]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/sfc/sfc_tx.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / sfc / sfc_tx.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2016-2017 Solarflare Communications Inc.
5 * All rights reserved.
6 *
7 * This software was jointly developed between OKTET Labs (under contract
8 * for Solarflare) and Solarflare Communications, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright notice,
14 * this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include "sfc.h"
33 #include "sfc_debug.h"
34 #include "sfc_log.h"
35 #include "sfc_ev.h"
36 #include "sfc_tx.h"
37 #include "sfc_tweak.h"
38 #include "sfc_kvargs.h"
39
40 /*
41 * Maximum number of TX queue flush attempts in case of
42 * failure or flush timeout
43 */
44 #define SFC_TX_QFLUSH_ATTEMPTS (3)
45
46 /*
47 * Time to wait between event queue polling attempts when waiting for TX
48 * queue flush done or flush failed events
49 */
50 #define SFC_TX_QFLUSH_POLL_WAIT_MS (1)
51
52 /*
53 * Maximum number of event queue polling attempts when waiting for TX queue
54 * flush done or flush failed events; it defines TX queue flush attempt timeout
55 * together with SFC_TX_QFLUSH_POLL_WAIT_MS
56 */
57 #define SFC_TX_QFLUSH_POLL_ATTEMPTS (2000)
58
59 static int
60 sfc_tx_qcheck_conf(struct sfc_adapter *sa, uint16_t nb_tx_desc,
61 const struct rte_eth_txconf *tx_conf)
62 {
63 unsigned int flags = tx_conf->txq_flags;
64 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
65 int rc = 0;
66
67 if (tx_conf->tx_rs_thresh != 0) {
68 sfc_err(sa, "RS bit in transmit descriptor is not supported");
69 rc = EINVAL;
70 }
71
72 if (tx_conf->tx_free_thresh > EFX_TXQ_LIMIT(nb_tx_desc)) {
73 sfc_err(sa,
74 "TxQ free threshold too large: %u vs maximum %u",
75 tx_conf->tx_free_thresh, EFX_TXQ_LIMIT(nb_tx_desc));
76 rc = EINVAL;
77 }
78
79 if (tx_conf->tx_thresh.pthresh != 0 ||
80 tx_conf->tx_thresh.hthresh != 0 ||
81 tx_conf->tx_thresh.wthresh != 0) {
82 sfc_err(sa,
83 "prefetch/host/writeback thresholds are not supported");
84 rc = EINVAL;
85 }
86
87 if (((flags & ETH_TXQ_FLAGS_NOMULTSEGS) == 0) &&
88 (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG)) {
89 sfc_err(sa, "Multi-segment is not supported by %s datapath",
90 sa->dp_tx->dp.name);
91 rc = EINVAL;
92 }
93
94 if ((flags & ETH_TXQ_FLAGS_NOVLANOFFL) == 0) {
95 if (!encp->enc_hw_tx_insert_vlan_enabled) {
96 sfc_err(sa, "VLAN offload is not supported");
97 rc = EINVAL;
98 } else if (~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) {
99 sfc_err(sa,
100 "VLAN offload is not supported by %s datapath",
101 sa->dp_tx->dp.name);
102 rc = EINVAL;
103 }
104 }
105
106 if ((flags & ETH_TXQ_FLAGS_NOXSUMSCTP) == 0) {
107 sfc_err(sa, "SCTP offload is not supported");
108 rc = EINVAL;
109 }
110
111 /* We either perform both TCP and UDP offload, or no offload at all */
112 if (((flags & ETH_TXQ_FLAGS_NOXSUMTCP) == 0) !=
113 ((flags & ETH_TXQ_FLAGS_NOXSUMUDP) == 0)) {
114 sfc_err(sa, "TCP and UDP offloads can't be set independently");
115 rc = EINVAL;
116 }
117
118 return rc;
119 }
120
121 void
122 sfc_tx_qflush_done(struct sfc_txq *txq)
123 {
124 txq->state |= SFC_TXQ_FLUSHED;
125 txq->state &= ~SFC_TXQ_FLUSHING;
126 }
127
128 int
129 sfc_tx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
130 uint16_t nb_tx_desc, unsigned int socket_id,
131 const struct rte_eth_txconf *tx_conf)
132 {
133 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
134 struct sfc_txq_info *txq_info;
135 struct sfc_evq *evq;
136 struct sfc_txq *txq;
137 int rc = 0;
138 struct sfc_dp_tx_qcreate_info info;
139
140 sfc_log_init(sa, "TxQ = %u", sw_index);
141
142 rc = sfc_tx_qcheck_conf(sa, nb_tx_desc, tx_conf);
143 if (rc != 0)
