]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/virtio/virtio_pci.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / virtio / virtio_pci.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 #include <stdint.h>
34
35 #ifdef RTE_EXEC_ENV_LINUXAPP
36 #include <dirent.h>
37 #include <fcntl.h>
38 #endif
39
40 #include <rte_io.h>
41
42 #include "virtio_pci.h"
43 #include "virtio_logs.h"
44 #include "virtqueue.h"
45
46 /*
47 * Following macros are derived from linux/pci_regs.h, however,
48 * we can't simply include that header here, as there is no such
49 * file for non-Linux platform.
50 */
51 #define PCI_CAPABILITY_LIST 0x34
52 #define PCI_CAP_ID_VNDR 0x09
53 #define PCI_CAP_ID_MSIX 0x11
54
55 /*
56 * The remaining space is defined by each driver as the per-driver
57 * configuration space.
58 */
59 #define VIRTIO_PCI_CONFIG(hw) (((hw)->use_msix) ? 24 : 20)
60
61 static inline int
62 check_vq_phys_addr_ok(struct virtqueue *vq)
63 {
64 /* Virtio PCI device VIRTIO_PCI_QUEUE_PF register is 32bit,
65 * and only accepts 32 bit page frame number.
66 * Check if the allocated physical memory exceeds 16TB.
67 */
68 if ((vq->vq_ring_mem + vq->vq_ring_size - 1) >>
69 (VIRTIO_PCI_QUEUE_ADDR_SHIFT + 32)) {
70 PMD_INIT_LOG(ERR, "vring address shouldn't be above 16TB!");
71 return 0;
72 }
73
74 return 1;
75 }
76
77 /*
78 * Since we are in legacy mode:
79 * http://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf
80 *
81 * "Note that this is possible because while the virtio header is PCI (i.e.
82 * little) endian, the device-specific region is encoded in the native endian of
83 * the guest (where such distinction is applicable)."
84 *
85 * For powerpc which supports both, qemu supposes that cpu is big endian and
86 * enforces this for the virtio-net stuff.
87 */
88 static void
89 legacy_read_dev_config(struct virtio_hw *hw, size_t offset,
90 void *dst, int length)
91 {
92 #ifdef RTE_ARCH_PPC_64
93 int size;
94
95 while (length > 0) {
96 if (length >= 4) {
97 size = 4;
98 rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
99 VIRTIO_PCI_CONFIG(hw) + offset);
100 *(uint32_t *)dst = rte_be_to_cpu_32(*(uint32_t *)dst);
101 } else if (length >= 2) {
102 size = 2;
103 rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
104 VIRTIO_PCI_CONFIG(hw) + offset);
105 *(uint16_t *)dst = rte_be_to_cpu_16(*(uint16_t *)dst);
106 } else {
107 size = 1;
108 rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
109 VIRTIO_PCI_CONFIG(hw) + offset);
110 }
111
112 dst = (char *)dst + size;
113 offset += size;
114 length -= size;
115 }
116 #else
117 rte_pci_ioport_read(VTPCI_IO(hw), dst, length,
118 VIRTIO_PCI_CONFIG(hw) + offset);
119 #endif
120 }
121
122 static void
123 legacy_write_dev_config(struct virtio_hw *hw, size_t offset,
124 const void *src, int length)
125 {
126 #ifdef RTE_ARCH_PPC_64
127 union {
128 uint32_t u32;
129 uint16_t u16;
130 } tmp;
131 int size;
132
133 while (length > 0) {
134 if (length >= 4) {
135 size = 4;
136 tmp.u32 = rte_cpu_to_be_32(*(const uint32_t *)src);
137 rte_pci_ioport_write(VTPCI_IO(hw), &tmp.u32, size,
138 VIRTIO_PCI_CONFIG(hw) + offset);
139 } else if (length >= 2) {
140 size = 2;
141 tmp.u16 = rte_cpu_to_be_16(*(const uint16_t *)src);
142 rte_pci_ioport_write(VTPCI_IO(hw), &tmp.u16, size,
143 VIRTIO_PCI_CONFIG(hw) + offset);
144 } else {
145 size = 1;
146 rte_pci_ioport_write(VTPCI_IO(hw), src, size,
147 VIRTIO_PCI_CONFIG(hw) + offset);
