sfc_efx_rx_sw_desc *rxd;
227 struct rte_mbuf *m;
228 unsigned int seg_len;
229 unsigned int desc_flags;
230
231 id = completed++ & rxq->ptr_mask;
232 rxd = &rxq->sw_desc[id];
233 m = rxd->mbuf;
234 desc_flags = rxd->flags;
235
236 if (discard_next)
237 goto discard;
238
239 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
240 goto discard;
241
242 if (desc_flags & EFX_PKT_PREFIX_LEN) {
243 uint16_t tmp_size;
244 int rc __rte_unused;
245
246 rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
247 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
248 SFC_ASSERT(rc == 0);
249 seg_len = tmp_size;
250 } else {
251 seg_len = rxd->size - prefix_size;
252 }
253
254 rte_pktmbuf_data_len(m) = seg_len;
255 rte_pktmbuf_pkt_len(m) = seg_len;
256
257 if (scatter_pkt != NULL) {
258 if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
259 rte_pktmbuf_free(scatter_pkt);
260 goto discard;
261 }
262 /* The packet to deliver */
263 m = scatter_pkt;
264 }
265
266 if (desc_flags & EFX_PKT_CONT) {
267 /* The packet is scattered, more fragments to come */
268 scatter_pkt = m;
269 /* Further fragments have no prefix */
270 prefix_size = 0;
271 continue;
272 }
273
274 /* Scattered packet is done */
275 scatter_pkt = NULL;
276 /* The first fragment of the packet has prefix */
277 prefix_size = rxq->prefix_size;
278
279 m->ol_flags =
280 sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
281 m->packet_type =
282 sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
283
284 /*
285 * Extract RSS hash from the packet prefix and
286 * set the corresponding field (if needed and possible)
287 */
288 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
289
290 m->data_off += prefix_size;
291
292 *rx_pkts++ = m;
293 done_pkts++;
294 continue;
295
296 discard:
297 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
298 rte_mbuf_raw_free(m);
299 rxd->mbuf = NULL;
300 }
301
302 /* pending is only moved when entire packet is received */
303 SFC_ASSERT(scatter_pkt == NULL);
304
305 rxq->completed = completed;
306
307 sfc_efx_rx_qrefill(rxq);
308
309 return done_pkts;
310 }
311
312 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
313 static unsigned int
314 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
315 {
316 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
317
318 if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
319 return 0;
320
321 sfc_ev_qpoll(rxq->evq);
322
323 return rxq->pending - rxq->completed;
324 }
325
326 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
327 static int
328 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
329 {
330 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
331
332 if (unlikely(offset > rxq->ptr_mask))
333 return -EINVAL;
334
335 /*
336 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
337 * it is required for the queue to be running, but the
338 * check is omitted because API design assumes that it
339 * is the duty of the caller to satisfy all conditions
340 */
341 SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
342 SFC_EFX_RXQ_FLAG_RUNNING);
343 sfc_ev_qpoll(rxq->evq);
344
345 /*
346 * There is a handful of reserved entries in the ring,
347 * but an explicit check whether the offset points to
348 * a reserved entry is neglected since the two checks
349 * below rely on the figures which take the HW limits
350 * into account and thus if an entry is reserved, the
351 * checks will fail and UNAVAIL code will be returned
352 */
353
354 if (offset < (rxq->pending - rxq->completed))
355 return RTE_ETH_RX_DESC_DONE;
356
357 if (offset < (rxq->added - rxq->completed))
358 return RTE_ETH_RX_DESC_AVAIL;
359
360 return RTE_ETH_RX_DESC_UNAVAIL;
361 }
362
363 boolean_t
364 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
365 boolean_t rx_scatter_enabled, const char **error)
366 {
367 if ((rx_buf_size < pdu + rx_prefix_size) && !rx_scatter_enabled) {
368 *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
369 return B_FALSE;
370 }
371
372 return B_TRUE;
373 }
374
375 /** Get Rx datapath ops by the datapath RxQ handle */
376 const struct sfc_dp_rx *
377 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
378 {
379 const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
380 struct rte_eth_dev *eth_dev;
381 struct sfc_adapter_priv *sap;
382
383 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
384 eth_dev = &rte_eth_devices[dpq->port_id];
385
386 sap = sfc_adapter_priv_by_eth_dev(eth_dev);
387
388 return sap->dp_rx;
389 }
390
391 struct sfc_rxq_info *
392 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
393 {
394 const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
395 struct rte_eth_dev *eth_dev;
396 struct sfc_adapter_shared *sas;
397
398 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
399 eth_dev = &rte_eth_devices[dpq->port_id];
400
401 sas = sfc_adapter_shared_by_eth_dev(eth_dev);
402
403 SFC_ASSERT(dpq->queue_id < sas->rxq_count);
404 return &sas->rxq_info[dpq->queue_id];
405 }
406
407 struct sfc_rxq *
408 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
409 {
410 const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
411 struct rte_eth_dev *eth_dev;
412 struct sfc_adapter *sa;
413
414 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