144 goto fail_bad_conf;
145
146 SFC_ASSERT(sw_index < sa->txq_count);
147 txq_info = &sa->txq_info[sw_index];
148
149 SFC_ASSERT(nb_tx_desc <= sa->txq_max_entries);
150 txq_info->entries = nb_tx_desc;
151
152 rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_TX, sw_index,
153 txq_info->entries, socket_id, &evq);
154 if (rc != 0)
155 goto fail_ev_qinit;
156
157 rc = ENOMEM;
158 txq = rte_zmalloc_socket("sfc-txq", sizeof(*txq), 0, socket_id);
159 if (txq == NULL)
160 goto fail_txq_alloc;
161
162 txq_info->txq = txq;
163
164 txq->hw_index = sw_index;
165 txq->evq = evq;
166 txq->free_thresh =
167 (tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh :
168 SFC_TX_DEFAULT_FREE_THRESH;
169 txq->flags = tx_conf->txq_flags;
170
171 rc = sfc_dma_alloc(sa, "txq", sw_index, EFX_TXQ_SIZE(txq_info->entries),
172 socket_id, &txq->mem);
173 if (rc != 0)
174 goto fail_dma_alloc;
175
176 memset(&info, 0, sizeof(info));
177 info.free_thresh = txq->free_thresh;
178 info.flags = tx_conf->txq_flags;
179 info.txq_entries = txq_info->entries;
180 info.dma_desc_size_max = encp->enc_tx_dma_desc_size_max;
181 info.txq_hw_ring = txq->mem.esm_base;
182 info.evq_entries = txq_info->entries;
183 info.evq_hw_ring = evq->mem.esm_base;
184 info.hw_index = txq->hw_index;
185 info.mem_bar = sa->mem_bar.esb_base;
186
187 rc = sa->dp_tx->qcreate(sa->eth_dev->data->port_id, sw_index,
188 &SFC_DEV_TO_PCI(sa->eth_dev)->addr,
189 socket_id, &info, &txq->dp);
190 if (rc != 0)
191 goto fail_dp_tx_qinit;
192
193 evq->dp_txq = txq->dp;
194
195 txq->state = SFC_TXQ_INITIALIZED;
196
197 txq_info->deferred_start = (tx_conf->tx_deferred_start != 0);
198
199 return 0;
200
201 fail_dp_tx_qinit:
202 sfc_dma_free(sa, &txq->mem);
203
204 fail_dma_alloc:
205 txq_info->txq = NULL;
206 rte_free(txq);
207
208 fail_txq_alloc:
209 sfc_ev_qfini(evq);
210
211 fail_ev_qinit:
212 txq_info->entries = 0;
213
214 fail_bad_conf:
215 sfc_log_init(sa, "failed (TxQ = %u, rc = %d)", sw_index, rc);
216 return rc;
217 }
218
219 void
220 sfc_tx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
221 {
222 struct sfc_txq_info *txq_info;
223 struct sfc_txq *txq;
224
225 sfc_log_init(sa, "TxQ = %u", sw_index);
226
227 SFC_ASSERT(sw_index < sa->txq_count);
228 txq_info = &sa->txq_info[sw_index];
229
230 txq = txq_info->txq;
231 SFC_ASSERT(txq != NULL);
232 SFC_ASSERT(txq->state == SFC_TXQ_INITIALIZED);
233
234 sa->dp_tx->qdestroy(txq->dp);
235 txq->dp = NULL;
236
237 txq_info->txq = NULL;
238 txq_info->entries = 0;
239
240 sfc_dma_free(sa, &txq->mem);
241
242 sfc_ev_qfini(txq->evq);
243 txq->evq = NULL;
244
245 rte_free(txq);
246 }
247
248 static int
249 sfc_tx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
250 {
251 sfc_log_init(sa, "TxQ = %u", sw_index);
252
253 return 0;
254 }
255
256 static int
257 sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode)
258 {
259 int rc = 0;
260
261 switch (txmode->mq_mode) {
262 case ETH_MQ_TX_NONE:
263 break;
264 default:
265 sfc_err(sa, "Tx multi-queue mode %u not supported",
266 txmode->mq_mode);
267 rc = EINVAL;
268 }
269
270 /*
271 * These features are claimed to be i40e-specific,
272 * but it does make sense to double-check their absence
273 */
274 if (txmode->hw_vlan_reject_tagged) {
275 sfc_err(sa, "Rejecting tagged packets not supported");
276 rc = EINVAL;
277 }
278
279 if (txmode->hw_vlan_reject_untagged) {
280 sfc_err(sa, "Rejecting untagged packets not supported");
281 rc = EINVAL;
282 }
283
284 if (txmode->hw_vlan_insert_pvid) {
285 sfc_err(sa, "Port-based VLAN insertion not supported");
286 rc = EINVAL;
287 }
288
289 return rc;
290 }
291
292 /**
293 * Destroy excess queues that are no longer needed after reconfiguration
294 * or complete close.