148 }
149
150 src = (const char *)src + size;
151 offset += size;
152 length -= size;
153 }
154 #else
155 rte_pci_ioport_write(VTPCI_IO(hw), src, length,
156 VIRTIO_PCI_CONFIG(hw) + offset);
157 #endif
158 }
159
160 static uint64_t
161 legacy_get_features(struct virtio_hw *hw)
162 {
163 uint32_t dst;
164
165 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 4, VIRTIO_PCI_HOST_FEATURES);
166 return dst;
167 }
168
169 static void
170 legacy_set_features(struct virtio_hw *hw, uint64_t features)
171 {
172 if ((features >> 32) != 0) {
173 PMD_DRV_LOG(ERR,
174 "only 32 bit features are allowed for legacy virtio!");
175 return;
176 }
177 rte_pci_ioport_write(VTPCI_IO(hw), &features, 4,
178 VIRTIO_PCI_GUEST_FEATURES);
179 }
180
181 static uint8_t
182 legacy_get_status(struct virtio_hw *hw)
183 {
184 uint8_t dst;
185
186 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 1, VIRTIO_PCI_STATUS);
187 return dst;
188 }
189
190 static void
191 legacy_set_status(struct virtio_hw *hw, uint8_t status)
192 {
193 rte_pci_ioport_write(VTPCI_IO(hw), &status, 1, VIRTIO_PCI_STATUS);
194 }
195
196 static void
197 legacy_reset(struct virtio_hw *hw)
198 {
199 legacy_set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
200 }
201
202 static uint8_t
203 legacy_get_isr(struct virtio_hw *hw)
204 {
205 uint8_t dst;
206
207 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 1, VIRTIO_PCI_ISR);
208 return dst;
209 }
210
211 /* Enable one vector (0) for Link State Intrerrupt */
212 static uint16_t
213 legacy_set_config_irq(struct virtio_hw *hw, uint16_t vec)
214 {
215 uint16_t dst;
216
217 rte_pci_ioport_write(VTPCI_IO(hw), &vec, 2, VIRTIO_MSI_CONFIG_VECTOR);
218 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_MSI_CONFIG_VECTOR);
219 return dst;
220 }
221
222 static uint16_t
223 legacy_set_queue_irq(struct virtio_hw *hw, struct virtqueue *vq, uint16_t vec)
224 {
225 uint16_t dst;
226
227 rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
228 VIRTIO_PCI_QUEUE_SEL);
229 rte_pci_ioport_write(VTPCI_IO(hw), &vec, 2, VIRTIO_MSI_QUEUE_VECTOR);
230 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_MSI_QUEUE_VECTOR);
231 return dst;
232 }
233
234 static uint16_t
235 legacy_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
236 {
237 uint16_t dst;
238
239 rte_pci_ioport_write(VTPCI_IO(hw), &queue_id, 2, VIRTIO_PCI_QUEUE_SEL);
240 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_PCI_QUEUE_NUM);
241 return dst;
242 }
243
244 static int
245 legacy_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
246 {
247 uint32_t src;
248
249 if (!check_vq_phys_addr_ok(vq))
250 return -1;
251
252 rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
253 VIRTIO_PCI_QUEUE_SEL);
254 src = vq->vq_ring_mem >> VIRTIO_PCI_QUEUE_ADDR_SHIFT;
255 rte_pci_ioport_write(VTPCI_IO(hw), &src, 4, VIRTIO_PCI_QUEUE_PFN);
256
257 return 0;
258 }
259
260 static void
261 legacy_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
262 {
263 uint32_t src = 0;
264
265 rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
266 VIRTIO_PCI_QUEUE_SEL);
267 rte_pci_ioport_write(VTPCI_IO(hw), &src, 4, VIRTIO_PCI_QUEUE_PFN);
268 }
269
270 static void
271 legacy_notify_queue(struct virtio_hw *hw, struct virtqueue *vq)
272 {
273 rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
274 VIRTIO_PCI_QUEUE_NOTIFY);
275 }
276
277 const struct virtio_pci_ops legacy_ops = {
278 .read_dev_cfg = legacy_read_dev_config,