415 eth_dev = &rte_eth_devices[dpq->port_id];
416
417 sa = sfc_adapter_by_eth_dev(eth_dev);
418
419 SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
420 return &sa->rxq_ctrl[dpq->queue_id];
421 }
422
423 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
424 static int
425 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
426 __rte_unused struct sfc_dp_rx_hw_limits *limits,
427 __rte_unused struct rte_mempool *mb_pool,
428 unsigned int *rxq_entries,
429 unsigned int *evq_entries,
430 unsigned int *rxq_max_fill_level)
431 {
432 *rxq_entries = nb_rx_desc;
433 *evq_entries = nb_rx_desc;
434 *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
435 return 0;
436 }
437
438 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
439 static int
440 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
441 const struct rte_pci_addr *pci_addr, int socket_id,
442 const struct sfc_dp_rx_qcreate_info *info,
443 struct sfc_dp_rxq **dp_rxqp)
444 {
445 struct sfc_efx_rxq *rxq;
446 int rc;
447
448 rc = ENOMEM;
449 rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
450 RTE_CACHE_LINE_SIZE, socket_id);
451 if (rxq == NULL)
452 goto fail_rxq_alloc;
453
454 sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
455
456 rc = ENOMEM;
457 rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
458 info->rxq_entries,
459 sizeof(*rxq->sw_desc),
460 RTE_CACHE_LINE_SIZE, socket_id);
461 if (rxq->sw_desc == NULL)
462 goto fail_desc_alloc;
463
464 /* efx datapath is bound to efx control path */
465 rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
466 if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
467 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
468 rxq->ptr_mask = info->rxq_entries - 1;
469 rxq->batch_max = info->batch_max;
470 rxq->prefix_size = info->prefix_size;
471 rxq->max_fill_level = info->max_fill_level;
472 rxq->refill_threshold = info->refill_threshold;
473 rxq->buf_size = info->buf_size;
474 rxq->refill_mb_pool = info->refill_mb_pool;
475
476 *dp_rxqp = &rxq->dp;
477 return 0;
478
479 fail_desc_alloc:
480 rte_free(rxq);
481
482 fail_rxq_alloc:
483 return rc;
484 }
485
486 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
487 static void
488 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
489 {
490 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
491
492 rte_free(rxq->sw_desc);
493 rte_free(rxq);
494 }
495
496 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
497 static int
498 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
499 __rte_unused unsigned int evq_read_ptr)
500 {
501 /* libefx-based datapath is specific to libefx-based PMD */
502 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
503 struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
504
505 rxq->common = crxq->common;
506
507 rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
508
509 sfc_efx_rx_qrefill(rxq);
510
511 rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
512
513 return 0;
514 }
515
516 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
517 static void
518 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
519 __rte_unused unsigned int *evq_read_ptr)
520 {
521 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
522
523 rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
524
525 /* libefx-based datapath is bound to libefx-based PMD and uses
526 * event queue structure directly. So, there is no necessity to
527 * return EvQ read pointer.
528 */
529 }
530
531 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
532 static void
533 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
534 {
535 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
536 unsigned int i;
537 struct sfc_efx_rx_sw_desc *rxd;
538
539 for (i = rxq->completed; i != rxq->added; ++i) {
540 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
541 rte_mbuf_raw_free(rxd->mbuf);
542 rxd->mbuf = NULL;
543 /* Packed stream relies on 0 in inactive SW desc.
544 * Rx queue stop is not performance critical, so
545 * there is no harm to do it always.
546 */
547 rxd->flags = 0;
548 rxd->size = 0;
549 }
550
551 rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
552 }
553
554 struct sfc_dp_rx sfc_efx_rx = {
555 .dp = {
556 .name = SFC_KVARG_DATAPATH_EFX,
557 .type = SFC_DP_RX,
558 .hw_fw_caps = 0,
559 },
560 .features = SFC_DP_RX_FEAT_SCATTER |
561 SFC_DP_RX_FEAT_CHECKSUM,
562 .qsize_up_rings = sfc_efx_rx_qsize_up_rings,
563 .qcreate = sfc_efx_rx_qcreate,
564 .qdestroy = sfc_efx_rx_qdestroy,
565 .qstart = sfc_efx_rx_qstart,
566 .qstop = sfc_efx_rx_qstop,
567 .qpurge = sfc_efx_rx_qpurge,
568 .supported_ptypes_get = sfc_efx_supported_ptypes_get,
569 .qdesc_npending = sfc_efx_rx_qdesc_npending,
570 .qdesc_status = sfc_efx_rx_qdesc_status,
571 .pkt_burst = sfc_efx_recv_pkts,
572 };
573
574 static void
575 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
576 {
577 struct sfc_rxq_info *rxq_info;
578 struct sfc_rxq *rxq;
579 unsigned int retry_count;
580 unsigned int wait_count;
581 int rc;
582
583 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
584 SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
585
586 rxq = &sa->rxq_ctrl[sw_index];
587
588 /*
589 * Retry Rx queue flushing in the case of flush failed or
590 * timeout. In the worst case it can delay for 6 seconds.