295 */
296 static void
297 sfc_tx_fini_queues(struct sfc_adapter *sa, unsigned int nb_tx_queues)
298 {
299 int sw_index;
300
301 SFC_ASSERT(nb_tx_queues <= sa->txq_count);
302
303 sw_index = sa->txq_count;
304 while (--sw_index >= (int)nb_tx_queues) {
305 if (sa->txq_info[sw_index].txq != NULL)
306 sfc_tx_qfini(sa, sw_index);
307 }
308
309 sa->txq_count = nb_tx_queues;
310 }
311
312 int
313 sfc_tx_configure(struct sfc_adapter *sa)
314 {
315 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
316 const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
317 const unsigned int nb_tx_queues = sa->eth_dev->data->nb_tx_queues;
318 int rc = 0;
319
320 sfc_log_init(sa, "nb_tx_queues=%u (old %u)",
321 nb_tx_queues, sa->txq_count);
322
323 /*
324 * The datapath implementation assumes absence of boundary
325 * limits on Tx DMA descriptors. Addition of these checks on
326 * datapath would simply make the datapath slower.
327 */
328 if (encp->enc_tx_dma_desc_boundary != 0) {
329 rc = ENOTSUP;
330 goto fail_tx_dma_desc_boundary;
331 }
332
333 rc = sfc_tx_check_mode(sa, &dev_conf->txmode);
334 if (rc != 0)
335 goto fail_check_mode;
336
337 if (nb_tx_queues == sa->txq_count)
338 goto done;
339
340 if (sa->txq_info == NULL) {
341 sa->txq_info = rte_calloc_socket("sfc-txqs", nb_tx_queues,
342 sizeof(sa->txq_info[0]), 0,
343 sa->socket_id);
344 if (sa->txq_info == NULL)
345 goto fail_txqs_alloc;
346 } else {
347 struct sfc_txq_info *new_txq_info;
348
349 if (nb_tx_queues < sa->txq_count)
350 sfc_tx_fini_queues(sa, nb_tx_queues);
351
352 new_txq_info =
353 rte_realloc(sa->txq_info,
354 nb_tx_queues * sizeof(sa->txq_info[0]), 0);
355 if (new_txq_info == NULL && nb_tx_queues > 0)
356 goto fail_txqs_realloc;
357
358 sa->txq_info = new_txq_info;
359 if (nb_tx_queues > sa->txq_count)
360 memset(&sa->txq_info[sa->txq_count], 0,
361 (nb_tx_queues - sa->txq_count) *
362 sizeof(sa->txq_info[0]));
363 }
364
365 while (sa->txq_count < nb_tx_queues) {
366 rc = sfc_tx_qinit_info(sa, sa->txq_count);
367 if (rc != 0)
368 goto fail_tx_qinit_info;
369
370 sa->txq_count++;
371 }
372
373 done:
374 return 0;
375
376 fail_tx_qinit_info:
377 fail_txqs_realloc:
378 fail_txqs_alloc:
379 sfc_tx_close(sa);
380
381 fail_check_mode:
382 fail_tx_dma_desc_boundary:
383 sfc_log_init(sa, "failed (rc = %d)", rc);
384 return rc;
385 }
386
387 void
388 sfc_tx_close(struct sfc_adapter *sa)
389 {
390 sfc_tx_fini_queues(sa, 0);
391
392 rte_free(sa->txq_info);
393 sa->txq_info = NULL;
394 }
395
396 int
397 sfc_tx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
398 {
399 struct rte_eth_dev_data *dev_data;
400 struct sfc_txq_info *txq_info;
401 struct sfc_txq *txq;
402 struct sfc_evq *evq;
403 uint16_t flags;
404 unsigned int desc_index;
405 int rc = 0;
406
407 sfc_log_init(sa, "TxQ = %u", sw_index);
408
409 SFC_ASSERT(sw_index < sa->txq_count);