279 .write_dev_cfg = legacy_write_dev_config,
280 .reset = legacy_reset,
281 .get_status = legacy_get_status,
282 .set_status = legacy_set_status,
283 .get_features = legacy_get_features,
284 .set_features = legacy_set_features,
285 .get_isr = legacy_get_isr,
286 .set_config_irq = legacy_set_config_irq,
287 .set_queue_irq = legacy_set_queue_irq,
288 .get_queue_num = legacy_get_queue_num,
289 .setup_queue = legacy_setup_queue,
290 .del_queue = legacy_del_queue,
291 .notify_queue = legacy_notify_queue,
292 };
293
294 static inline void
295 io_write64_twopart(uint64_t val, uint32_t *lo, uint32_t *hi)
296 {
297 rte_write32(val & ((1ULL << 32) - 1), lo);
298 rte_write32(val >> 32, hi);
299 }
300
301 static void
302 modern_read_dev_config(struct virtio_hw *hw, size_t offset,
303 void *dst, int length)
304 {
305 int i;
306 uint8_t *p;
307 uint8_t old_gen, new_gen;
308
309 do {
310 old_gen = rte_read8(&hw->common_cfg->config_generation);
311
312 p = dst;
313 for (i = 0; i < length; i++)
314 *p++ = rte_read8((uint8_t *)hw->dev_cfg + offset + i);
315
316 new_gen = rte_read8(&hw->common_cfg->config_generation);
317 } while (old_gen != new_gen);
318 }
319
320 static void
321 modern_write_dev_config(struct virtio_hw *hw, size_t offset,
322 const void *src, int length)
323 {
324 int i;
325 const uint8_t *p = src;
326
327 for (i = 0; i < length; i++)
328 rte_write8((*p++), (((uint8_t *)hw->dev_cfg) + offset + i));
329 }
330
331 static uint64_t
332 modern_get_features(struct virtio_hw *hw)
333 {
334 uint32_t features_lo, features_hi;
335
336 rte_write32(0, &hw->common_cfg->device_feature_select);
337 features_lo = rte_read32(&hw->common_cfg->device_feature);
338
339 rte_write32(1, &hw->common_cfg->device_feature_select);
340 features_hi = rte_read32(&hw->common_cfg->device_feature);
341
342 return ((uint64_t)features_hi << 32) | features_lo;
343 }
344
345 static void
346 modern_set_features(struct virtio_hw *hw, uint64_t features)
347 {
348 rte_write32(0, &hw->common_cfg->guest_feature_select);
349 rte_write32(features & ((1ULL << 32) - 1),
350 &hw->common_cfg->guest_feature);
351
352 rte_write32(1, &hw->common_cfg->guest_feature_select);
353 rte_write32(features >> 32,
354 &hw->common_cfg->guest_feature);
355 }
356
357 static uint8_t
358 modern_get_status(struct virtio_hw *hw)
359 {
360 return rte_read8(&hw->common_cfg->device_status);
361 }
362
363 static void
364 modern_set_status(struct virtio_hw *hw, uint8_t status)
365 {
366 rte_write8(status, &hw->common_cfg->device_status);
367 }
368
369 static void
370 modern_reset(struct virtio_hw *hw)
371 {
372 modern_set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
373 modern_get_status(hw);
374 }
375
376 static uint8_t
377 modern_get_isr(struct virtio_hw *hw)
378 {
379 return rte_read8(hw->isr);
380 }
381
382 static uint16_t
383 modern_set_config_irq(struct virtio_hw *hw, uint16_t vec)
384 {
385 rte_write16(vec, &hw->common_cfg->msix_config);
386 return rte_read16(&hw->common_cfg->msix_config);
387 }
388
389 static uint16_t
390 modern_set_queue_irq(struct virtio_hw *hw, struct virtqueue *vq, uint16_t vec)
391 {
392 rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
393 rte_write16(vec, &hw->common_cfg->queue_msix_vector);
394 return rte_read16(&hw->common_cfg->queue_msix_vector);
395 }
396
397 static uint16_t
398 modern_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
399 {