591 */
592 for (retry_count = 0;
593 ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
594 (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
595 ++retry_count) {
596 rc = efx_rx_qflush(rxq->common);
597 if (rc != 0) {
598 rxq_info->state |= (rc == EALREADY) ?
599 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
600 break;
601 }
602 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
603 rxq_info->state |= SFC_RXQ_FLUSHING;
604
605 /*
606 * Wait for Rx queue flush done or failed event at least
607 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
608 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
609 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
610 */
611 wait_count = 0;
612 do {
613 rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
614 sfc_ev_qpoll(rxq->evq);
615 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
616 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
617
618 if (rxq_info->state & SFC_RXQ_FLUSHING)
619 sfc_err(sa, "RxQ %u flush timed out", sw_index);
620
621 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
622 sfc_err(sa, "RxQ %u flush failed", sw_index);
623
624 if (rxq_info->state & SFC_RXQ_FLUSHED)
625 sfc_notice(sa, "RxQ %u flushed", sw_index);
626 }
627
628 sa->priv.dp_rx->qpurge(rxq_info->dp);
629 }
630
631 static int
632 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
633 {
634 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
635 boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
636 struct sfc_port *port = &sa->port;
637 int rc;
638
639 /*
640 * If promiscuous or all-multicast mode has been requested, setting
641 * filter for the default Rx queue might fail, in particular, while
642 * running over PCI function which is not a member of corresponding
643 * privilege groups; if this occurs, few iterations will be made to
644 * repeat this step without promiscuous and all-multicast flags set
645 */
646 retry:
647 rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
648 if (rc == 0)
649 return 0;
650 else if (rc != EOPNOTSUPP)
651 return rc;
652
653 if (port->promisc) {
654 sfc_warn(sa, "promiscuous mode has been requested, "
655 "but the HW rejects it");
656 sfc_warn(sa, "promiscuous mode will be disabled");
657
658 port->promisc = B_FALSE;
659 rc = sfc_set_rx_mode(sa);
660 if (rc != 0)
661 return rc;
662
663 goto retry;
664 }
665
666 if (port->allmulti) {
667 sfc_warn(sa, "all-multicast mode has been requested, "
668 "but the HW rejects it");
669 sfc_warn(sa, "all-multicast mode will be disabled");
670
671 port->allmulti = B_FALSE;
672 rc = sfc_set_rx_mode(sa);
673 if (rc != 0)
674 return rc;
675
676 goto retry;
677 }
678
679 return rc;
680 }
681
682 int
683 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
684 {
685 struct sfc_rxq_info *rxq_info;
686 struct sfc_rxq *rxq;
687 struct sfc_evq *evq;
688 int rc;
689
690 sfc_log_init(sa, "sw_index=%u", sw_index);
691
692 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
693
694 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
695 SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
696
697 rxq = &sa->rxq_ctrl[sw_index];
698 evq = rxq->evq;
699
700 rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
701 if (rc != 0)
702 goto fail_ev_qstart;
703
704 switch (rxq_info->type) {
705 case EFX_RXQ_TYPE_DEFAULT:
706 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
707 rxq->buf_size,
708 &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
709 rxq_info->type_flags, evq->common, &rxq->common);
710 break;
711 case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
712 struct rte_mempool *mp = rxq_info->refill_mb_pool;
713 struct rte_mempool_info mp_info;
714
715 rc = rte_mempool_ops_get_info(mp, &mp_info);
716 if (rc != 0) {
717 /* Positive errno is used in the driver */
718 rc = -rc;
719 goto fail_mp_get_info;
720 }
721 if (mp_info.contig_block_size <= 0) {
722 rc = EINVAL;
723 goto fail_bad_contig_block_size;
724 }
725 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
726 mp_info.contig_block_size, rxq->buf_size,
727 mp->header_size + mp->elt_size + mp->trailer_size,
728 sa->rxd_wait_timeout_ns,
729 &rxq->mem, rxq_info->entries, rxq_info->type_flags,
730 evq->common, &rxq->common);
731 break;
732 }
733 default:
734 rc = ENOTSUP;
735 }
736 if (rc != 0)
737 goto fail_rx_qcreate;
738
739 efx_rx_qenable(rxq->common);
740
741 rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
742 if (rc != 0)
743 goto fail_dp_qstart;
744
745 rxq_info->state |= SFC_RXQ_STARTED;
746
747 if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
748 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
749 if (rc != 0)
750 goto fail_mac_filter_default_rxq_set;
751 }
752
753 /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
754 sa->eth_dev->data->rx_queue_state[sw_index] =
755 RTE_ETH_QUEUE_STATE_STARTED;
756
757 return 0;
758
759 fail_mac_filter_default_rxq_set:
760 sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
761
762 fail_dp_qstart:
763 sfc_rx_qflush(sa, sw_index);
764
765 fail_rx_qcreate:
766 fail_bad_contig_block_size:
767 fail_mp_get_info:
768 sfc_ev_qstop(evq);
769
770 fail_ev_qstart:
771 return rc;
772 }
773
774 void
775 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
776 {
777 struct sfc_rxq_info *rxq_info;
778 struct sfc_rxq *rxq;
779
780 sfc_log_init(sa, "sw_index=%u", sw_index);