410 txq_info = &sa->txq_info[sw_index];
411
412 txq = txq_info->txq;
413
414 SFC_ASSERT(txq->state == SFC_TXQ_INITIALIZED);
415
416 evq = txq->evq;
417
418 rc = sfc_ev_qstart(evq, sfc_evq_index_by_txq_sw_index(sa, sw_index));
419 if (rc != 0)
420 goto fail_ev_qstart;
421
422 /*
423 * It seems that DPDK has no controls regarding IPv4 offloads,
424 * hence, we always enable it here
425 */
426 if ((txq->flags & ETH_TXQ_FLAGS_NOXSUMTCP) ||
427 (txq->flags & ETH_TXQ_FLAGS_NOXSUMUDP)) {
428 flags = EFX_TXQ_CKSUM_IPV4;
429 } else {
430 flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP;
431
432 if (sa->tso)
433 flags |= EFX_TXQ_FATSOV2;
434 }
435
436 rc = efx_tx_qcreate(sa->nic, sw_index, 0, &txq->mem,
437 txq_info->entries, 0 /* not used on EF10 */,
438 flags, evq->common,
439 &txq->common, &desc_index);
440 if (rc != 0) {
441 if (sa->tso && (rc == ENOSPC))
442 sfc_err(sa, "ran out of TSO contexts");
443
444 goto fail_tx_qcreate;
445 }
446
447 efx_tx_qenable(txq->common);
448
449 txq->state |= SFC_TXQ_STARTED;
450
451 rc = sa->dp_tx->qstart(txq->dp, evq->read_ptr, desc_index);
452 if (rc != 0)
453 goto fail_dp_qstart;
454
455 /*
456 * It seems to be used by DPDK for debug purposes only ('rte_ether')
457 */
458 dev_data = sa->eth_dev->data;
459 dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STARTED;
460
461 return 0;
462
463 fail_dp_qstart:
464 txq->state = SFC_TXQ_INITIALIZED;
465 efx_tx_qdestroy(txq->common);
466
467 fail_tx_qcreate:
468 sfc_ev_qstop(evq);
469
470 fail_ev_qstart:
471 return rc;
472 }
473
474 void
475 sfc_tx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
476 {
477 struct rte_eth_dev_data *dev_data;
478 struct sfc_txq_info *txq_info;
479 struct sfc_txq *txq;
480 unsigned int retry_count;
481 unsigned int wait_count;
482
483 sfc_log_init(sa, "TxQ = %u", sw_index);
484
485 SFC_ASSERT(sw_index < sa->txq_count);
486 txq_info = &sa->txq_info[sw_index];
487
488 txq = txq_info->txq;
489
490 if (txq->state == SFC_TXQ_INITIALIZED)
491 return;
492
493 SFC_ASSERT(txq->state & SFC_TXQ_STARTED);
494
495 sa->dp_tx->qstop(txq->dp, &txq->evq->read_ptr);
496
497 /*
498 * Retry TX queue flushing in case of flush failed or
499 * timeout; in the worst case it can delay for 6 seconds
500 */
501 for (retry_count = 0;
502 ((txq->state & SFC_TXQ_FLUSHED) == 0) &&
503 (retry_count < SFC_TX_QFLUSH_ATTEMPTS);
504 ++retry_count) {
505 if (efx_tx_qflush(txq->common) != 0) {
506 txq->state |= SFC_TXQ_FLUSHING;
507 break;
508 }
509
510 /*
511 * Wait for TX queue flush done or flush failed event at least
512 * SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more
513 * than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied
514 * by SFC_TX_QFLUSH_POLL_ATTEMPTS)
515 */
516 wait_count = 0;
517 do {
518 rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS);
519 sfc_ev_qpoll(txq->evq);