400 rte_write16(queue_id, &hw->common_cfg->queue_select);
401 return rte_read16(&hw->common_cfg->queue_size);
402 }
403
404 static int
405 modern_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
406 {
407 uint64_t desc_addr, avail_addr, used_addr;
408 uint16_t notify_off;
409
410 if (!check_vq_phys_addr_ok(vq))
411 return -1;
412
413 desc_addr = vq->vq_ring_mem;
414 avail_addr = desc_addr + vq->vq_nentries * sizeof(struct vring_desc);
415 used_addr = RTE_ALIGN_CEIL(avail_addr + offsetof(struct vring_avail,
416 ring[vq->vq_nentries]),
417 VIRTIO_PCI_VRING_ALIGN);
418
419 rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
420
421 io_write64_twopart(desc_addr, &hw->common_cfg->queue_desc_lo,
422 &hw->common_cfg->queue_desc_hi);
423 io_write64_twopart(avail_addr, &hw->common_cfg->queue_avail_lo,
424 &hw->common_cfg->queue_avail_hi);
425 io_write64_twopart(used_addr, &hw->common_cfg->queue_used_lo,
426 &hw->common_cfg->queue_used_hi);
427
428 notify_off = rte_read16(&hw->common_cfg->queue_notify_off);
429 vq->notify_addr = (void *)((uint8_t *)hw->notify_base +
430 notify_off * hw->notify_off_multiplier);
431
432 rte_write16(1, &hw->common_cfg->queue_enable);
433
434 PMD_INIT_LOG(DEBUG, "queue %u addresses:", vq->vq_queue_index);
435 PMD_INIT_LOG(DEBUG, "\t desc_addr: %" PRIx64, desc_addr);
436 PMD_INIT_LOG(DEBUG, "\t aval_addr: %" PRIx64, avail_addr);
437 PMD_INIT_LOG(DEBUG, "\t used_addr: %" PRIx64, used_addr);
438 PMD_INIT_LOG(DEBUG, "\t notify addr: %p (notify offset: %u)",
439 vq->notify_addr, notify_off);
440
441 return 0;
442 }
443
444 static void
445 modern_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
446 {
447 rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
448
449 io_write64_twopart(0, &hw->common_cfg->queue_desc_lo,
450 &hw->common_cfg->queue_desc_hi);
451 io_write64_twopart(0, &hw->common_cfg->queue_avail_lo,
452 &hw->common_cfg->queue_avail_hi);
453 io_write64_twopart(0, &hw->common_cfg->queue_used_lo,
454 &hw->common_cfg->queue_used_hi);
455
456 rte_write16(0, &hw->common_cfg->queue_enable);
457 }
458
459 static void
460 modern_notify_queue(struct virtio_hw *hw __rte_unused, struct virtqueue *vq)
461 {
462 rte_write16(vq->vq_queue_index, vq->notify_addr);
463 }
464
465 const struct virtio_pci_ops modern_ops = {
466 .read_dev_cfg = modern_read_dev_config,
467 .write_dev_cfg = modern_write_dev_config,
468 .reset = modern_reset,
469 .get_status = modern_get_status,
470 .set_status = modern_set_status,
471 .get_features = modern_get_features,
472 .set_features = modern_set_features,
473 .get_isr = modern_get_isr,
474 .set_config_irq = modern_set_config_irq,
475 .set_queue_irq = modern_set_queue_irq,
476 .get_queue_num = modern_get_queue_num,
477 .setup_queue = modern_setup_queue,
478 .del_queue = modern_del_queue,
479 .notify_queue = modern_notify_queue,
480 };
481
482
483 void
484 vtpci_read_dev_config(struct virtio_hw *hw, size_t offset,
485 void *dst, int length)
486 {
487 VTPCI_OPS(hw)->read_dev_cfg(hw, offset, dst, length);
488 }
489
490 void
491 vtpci_write_dev_config(struct virtio_hw *hw, size_t offset,
492 const void *src, int length)
493 {
494 VTPCI_OPS(hw)->write_dev_cfg(hw, offset, src, length);
495 }
496
497 uint64_t
498 vtpci_negotiate_features(struct virtio_hw *hw, uint64_t host_features)
499 {
500 uint64_t features;
501
502 /*
503 * Limit negotiated features to what the driver, virtqueue, and
504 * host all support.