781
782 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
783
784 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
785
786 if (rxq_info->state == SFC_RXQ_INITIALIZED)
787 return;
788 SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
789
790 /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
791 sa->eth_dev->data->rx_queue_state[sw_index] =
792 RTE_ETH_QUEUE_STATE_STOPPED;
793
794 rxq = &sa->rxq_ctrl[sw_index];
795 sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
796
797 if (sw_index == 0)
798 efx_mac_filter_default_rxq_clear(sa->nic);
799
800 sfc_rx_qflush(sa, sw_index);
801
802 rxq_info->state = SFC_RXQ_INITIALIZED;
803
804 efx_rx_qdestroy(rxq->common);
805
806 sfc_ev_qstop(rxq->evq);
807 }
808
809 uint64_t
810 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
811 {
812 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
813 uint64_t caps = 0;
814
815 caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
816
817 if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
818 caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
819 caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
820 caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
821 }
822
823 if (encp->enc_tunnel_encapsulations_supported &&
824 (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
825 caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
826
827 return caps;
828 }
829
830 uint64_t
831 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
832 {
833 uint64_t caps = 0;
834
835 if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
836 caps |= DEV_RX_OFFLOAD_SCATTER;
837
838 return caps;
839 }
840
841 static int
842 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
843 const struct rte_eth_rxconf *rx_conf,
844 __rte_unused uint64_t offloads)
845 {
846 int rc = 0;
847
848 if (rx_conf->rx_thresh.pthresh != 0 ||
849 rx_conf->rx_thresh.hthresh != 0 ||
850 rx_conf->rx_thresh.wthresh != 0) {
851 sfc_warn(sa,
852 "RxQ prefetch/host/writeback thresholds are not supported");
853 }
854
855 if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
856 sfc_err(sa,
857 "RxQ free threshold too large: %u vs maximum %u",
858 rx_conf->rx_free_thresh, rxq_max_fill_level);
859 rc = EINVAL;
860 }
861
862 if (rx_conf->rx_drop_en == 0) {
863 sfc_err(sa, "RxQ drop disable is not supported");
864 rc = EINVAL;
865 }
866
867 return rc;
868 }
869
870 static unsigned int
871 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
872 {
873 uint32_t data_off;
874 uint32_t order;
875
876 /* The mbuf object itself is always cache line aligned */
877 order = rte_bsf32(RTE_CACHE_LINE_SIZE);
878
879 /* Data offset from mbuf object start */
880 data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
881 RTE_PKTMBUF_HEADROOM;
882
883 order = MIN(order, rte_bsf32(data_off));
884
885 return 1u << order;
886 }
887
888 static uint16_t
889 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
890 {
891 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
892 const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
893 const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
894 uint16_t buf_size;
895 unsigned int buf_aligned;
896 unsigned int start_alignment;
897 unsigned int end_padding_alignment;
898
899 /* Below it is assumed that both alignments are power of 2 */
900 SFC_ASSERT(rte_is_power_of_2(nic_align_start));
901 SFC_ASSERT(rte_is_power_of_2(nic_align_end));
902
903 /*
904 * mbuf is always cache line aligned, double-check
905 * that it meets rx buffer start alignment requirements.
906 */
907
908 /* Start from mbuf pool data room size */
909 buf_size = rte_pktmbuf_data_room_size(mb_pool);
910
911 /* Remove headroom */
912 if (buf_size <= RTE_PKTMBUF_HEADROOM) {
913 sfc_err(sa,
914 "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
915 mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
916 return 0;
917 }
918 buf_size -= RTE_PKTMBUF_HEADROOM;
919
920 /* Calculate guaranteed data start alignment */
921 buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
922
923 /* Reserve space for start alignment */
924 if (buf_aligned < nic_align_start) {
925 start_alignment = nic_align_start - buf_aligned;
926 if (buf_size <= start_alignment) {
927 sfc_err(sa,
928 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
929 mb_pool->name,
930 rte_pktmbuf_data_room_size(mb_pool),
931 RTE_PKTMBUF_HEADROOM, start_alignment);
932 return 0;
933 }
934 buf_aligned = nic_align_start;
935 buf_size -= start_alignment;
936 } else {
937 start_alignment = 0;
938 }
939
940 /* Make sure that end padding does not write beyond the buffer */
941 if (buf_aligned < nic_align_end) {
942 /*
943 * Estimate space which can be lost. If guarnteed buffer
944 * size is odd, lost space is (nic_align_end - 1). More
945 * accurate formula is below.
946 */
947 end_padding_alignment = nic_align_end -
948 MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
949 if (buf_size <= end_padding_alignment) {
950 sfc_err(sa,
951 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
952 mb_pool->name,
953 rte_pktmbuf_data_room_size(mb_pool),
954 RTE_PKTMBUF_HEADROOM, start_alignment,
955 end_padding_alignment);
956 return 0;
957 }
958 buf_size -= end_padding_alignment;
959 } else {
960 /*
961 * Start is aligned the same or better than end,
962 * just align length.