520 } while ((txq->state & SFC_TXQ_FLUSHING) &&
521 wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS);
522
523 if (txq->state & SFC_TXQ_FLUSHING)
524 sfc_err(sa, "TxQ %u flush timed out", sw_index);
525
526 if (txq->state & SFC_TXQ_FLUSHED)
527 sfc_info(sa, "TxQ %u flushed", sw_index);
528 }
529
530 sa->dp_tx->qreap(txq->dp);
531
532 txq->state = SFC_TXQ_INITIALIZED;
533
534 efx_tx_qdestroy(txq->common);
535
536 sfc_ev_qstop(txq->evq);
537
538 /*
539 * It seems to be used by DPDK for debug purposes only ('rte_ether')
540 */
541 dev_data = sa->eth_dev->data;
542 dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STOPPED;
543 }
544
545 int
546 sfc_tx_start(struct sfc_adapter *sa)
547 {
548 unsigned int sw_index;
549 int rc = 0;
550
551 sfc_log_init(sa, "txq_count = %u", sa->txq_count);
552
553 if (sa->tso) {
554 if (!efx_nic_cfg_get(sa->nic)->enc_fw_assisted_tso_v2_enabled) {
555 sfc_warn(sa, "TSO support was unable to be restored");
556 sa->tso = B_FALSE;
557 }
558 }
559
560 rc = efx_tx_init(sa->nic);
561 if (rc != 0)
562 goto fail_efx_tx_init;
563
564 for (sw_index = 0; sw_index < sa->txq_count; ++sw_index) {
565 if (!(sa->txq_info[sw_index].deferred_start) ||
566 sa->txq_info[sw_index].deferred_started) {
567 rc = sfc_tx_qstart(sa, sw_index);
568 if (rc != 0)
569 goto fail_tx_qstart;
570 }
571 }
572
573 return 0;
574
575 fail_tx_qstart:
576 while (sw_index-- > 0)
577 sfc_tx_qstop(sa, sw_index);
578
579 efx_tx_fini(sa->nic);
580
581 fail_efx_tx_init:
582 sfc_log_init(sa, "failed (rc = %d)", rc);
583 return rc;
584 }
585
586 void
587 sfc_tx_stop(struct sfc_adapter *sa)
588 {
589 unsigned int sw_index;
590
591 sfc_log_init(sa, "txq_count = %u", sa->txq_count);
592
593 sw_index = sa->txq_count;
594 while (sw_index-- > 0) {
595 if (sa->txq_info[sw_index].txq != NULL)
596 sfc_tx_qstop(sa, sw_index);
597 }
598
599 efx_tx_fini(sa->nic);
600 }
601
602 static void
603 sfc_efx_tx_reap(struct sfc_efx_txq *txq)
604 {
605 unsigned int completed;
606
607 sfc_ev_qpoll(txq->evq);
608
609 for (completed = txq->completed;
610 completed != txq->pending; completed++) {
611 struct sfc_efx_tx_sw_desc *txd;
612
613 txd = &txq->sw_ring[completed & txq->ptr_mask];
614
615 if (txd->mbuf != NULL) {
616 rte_pktmbuf_free(txd->mbuf);
617 txd->mbuf = NULL;
618 }
619 }
620
621 txq->completed = completed;
622 }
623
624 /*
625 * The function is used to insert or update VLAN tag;
626 * the firmware has state of the firmware tag to insert per TxQ
627 * (controlled by option descriptors), hence, if the tag of the
628 * packet to be sent is different from one remembered by the firmware,
629 * the function will update it
630 */
631 static unsigned int
632 sfc_efx_tx_maybe_insert_tag(struct sfc_efx_txq *txq, struct rte_mbuf *m,
633 efx_desc_t **pend)
634 {
635 uint16_t this_tag = ((m->ol_flags & PKT_TX_VLAN_PKT) ?
