]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/examples/l3fwd-power/main.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / examples / l3fwd-power / main.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 #include <unistd.h>
45 #include <signal.h>
46
47 #include <rte_common.h>
48 #include <rte_byteorder.h>
49 #include <rte_log.h>
50 #include <rte_malloc.h>
51 #include <rte_memory.h>
52 #include <rte_memcpy.h>
53 #include <rte_memzone.h>
54 #include <rte_eal.h>
55 #include <rte_per_lcore.h>
56 #include <rte_launch.h>
57 #include <rte_atomic.h>
58 #include <rte_cycles.h>
59 #include <rte_prefetch.h>
60 #include <rte_lcore.h>
61 #include <rte_per_lcore.h>
62 #include <rte_branch_prediction.h>
63 #include <rte_interrupts.h>
64 #include <rte_pci.h>
65 #include <rte_random.h>
66 #include <rte_debug.h>
67 #include <rte_ether.h>
68 #include <rte_ethdev.h>
69 #include <rte_mempool.h>
70 #include <rte_mbuf.h>
71 #include <rte_ip.h>
72 #include <rte_tcp.h>
73 #include <rte_udp.h>
74 #include <rte_string_fns.h>
75 #include <rte_timer.h>
76 #include <rte_power.h>
77 #include <rte_eal.h>
78 #include <rte_spinlock.h>
79
80 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
81
82 #define MAX_PKT_BURST 32
83
84 #define MIN_ZERO_POLL_COUNT 10
85
86 /* around 100ms at 2 Ghz */
87 #define TIMER_RESOLUTION_CYCLES 200000000ULL
88 /* 100 ms interval */
89 #define TIMER_NUMBER_PER_SECOND 10
90 /* 100000 us */
91 #define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND)
92 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
93
94 #define APP_LOOKUP_EXACT_MATCH 0
95 #define APP_LOOKUP_LPM 1
96 #define DO_RFC_1812_CHECKS
97
98 #ifndef APP_LOOKUP_METHOD
99 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM
100 #endif
101
102 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
103 #include <rte_hash.h>
104 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
105 #include <rte_lpm.h>
106 #else
107 #error "APP_LOOKUP_METHOD set to incorrect value"
108 #endif
109
110 #ifndef IPv6_BYTES
111 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
112 "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
113 #define IPv6_BYTES(addr) \
114 addr[0], addr[1], addr[2], addr[3], \
115 addr[4], addr[5], addr[6], addr[7], \
116 addr[8], addr[9], addr[10], addr[11],\
117 addr[12], addr[13],addr[14], addr[15]
118 #endif
119
120 #define MAX_JUMBO_PKT_LEN 9600
121
122 #define IPV6_ADDR_LEN 16
123
124 #define MEMPOOL_CACHE_SIZE 256
125
126 /*
127 * This expression is used to calculate the number of mbufs needed depending on
128 * user input, taking into account memory for rx and tx hardware rings, cache
129 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
130 * NB_MBUF never goes below a minimum value of 8192.
131 */
132
133 #define NB_MBUF RTE_MAX ( \
134 (nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \
135 nb_ports*nb_lcores*MAX_PKT_BURST + \
136 nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \
137 nb_lcores*MEMPOOL_CACHE_SIZE), \
138 (unsigned)8192)
139
140 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
141
142 #define NB_SOCKETS 8
143
144 /* Configure how many packets ahead to prefetch, when reading packets */
145 #define PREFETCH_OFFSET 3
146
147 /*
148 * Configurable number of RX/TX ring descriptors
149 */
150 #define RTE_TEST_RX_DESC_DEFAULT 512
151 #define RTE_TEST_TX_DESC_DEFAULT 512
152 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
153 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
154
155 /* ethernet addresses of ports */
156 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
157
158 /* ethernet addresses of ports */
159 static rte_spinlock_t locks[RTE_MAX_ETHPORTS];
160
161 /* mask of enabled ports */
162 static uint32_t enabled_port_mask = 0;
163 /* Ports set in promiscuous mode off by default. */
164 static int promiscuous_on = 0;
165 /* NUMA is enabled by default. */
166 static int numa_on = 1;
167 static int parse_ptype; /**< Parse packet type using rx callback, and */
168 /**< disabled by default */
169
170 enum freq_scale_hint_t
171 {
172 FREQ_LOWER = -1,
173 FREQ_CURRENT = 0,
174 FREQ_HIGHER = 1,
175 FREQ_HIGHEST = 2
176 };
177
178 struct lcore_rx_queue {
179 uint8_t port_id;