963 */
964 buf_size = P2ALIGN(buf_size, nic_align_end);
965 }
966
967 return buf_size;
968 }
969
970 int
971 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
972 uint16_t nb_rx_desc, unsigned int socket_id,
973 const struct rte_eth_rxconf *rx_conf,
974 struct rte_mempool *mb_pool)
975 {
976 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
977 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
978 int rc;
979 unsigned int rxq_entries;
980 unsigned int evq_entries;
981 unsigned int rxq_max_fill_level;
982 uint64_t offloads;
983 uint16_t buf_size;
984 struct sfc_rxq_info *rxq_info;
985 struct sfc_evq *evq;
986 struct sfc_rxq *rxq;
987 struct sfc_dp_rx_qcreate_info info;
988 struct sfc_dp_rx_hw_limits hw_limits;
989 uint16_t rx_free_thresh;
990 const char *error;
991
992 memset(&hw_limits, 0, sizeof(hw_limits));
993 hw_limits.rxq_max_entries = sa->rxq_max_entries;
994 hw_limits.rxq_min_entries = sa->rxq_min_entries;
995 hw_limits.evq_max_entries = sa->evq_max_entries;
996 hw_limits.evq_min_entries = sa->evq_min_entries;
997
998 rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
999 &rxq_entries, &evq_entries,
1000 &rxq_max_fill_level);
1001 if (rc != 0)
1002 goto fail_size_up_rings;
1003 SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1004 SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1005 SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1006
1007 offloads = rx_conf->offloads |
1008 sa->eth_dev->data->dev_conf.rxmode.offloads;
1009 rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1010 if (rc != 0)
1011 goto fail_bad_conf;
1012
1013 buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1014 if (buf_size == 0) {
1015 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1016 sw_index);
1017 rc = EINVAL;
1018 goto fail_bad_conf;
1019 }
1020
1021 if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1022 encp->enc_rx_prefix_size,
1023 (offloads & DEV_RX_OFFLOAD_SCATTER),
1024 &error)) {
1025 sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1026 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1027 "PDU size %u plus Rx prefix %u bytes",
1028 sw_index, buf_size, (unsigned int)sa->port.pdu,
1029 encp->enc_rx_prefix_size);
1030 rc = EINVAL;
1031 goto fail_bad_conf;
1032 }
1033
1034 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1035 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1036
1037 SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1038 rxq_info->entries = rxq_entries;
1039
1040 if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1041 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1042 else
1043 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1044
1045 rxq_info->type_flags =
1046 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1047 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1048
1049 if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1050 (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1051 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1052
1053 rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1054 evq_entries, socket_id, &evq);
1055 if (rc != 0)
1056 goto fail_ev_qinit;
1057
1058 rxq = &sa->rxq_ctrl[sw_index];
1059 rxq->evq = evq;
1060 rxq->hw_index = sw_index;
1061 /*
1062 * If Rx refill threshold is specified (its value is non zero) in
1063 * Rx configuration, use specified value. Otherwise use 1/8 of
1064 * the Rx descriptors number as the default. It allows to keep
1065 * Rx ring full-enough and does not refill too aggressive if
1066 * packet rate is high.
1067 *
1068 * Since PMD refills in bulks waiting for full bulk may be
1069 * refilled (basically round down), it is better to round up
1070 * here to mitigate it a bit.
1071 */
1072 rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1073 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1074 /* Rx refill threshold cannot be smaller than refill bulk */
1075 rxq_info->refill_threshold =
1076 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1077 rxq_info->refill_mb_pool = mb_pool;
1078 rxq->buf_size = buf_size;
1079
1080 rc = sfc_dma_alloc(sa, "rxq", sw_index,
1081 efx_rxq_size(sa->nic, rxq_info->entries),
1082 socket_id, &rxq->mem);
1083 if (rc != 0)
1084 goto fail_dma_alloc;
1085
1086 memset(&info, 0, sizeof(info));
1087 info.refill_mb_pool = rxq_info->refill_mb_pool;
1088 info.max_fill_level = rxq_max_fill_level;
1089 info.refill_threshold = rxq_info->refill_threshold;
1090 info.buf_size = buf_size;
1091 info.batch_max = encp->enc_rx_batch_max;
1092 info.prefix_size = encp->enc_rx_prefix_size;
1093
1094 if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1095 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1096
1097 info.rxq_entries = rxq_info->entries;
1098 info.rxq_hw_ring = rxq->mem.esm_base;
1099 info.evq_entries = evq_entries;
1100 info.evq_hw_ring = evq->mem.esm_base;
1101 info.hw_index = rxq->hw_index;
1102 info.mem_bar = sa->mem_bar.esb_base;
1103 info.vi_window_shift = encp->enc_vi_window_shift;
1104
1105 rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1106 &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1107 socket_id, &info, &rxq_info->dp);
1108 if (rc != 0)
1109 goto fail_dp_rx_qcreate;
1110
1111 evq->dp_rxq = rxq_info->dp;
1112
1113 rxq_info->state = SFC_RXQ_INITIALIZED;
1114
1115 rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1116
1117 return 0;
1118
1119 fail_dp_rx_qcreate:
1120 sfc_dma_free(sa, &rxq->mem);
1121
1122 fail_dma_alloc:
1123 sfc_ev_qfini(evq);
1124
1125 fail_ev_qinit:
1126 rxq_info->entries = 0;
1127
1128 fail_bad_conf:
1129 fail_size_up_rings:
1130 sfc_log_init(sa, "failed %d", rc);
1131 return rc;
1132 }
1133
1134 void
1135 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1136 {
1137 struct sfc_rxq_info *rxq_info;
1138 struct sfc_rxq *rxq;
1139
1140 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1141 sa->eth_dev->data->rx_queues[sw_index] = NULL;
1142
1143 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1144
1145 SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1146
1147 sa->priv.dp_rx->qdestroy(rxq_info->dp);
1148 rxq_info->dp = NULL;
1149
1150 rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1151 rxq_info->entries = 0;
1152
1153 rxq = &sa->rxq_ctrl[sw_index];
1154
1155 sfc_dma_free(sa, &rxq->mem);
1156
1157 sfc_ev_qfini(rxq->evq);
1158 rxq->evq = NULL;
1159 }
1160
1161 /*
1162 * Mapping between RTE RSS hash functions and their EFX counterparts.