636 m->vlan_tci : 0);
637
638 if (this_tag == txq->hw_vlan_tci)
639 return 0;
640
641 /*
642 * The expression inside SFC_ASSERT() is not desired to be checked in
643 * a non-debug build because it might be too expensive on the data path
644 */
645 SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled);
646
647 efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag),
648 *pend);
649 (*pend)++;
650 txq->hw_vlan_tci = this_tag;
651
652 return 1;
653 }
654
655 static uint16_t
656 sfc_efx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
657 {
658 struct sfc_dp_txq *dp_txq = (struct sfc_dp_txq *)tx_queue;
659 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
660 unsigned int added = txq->added;
661 unsigned int pushed = added;
662 unsigned int pkts_sent = 0;
663 efx_desc_t *pend = &txq->pend_desc[0];
664 const unsigned int hard_max_fill = EFX_TXQ_LIMIT(txq->ptr_mask + 1);
665 const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh;
666 unsigned int fill_level = added - txq->completed;
667 boolean_t reap_done;
668 int rc __rte_unused;
669 struct rte_mbuf **pktp;
670
671 if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == 0))
672 goto done;
673
674 /*
675 * If insufficient space for a single packet is present,
676 * we should reap; otherwise, we shouldn't do that all the time
677 * to avoid latency increase
678 */
679 reap_done = (fill_level > soft_max_fill);
680
681 if (reap_done) {
682 sfc_efx_tx_reap(txq);
683 /*
684 * Recalculate fill level since 'txq->completed'
685 * might have changed on reap
686 */
687 fill_level = added - txq->completed;
688 }
689
690 for (pkts_sent = 0, pktp = &tx_pkts[0];
691 (pkts_sent < nb_pkts) && (fill_level <= soft_max_fill);
692 pkts_sent++, pktp++) {
693 struct rte_mbuf *m_seg = *pktp;
694 size_t pkt_len = m_seg->pkt_len;
695 unsigned int pkt_descs = 0;
696 size_t in_off = 0;
697
698 /*
699 * Here VLAN TCI is expected to be zero in case if no
700 * DEV_TX_VLAN_OFFLOAD capability is advertised;
701 * if the calling app ignores the absence of
702 * DEV_TX_VLAN_OFFLOAD and pushes VLAN TCI, then
703 * TX_ERROR will occur
704 */
705 pkt_descs += sfc_efx_tx_maybe_insert_tag(txq, m_seg, &pend);
706
707 if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
708 /*
709 * We expect correct 'pkt->l[2, 3, 4]_len' values
710 * to be set correctly by the caller
711 */
712 if (sfc_efx_tso_do(txq, added, &m_seg, &in_off, &pend,
713 &pkt_descs, &pkt_len) != 0) {
714 /* We may have reached this place for
715 * one of the following reasons:
716 *
717 * 1) Packet header length is greater
718 * than SFC_TSOH_STD_LEN
719 * 2) TCP header starts at more then
720 * 208 bytes into the frame
721 *
722 * We will deceive RTE saying that we have sent
723 * the packet, but we will actually drop it.
724 * Hence, we should revert 'pend' to the
725 * previous state (in case we have added
726 * VLAN descriptor) and start processing
727 * another one packet. But the original
728 * mbuf shouldn't be orphaned
729 */
730 pend -= pkt_descs;
731
732 rte_pktmbuf_free(*pktp);
733
734 continue;
735 }
736
737 /*
738 * We've only added 2 FATSOv2 option descriptors
739 * and 1 descriptor for the linearized packet header.
740 * The outstanding work will be done in the same manner
741 * as for the usual non-TSO path
742 */
743 }
744
745 for (; m_seg != NULL; m_seg = m_seg->next) {
746 efsys_dma_addr_t next_frag;
747 size_t seg_len;
748
749 seg_len = m_seg->data_len;
750 next_frag = rte_mbuf_data_dma_addr(m_seg);
751
752 /*
753 * If we've started TSO transaction few steps earlier,
754 * we'll skip packet header using an offset in the
755 * current segment (which has been set to the
756 * first one containing payload)
757 */
758 seg_len -= in_off;
759 next_frag += in_off;
760 in_off = 0;
761
762 do {
763 efsys_dma_addr_t frag_addr = next_frag;
764 size_t frag_len;
765
766 /*
767 * It is assumed here that there is no
768 * limitation on address boundary
769 * crossing by DMA descriptor.