505 */
506 features = host_features & hw->guest_features;
507 VTPCI_OPS(hw)->set_features(hw, features);
508
509 return features;
510 }
511
512 void
513 vtpci_reset(struct virtio_hw *hw)
514 {
515 VTPCI_OPS(hw)->set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
516 /* flush status write */
517 VTPCI_OPS(hw)->get_status(hw);
518 }
519
520 void
521 vtpci_reinit_complete(struct virtio_hw *hw)
522 {
523 vtpci_set_status(hw, VIRTIO_CONFIG_STATUS_DRIVER_OK);
524 }
525
526 void
527 vtpci_set_status(struct virtio_hw *hw, uint8_t status)
528 {
529 if (status != VIRTIO_CONFIG_STATUS_RESET)
530 status |= VTPCI_OPS(hw)->get_status(hw);
531
532 VTPCI_OPS(hw)->set_status(hw, status);
533 }
534
535 uint8_t
536 vtpci_get_status(struct virtio_hw *hw)
537 {
538 return VTPCI_OPS(hw)->get_status(hw);
539 }
540
541 uint8_t
542 vtpci_isr(struct virtio_hw *hw)
543 {
544 return VTPCI_OPS(hw)->get_isr(hw);
545 }
546
547 static void *
548 get_cfg_addr(struct rte_pci_device *dev, struct virtio_pci_cap *cap)
549 {
550 uint8_t bar = cap->bar;
551 uint32_t length = cap->length;
552 uint32_t offset = cap->offset;
553 uint8_t *base;
554
555 if (bar > 5) {
556 PMD_INIT_LOG(ERR, "invalid bar: %u", bar);
557 return NULL;
558 }
559
560 if (offset + length < offset) {
561 PMD_INIT_LOG(ERR, "offset(%u) + length(%u) overflows",
562 offset, length);
563 return NULL;
564 }
565
566 if (offset + length > dev->mem_resource[bar].len) {
567 PMD_INIT_LOG(ERR,
568 "invalid cap: overflows bar space: %u > %" PRIu64,
569 offset + length, dev->mem_resource[bar].len);
570 return NULL;
571 }
572
573 base = dev->mem_resource[bar].addr;
574 if (base == NULL) {
575 PMD_INIT_LOG(ERR, "bar %u base addr is NULL", bar);
576 return NULL;
577 }
578
579 return base + offset;
580 }
581
582 static int
583 virtio_read_caps(struct rte_pci_device *dev, struct virtio_hw *hw)
584 {
585 uint8_t pos;
586 struct virtio_pci_cap cap;
587 int ret;
588
589 if (rte_pci_map_device(dev)) {
590 PMD_INIT_LOG(DEBUG, "failed to map pci device!");
591 return -1;
592 }
593
594 ret = rte_pci_read_config(dev, &pos, 1, PCI_CAPABILITY_LIST);
595 if (ret < 0) {
596 PMD_INIT_LOG(DEBUG, "failed to read pci capability list");
597 return -1;
598 }
599
600 while (pos) {
601 ret = rte_pci_read_config(dev, &cap, sizeof(cap), pos);
602 if (ret < 0) {
603 PMD_INIT_LOG(ERR,
604 "failed to read pci cap at pos: %x", pos);
605 break;
606 }
607
608 if (cap.cap_vndr == PCI_CAP_ID_MSIX)
609 hw->use_msix = 1;
610
611 if (cap.cap_vndr != PCI_CAP_ID_VNDR) {
612 PMD_INIT_LOG(DEBUG,