1163 */
1164 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1165 { ETH_RSS_NONFRAG_IPV4_TCP,
1166 EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1167 { ETH_RSS_NONFRAG_IPV4_UDP,
1168 EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1169 { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1170 EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1171 { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1172 EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1173 { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1174 EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1175 EFX_RX_HASH(IPV4, 2TUPLE) },
1176 { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1177 ETH_RSS_IPV6_EX,
1178 EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1179 EFX_RX_HASH(IPV6, 2TUPLE) }
1180 };
1181
1182 static efx_rx_hash_type_t
1183 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1184 unsigned int *hash_type_flags_supported,
1185 unsigned int nb_hash_type_flags_supported)
1186 {
1187 efx_rx_hash_type_t hash_type_masked = 0;
1188 unsigned int i, j;
1189
1190 for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1191 unsigned int class_tuple_lbn[] = {
1192 EFX_RX_CLASS_IPV4_TCP_LBN,
1193 EFX_RX_CLASS_IPV4_UDP_LBN,
1194 EFX_RX_CLASS_IPV4_LBN,
1195 EFX_RX_CLASS_IPV6_TCP_LBN,
1196 EFX_RX_CLASS_IPV6_UDP_LBN,
1197 EFX_RX_CLASS_IPV6_LBN
1198 };
1199
1200 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1201 unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1202 unsigned int flag;
1203
1204 tuple_mask <<= class_tuple_lbn[j];
1205 flag = hash_type & tuple_mask;
1206
1207 if (flag == hash_type_flags_supported[i])
1208 hash_type_masked |= flag;
1209 }
1210 }
1211
1212 return hash_type_masked;
1213 }
1214
1215 int
1216 sfc_rx_hash_init(struct sfc_adapter *sa)
1217 {
1218 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1219 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1220 uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1221 efx_rx_hash_alg_t alg;
1222 unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1223 unsigned int nb_flags_supp;
1224 struct sfc_rss_hf_rte_to_efx *hf_map;
1225 struct sfc_rss_hf_rte_to_efx *entry;
1226 efx_rx_hash_type_t efx_hash_types;
1227 unsigned int i;
1228 int rc;
1229
1230 if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1231 alg = EFX_RX_HASHALG_TOEPLITZ;
1232 else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1233 alg = EFX_RX_HASHALG_PACKED_STREAM;
1234 else
1235 return EINVAL;
1236
1237 rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1238 RTE_DIM(flags_supp), &nb_flags_supp);
1239 if (rc != 0)
1240 return rc;
1241
1242 hf_map = rte_calloc_socket("sfc-rss-hf-map",
1243 RTE_DIM(sfc_rss_hf_map),
1244 sizeof(*hf_map), 0, sa->socket_id);
1245 if (hf_map == NULL)
1246 return ENOMEM;
1247
1248 entry = hf_map;
1249 efx_hash_types = 0;
1250 for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1251 efx_rx_hash_type_t ht;
1252
1253 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1254 flags_supp, nb_flags_supp);
1255 if (ht != 0) {
1256 entry->rte = sfc_rss_hf_map[i].rte;
1257 entry->efx = ht;
1258 efx_hash_types |= ht;
1259 ++entry;
1260 }
1261 }
1262
1263 rss->hash_alg = alg;
1264 rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1265 rss->hf_map = hf_map;
1266 rss->hash_types = efx_hash_types;
1267
1268 return 0;
1269 }
1270
1271 void
1272 sfc_rx_hash_fini(struct sfc_adapter *sa)
1273 {
1274 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1275
1276 rte_free(rss->hf_map);
1277 }
1278
1279 int
1280 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1281 efx_rx_hash_type_t *efx)
1282 {
1283 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1284 efx_rx_hash_type_t hash_types = 0;
1285 unsigned int i;
1286
1287 for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1288 uint64_t rte_mask = rss->hf_map[i].rte;
1289
1290 if ((rte & rte_mask) != 0) {
1291 rte &= ~rte_mask;
1292 hash_types |= rss->hf_map[i].efx;
1293 }
1294 }
1295
1296 if (rte != 0) {
1297 sfc_err(sa, "unsupported hash functions requested");
1298 return EINVAL;
1299 }
1300
1301 *efx = hash_types;
1302
1303 return 0;
1304 }
1305
1306 uint64_t
1307 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1308 {
1309 uint64_t rte = 0;
1310 unsigned int i;
1311
1312 for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1313 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1314