770 */
771 frag_len = MIN(seg_len, txq->dma_desc_size_max);
772 next_frag += frag_len;
773 seg_len -= frag_len;
774 pkt_len -= frag_len;
775
776 efx_tx_qdesc_dma_create(txq->common,
777 frag_addr, frag_len,
778 (pkt_len == 0),
779 pend++);
780
781 pkt_descs++;
782 } while (seg_len != 0);
783 }
784
785 added += pkt_descs;
786
787 fill_level += pkt_descs;
788 if (unlikely(fill_level > hard_max_fill)) {
789 /*
790 * Our estimation for maximum number of descriptors
791 * required to send a packet seems to be wrong.
792 * Try to reap (if we haven't yet).
793 */
794 if (!reap_done) {
795 sfc_efx_tx_reap(txq);
796 reap_done = B_TRUE;
797 fill_level = added - txq->completed;
798 if (fill_level > hard_max_fill) {
799 pend -= pkt_descs;
800 break;
801 }
802 } else {
803 pend -= pkt_descs;
804 break;
805 }
806 }
807
808 /* Assign mbuf to the last used desc */
809 txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp;
810 }
811
812 if (likely(pkts_sent > 0)) {
813 rc = efx_tx_qdesc_post(txq->common, txq->pend_desc,
814 pend - &txq->pend_desc[0],
815 txq->completed, &txq->added);
816 SFC_ASSERT(rc == 0);
817
818 if (likely(pushed != txq->added))
819 efx_tx_qpush(txq->common, txq->added, pushed);
820 }
821
822 #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
823 if (!reap_done)
824 sfc_efx_tx_reap(txq);
825 #endif
826
827 done:
828 return pkts_sent;
829 }
830
831 struct sfc_txq *
832 sfc_txq_by_dp_txq(const struct sfc_dp_txq *dp_txq)
833 {
834 const struct sfc_dp_queue *dpq = &dp_txq->dpq;
835 struct rte_eth_dev *eth_dev;
836 struct sfc_adapter *sa;
837 struct sfc_txq *txq;
838
839 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
840 eth_dev = &rte_eth_devices[dpq->port_id];
841
842 sa = eth_dev->data->dev_private;
843
844 SFC_ASSERT(dpq->queue_id < sa->txq_count);
845 txq = sa->txq_info[dpq->queue_id].txq;
846
847 SFC_ASSERT(txq != NULL);
848 return txq;
849 }
850
851 static sfc_dp_tx_qcreate_t sfc_efx_tx_qcreate;
852 static int
853 sfc_efx_tx_qcreate(uint16_t port_id, uint16_t queue_id,
854 const struct rte_pci_addr *pci_addr,
855 int socket_id,
856 const struct sfc_dp_tx_qcreate_info *info,
857 struct sfc_dp_txq **dp_txqp)
858 {
859 struct sfc_efx_txq *txq;
860 struct sfc_txq *ctrl_txq;
861 int rc;
862
863 rc = ENOMEM;
864 txq = rte_zmalloc_socket("sfc-efx-txq", sizeof(*txq),
865 RTE_CACHE_LINE_SIZE, socket_id);
866 if (txq == NULL)
867 goto fail_txq_alloc;
868
869 sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
870
871 rc = ENOMEM;
872 txq->pend_desc = rte_calloc_socket("sfc-efx-txq-pend-desc",
873 EFX_TXQ_LIMIT(info->txq_entries),
874 sizeof(*txq->pend_desc), 0,
875 socket_id);
876 if (txq->pend_desc == NULL)
877 goto fail_pend_desc_alloc;
878
879 rc = ENOMEM;
880 txq->sw_ring = rte_calloc_socket("sfc-efx-txq-sw_ring",
881 info->txq_entries,
882 sizeof(*txq->sw_ring),
883 RTE_CACHE_LINE_SIZE, socket_id);