613 "[%2x] skipping non VNDR cap id: %02x",
614 pos, cap.cap_vndr);
615 goto next;
616 }
617
618 PMD_INIT_LOG(DEBUG,
619 "[%2x] cfg type: %u, bar: %u, offset: %04x, len: %u",
620 pos, cap.cfg_type, cap.bar, cap.offset, cap.length);
621
622 switch (cap.cfg_type) {
623 case VIRTIO_PCI_CAP_COMMON_CFG:
624 hw->common_cfg = get_cfg_addr(dev, &cap);
625 break;
626 case VIRTIO_PCI_CAP_NOTIFY_CFG:
627 rte_pci_read_config(dev, &hw->notify_off_multiplier,
628 4, pos + sizeof(cap));
629 hw->notify_base = get_cfg_addr(dev, &cap);
630 break;
631 case VIRTIO_PCI_CAP_DEVICE_CFG:
632 hw->dev_cfg = get_cfg_addr(dev, &cap);
633 break;
634 case VIRTIO_PCI_CAP_ISR_CFG:
635 hw->isr = get_cfg_addr(dev, &cap);
636 break;
637 }
638
639 next:
640 pos = cap.cap_next;
641 }
642
643 if (hw->common_cfg == NULL || hw->notify_base == NULL ||
644 hw->dev_cfg == NULL || hw->isr == NULL) {
645 PMD_INIT_LOG(INFO, "no modern virtio pci device found.");
646 return -1;
647 }
648
649 PMD_INIT_LOG(INFO, "found modern virtio pci device.");
650
651 PMD_INIT_LOG(DEBUG, "common cfg mapped at: %p", hw->common_cfg);
652 PMD_INIT_LOG(DEBUG, "device cfg mapped at: %p", hw->dev_cfg);
653 PMD_INIT_LOG(DEBUG, "isr cfg mapped at: %p", hw->isr);
654 PMD_INIT_LOG(DEBUG, "notify base: %p, notify off multiplier: %u",
655 hw->notify_base, hw->notify_off_multiplier);
656
657 return 0;
658 }
659
660 /*
661 * Return -1:
662 * if there is error mapping with VFIO/UIO.
663 * if port map error when driver type is KDRV_NONE.
664 * if whitelisted but driver type is KDRV_UNKNOWN.
665 * Return 1 if kernel driver is managing the device.
666 * Return 0 on success.
667 */
668 int
669 vtpci_init(struct rte_pci_device *dev, struct virtio_hw *hw)
670 {
671 /*
672 * Try if we can succeed reading virtio pci caps, which exists
673 * only on modern pci device. If failed, we fallback to legacy
674 * virtio handling.
675 */
676 if (virtio_read_caps(dev, hw) == 0) {
677 PMD_INIT_LOG(INFO, "modern virtio pci detected.");
678 virtio_hw_internal[hw->port_id].vtpci_ops = &modern_ops;
679 hw->modern = 1;
680 return 0;
681 }
682
683 PMD_INIT_LOG(INFO, "trying with legacy virtio pci.");
684 if (rte_pci_ioport_map(dev, 0, VTPCI_IO(hw)) < 0) {
685 if (dev->kdrv == RTE_KDRV_UNKNOWN &&
686 (!dev->device.devargs ||
687 dev->device.devargs->type !=
688 RTE_DEVTYPE_WHITELISTED_PCI)) {
689 PMD_INIT_LOG(INFO,
690 "skip kernel managed virtio device.");
691 return 1;
692 }
693 return -1;
694 }
695
696 virtio_hw_internal[hw->port_id].vtpci_ops = &legacy_ops;
697 hw->modern = 0;
698
699 return 0;
700 }