1315 if ((efx & hash_type) == hash_type)
1316 rte |= rss->hf_map[i].rte;
1317 }
1318
1319 return rte;
1320 }
1321
1322 static int
1323 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1324 struct rte_eth_rss_conf *conf)
1325 {
1326 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1327 efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1328 uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1329 int rc;
1330
1331 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1332 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1333 conf->rss_key != NULL)
1334 return EINVAL;
1335 }
1336
1337 if (conf->rss_hf != 0) {
1338 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1339 if (rc != 0)
1340 return rc;
1341 }
1342
1343 if (conf->rss_key != NULL) {
1344 if (conf->rss_key_len != sizeof(rss->key)) {
1345 sfc_err(sa, "RSS key size is wrong (should be %lu)",
1346 sizeof(rss->key));
1347 return EINVAL;
1348 }
1349 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1350 }
1351
1352 rss->hash_types = efx_hash_types;
1353
1354 return 0;
1355 }
1356
1357 static int
1358 sfc_rx_rss_config(struct sfc_adapter *sa)
1359 {
1360 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1361 int rc = 0;
1362
1363 if (rss->channels > 0) {
1364 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1365 rss->hash_alg, rss->hash_types,
1366 B_TRUE);
1367 if (rc != 0)
1368 goto finish;
1369
1370 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1371 rss->key, sizeof(rss->key));
1372 if (rc != 0)
1373 goto finish;
1374
1375 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1376 rss->tbl, RTE_DIM(rss->tbl));
1377 }
1378
1379 finish:
1380 return rc;
1381 }
1382
1383 int
1384 sfc_rx_start(struct sfc_adapter *sa)
1385 {
1386 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1387 unsigned int sw_index;
1388 int rc;
1389
1390 sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1391
1392 rc = efx_rx_init(sa->nic);
1393 if (rc != 0)
1394 goto fail_rx_init;
1395
1396 rc = sfc_rx_rss_config(sa);
1397 if (rc != 0)
1398 goto fail_rss_config;
1399
1400 for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1401 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1402 (!sas->rxq_info[sw_index].deferred_start ||
1403 sas->rxq_info[sw_index].deferred_started)) {
1404 rc = sfc_rx_qstart(sa, sw_index);
1405 if (rc != 0)
1406 goto fail_rx_qstart;
1407 }
1408 }
1409
1410 return 0;
1411
1412 fail_rx_qstart:
1413 while (sw_index-- > 0)
1414 sfc_rx_qstop(sa, sw_index);
1415
1416 fail_rss_config:
1417 efx_rx_fini(sa->nic);
1418
1419 fail_rx_init:
1420 sfc_log_init(sa, "failed %d", rc);
1421 return rc;
1422 }
1423
1424 void
1425 sfc_rx_stop(struct sfc_adapter *sa)
1426 {
1427 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1428 unsigned int sw_index;
1429
1430 sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1431
1432 sw_index = sas->rxq_count;
1433 while (sw_index-- > 0) {
1434 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1435 sfc_rx_qstop(sa, sw_index);
1436 }
1437
1438 efx_rx_fini(sa->nic);
1439 }
1440
1441 static int
1442 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1443 {
1444 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1445 struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1446 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1447 unsigned int max_entries;
1448
1449 max_entries = encp->enc_rxq_max_ndescs;
1450 SFC_ASSERT(rte_is_power_of_2(max_entries));
1451
1452 rxq_info->max_entries = max_entries;
1453
1454 return 0;
1455 }
1456
1457 static int
1458 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1459 {
1460 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1461 uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1462 sfc_rx_get_queue_offload_caps(sa);
1463 struct sfc_rss *rss = &sas->rss;
1464 int rc = 0;
1465
1466 switch (rxmode->mq_mode) {
1467 case ETH_MQ_RX_NONE:
1468 /* No special checks are required */
1469 break;
1470 case ETH_MQ_RX_RSS:
1471 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1472 sfc_err(sa, "RSS is not available");
1473 rc = EINVAL;
1474 }
1475 break;
1476 default:
1477 sfc_err(sa, "Rx multi-queue mode %u not supported",
1478 rxmode->mq_mode);
1479 rc = EINVAL;
1480 }
1481
1482 /*
1483 * Requested offloads are validated against supported by ethdev,
1484 * so unsupported offloads cannot be added as the result of
1485 * below check.