884 if (txq->sw_ring == NULL)
885 goto fail_sw_ring_alloc;
886
887 ctrl_txq = sfc_txq_by_dp_txq(&txq->dp);
888 if (ctrl_txq->evq->sa->tso) {
889 rc = sfc_efx_tso_alloc_tsoh_objs(txq->sw_ring,
890 info->txq_entries, socket_id);
891 if (rc != 0)
892 goto fail_alloc_tsoh_objs;
893 }
894
895 txq->evq = ctrl_txq->evq;
896 txq->ptr_mask = info->txq_entries - 1;
897 txq->free_thresh = info->free_thresh;
898 txq->dma_desc_size_max = info->dma_desc_size_max;
899
900 *dp_txqp = &txq->dp;
901 return 0;
902
903 fail_alloc_tsoh_objs:
904 rte_free(txq->sw_ring);
905
906 fail_sw_ring_alloc:
907 rte_free(txq->pend_desc);
908
909 fail_pend_desc_alloc:
910 rte_free(txq);
911
912 fail_txq_alloc:
913 return rc;
914 }
915
916 static sfc_dp_tx_qdestroy_t sfc_efx_tx_qdestroy;
917 static void
918 sfc_efx_tx_qdestroy(struct sfc_dp_txq *dp_txq)
919 {
920 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
921
922 sfc_efx_tso_free_tsoh_objs(txq->sw_ring, txq->ptr_mask + 1);
923 rte_free(txq->sw_ring);
924 rte_free(txq->pend_desc);
925 rte_free(txq);
926 }
927
928 static sfc_dp_tx_qstart_t sfc_efx_tx_qstart;
929 static int
930 sfc_efx_tx_qstart(struct sfc_dp_txq *dp_txq,
931 __rte_unused unsigned int evq_read_ptr,
932 unsigned int txq_desc_index)
933 {
934 /* libefx-based datapath is specific to libefx-based PMD */
935 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
936 struct sfc_txq *ctrl_txq = sfc_txq_by_dp_txq(dp_txq);
937
938 txq->common = ctrl_txq->common;
939
940 txq->pending = txq->completed = txq->added = txq_desc_index;
941 txq->hw_vlan_tci = 0;
942
943 txq->flags |= (SFC_EFX_TXQ_FLAG_STARTED | SFC_EFX_TXQ_FLAG_RUNNING);
944
945 return 0;
946 }
947
948 static sfc_dp_tx_qstop_t sfc_efx_tx_qstop;
949 static void
950 sfc_efx_tx_qstop(struct sfc_dp_txq *dp_txq,
951 __rte_unused unsigned int *evq_read_ptr)
952 {
953 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
954
955 txq->flags &= ~SFC_EFX_TXQ_FLAG_RUNNING;
956 }
957
958 static sfc_dp_tx_qreap_t sfc_efx_tx_qreap;
959 static void
960 sfc_efx_tx_qreap(struct sfc_dp_txq *dp_txq)
961 {
962 struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
963 unsigned int txds;
964
965 sfc_efx_tx_reap(txq);
966
967 for (txds = 0; txds <= txq->ptr_mask; txds++) {
968 if (txq->sw_ring[txds].mbuf != NULL) {
969 rte_pktmbuf_free(txq->sw_ring[txds].mbuf);
970 txq->sw_ring[txds].mbuf = NULL;
971 }
972 }
973
974 txq->flags &= ~SFC_EFX_TXQ_FLAG_STARTED;
975 }
976
977 struct sfc_dp_tx sfc_efx_tx = {
978 .dp = {
979 .name = SFC_KVARG_DATAPATH_EFX,
980 .type = SFC_DP_TX,
981 .hw_fw_caps = 0,
982 },
983 .features = SFC_DP_TX_FEAT_VLAN_INSERT |
984 SFC_DP_TX_FEAT_TSO |
985 SFC_DP_TX_FEAT_MULTI_SEG,
986 .qcreate = sfc_efx_tx_qcreate,
987 .qdestroy = sfc_efx_tx_qdestroy,
988 .qstart = sfc_efx_tx_qstart,
989 .qstop = sfc_efx_tx_qstop,
990 .qreap = sfc_efx_tx_qreap,
991 .pkt_burst = sfc_efx_xmit_pkts,
992 };