1486 */
1487 if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1488 (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1489 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1490 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1491 }
1492
1493 if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1494 (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1495 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1496 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1497 }
1498
1499 return rc;
1500 }
1501
1502 /**
1503 * Destroy excess queues that are no longer needed after reconfiguration
1504 * or complete close.
1505 */
1506 static void
1507 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1508 {
1509 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1510 int sw_index;
1511
1512 SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1513
1514 sw_index = sas->rxq_count;
1515 while (--sw_index >= (int)nb_rx_queues) {
1516 if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1517 sfc_rx_qfini(sa, sw_index);
1518 }
1519
1520 sas->rxq_count = nb_rx_queues;
1521 }
1522
1523 /**
1524 * Initialize Rx subsystem.
1525 *
1526 * Called at device (re)configuration stage when number of receive queues is
1527 * specified together with other device level receive configuration.
1528 *
1529 * It should be used to allocate NUMA-unaware resources.
1530 */
1531 int
1532 sfc_rx_configure(struct sfc_adapter *sa)
1533 {
1534 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1535 struct sfc_rss *rss = &sas->rss;
1536 struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1537 const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1538 int rc;
1539
1540 sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1541 nb_rx_queues, sas->rxq_count);
1542
1543 rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1544 if (rc != 0)
1545 goto fail_check_mode;
1546
1547 if (nb_rx_queues == sas->rxq_count)
1548 goto configure_rss;
1549
1550 if (sas->rxq_info == NULL) {
1551 rc = ENOMEM;
1552 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1553 sizeof(sas->rxq_info[0]), 0,
1554 sa->socket_id);
1555 if (sas->rxq_info == NULL)
1556 goto fail_rxqs_alloc;
1557
1558 /*
1559 * Allocate primary process only RxQ control from heap
1560 * since it should not be shared.
1561 */
1562 rc = ENOMEM;
1563 sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1564 if (sa->rxq_ctrl == NULL)
1565 goto fail_rxqs_ctrl_alloc;
1566 } else {
1567 struct sfc_rxq_info *new_rxq_info;
1568 struct sfc_rxq *new_rxq_ctrl;
1569
1570 if (nb_rx_queues < sas->rxq_count)
1571 sfc_rx_fini_queues(sa, nb_rx_queues);
1572
1573 rc = ENOMEM;
1574 new_rxq_info =
1575 rte_realloc(sas->rxq_info,
1576 nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1577 if (new_rxq_info == NULL && nb_rx_queues > 0)
1578 goto fail_rxqs_realloc;
1579
1580 rc = ENOMEM;
1581 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1582 nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1583 if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1584 goto fail_rxqs_ctrl_realloc;
1585
1586 sas->rxq_info = new_rxq_info;
1587 sa->rxq_ctrl = new_rxq_ctrl;
1588 if (nb_rx_queues > sas->rxq_count) {
1589 memset(&sas->rxq_info[sas->rxq_count], 0,
1590 (nb_rx_queues - sas->rxq_count) *
1591 sizeof(sas->rxq_info[0]));
1592 memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1593 (nb_rx_queues - sas->rxq_count) *
1594 sizeof(sa->rxq_ctrl[0]));
1595 }
1596 }
1597
1598 while (sas->rxq_count < nb_rx_queues) {
1599 rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1600 if (rc != 0)
1601 goto fail_rx_qinit_info;
1602
1603 sas->rxq_count++;
1604 }
1605
1606 configure_rss:
1607 rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1608 MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1609
1610 if (rss->channels > 0) {
1611 struct rte_eth_rss_conf *adv_conf_rss;
1612 unsigned int sw_index;
1613
1614 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1615 rss->tbl[sw_index] = sw_index % rss->channels;
1616
1617 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1618 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1619 if (rc != 0)
1620 goto fail_rx_process_adv_conf_rss;
1621 }
1622
1623 return 0;
1624
1625 fail_rx_process_adv_conf_rss:
1626 fail_rx_qinit_info:
1627 fail_rxqs_ctrl_realloc:
1628 fail_rxqs_realloc:
1629 fail_rxqs_ctrl_alloc:
1630 fail_rxqs_alloc:
1631 sfc_rx_close(sa);
1632
1633 fail_check_mode:
1634 sfc_log_init(sa, "failed %d", rc);
1635 return rc;
1636 }
1637
1638 /**
1639 * Shutdown Rx subsystem.
1640 *
1641 * Called at device close stage, for example, before device shutdown.
1642 */
1643 void
1644 sfc_rx_close(struct sfc_adapter *sa)
1645 {
1646 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1647
1648 sfc_rx_fini_queues(sa, 0);
1649
1650 rss->channels = 0;
1651
1652 free(sa->rxq_ctrl);
1653 sa->rxq_ctrl = NULL;
1654
1655 rte_free(sfc_sa2shared(sa)->rxq_info);
1656 sfc_sa2shared(sa)->rxq_info = NULL;
1657 }