180 uint8_t queue_id;
181 enum freq_scale_hint_t freq_up_hint;
182 uint32_t zero_rx_packet_count;
183 uint32_t idle_hint;
184 } __rte_cache_aligned;
185
186 #define MAX_RX_QUEUE_PER_LCORE 16
187 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
188 #define MAX_RX_QUEUE_PER_PORT 128
189
190 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16
191
192
193 #define MAX_LCORE_PARAMS 1024
194 struct lcore_params {
195 uint8_t port_id;
196 uint8_t queue_id;
197 uint8_t lcore_id;
198 } __rte_cache_aligned;
199
200 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
201 static struct lcore_params lcore_params_array_default[] = {
202 {0, 0, 2},
203 {0, 1, 2},
204 {0, 2, 2},
205 {1, 0, 2},
206 {1, 1, 2},
207 {1, 2, 2},
208 {2, 0, 2},
209 {3, 0, 3},
210 {3, 1, 3},
211 };
212
213 static struct lcore_params * lcore_params = lcore_params_array_default;
214 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
215 sizeof(lcore_params_array_default[0]);
216
217 static struct rte_eth_conf port_conf = {
218 .rxmode = {
219 .mq_mode = ETH_MQ_RX_RSS,
220 .max_rx_pkt_len = ETHER_MAX_LEN,
221 .split_hdr_size = 0,
222 .header_split = 0, /**< Header Split disabled */
223 .hw_ip_checksum = 1, /**< IP checksum offload enabled */
224 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
225 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */
226 .hw_strip_crc = 1, /**< CRC stripped by hardware */
227 },
228 .rx_adv_conf = {
229 .rss_conf = {
230 .rss_key = NULL,
231 .rss_hf = ETH_RSS_UDP,
232 },
233 },
234 .txmode = {
235 .mq_mode = ETH_MQ_TX_NONE,
236 },
237 .intr_conf = {
238 .lsc = 1,
239 .rxq = 1,
240 },
241 };
242
243 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
244
245
246 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
247
248 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
249 #include <rte_hash_crc.h>
250 #define DEFAULT_HASH_FUNC rte_hash_crc
251 #else
252 #include <rte_jhash.h>
253 #define DEFAULT_HASH_FUNC rte_jhash
254 #endif
255
256 struct ipv4_5tuple {
257 uint32_t ip_dst;
258 uint32_t ip_src;
259 uint16_t port_dst;
260 uint16_t port_src;
261 uint8_t proto;
262 } __attribute__((__packed__));
263
264 struct ipv6_5tuple {
265 uint8_t ip_dst[IPV6_ADDR_LEN];
266 uint8_t ip_src[IPV6_ADDR_LEN];
267 uint16_t port_dst;
268 uint16_t port_src;
269 uint8_t proto;
270 } __attribute__((__packed__));
271
272 struct ipv4_l3fwd_route {
273 struct ipv4_5tuple key;
274 uint8_t if_out;
275 };
276
277 struct ipv6_l3fwd_route {
278 struct ipv6_5tuple key;
279 uint8_t if_out;
280 };
281
282 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
283 {{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
284 {{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
285 {{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
286 {{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
287 };
288
289 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
290 {
291 {
292 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
293 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
294 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
295 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
296 1, 10, IPPROTO_UDP
297 }, 4
298 },
299 };
300
301 typedef struct rte_hash lookup_struct_t;
302 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
303 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
304
305 #define L3FWD_HASH_ENTRIES 1024
306
307 #define IPV4_L3FWD_NUM_ROUTES \
308 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
309
310 #define IPV6_L3FWD_NUM_ROUTES \
311 (sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
312
313 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
314 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
315 #endif
316
317 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
318 struct ipv4_l3fwd_route {
319 uint32_t ip;
320 uint8_t depth;
321 uint8_t if_out;
322 };
323
324 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
325 {IPv4(1,1,1,0), 24, 0},
326 {IPv4(2,1,1,0), 24, 1},
327 {IPv4(3,1,1,0), 24, 2},
328 {IPv4(4,1,1,0), 24, 3},
329 {IPv4(5,1,1,0), 24, 4},
330 {IPv4(6,1,1,0), 24, 5},
331 {IPv4(7,1,1,0), 24, 6},
332 {IPv4(8,1,1,0), 24, 7},
333 };
334
335 #define IPV4_L3FWD_NUM_ROUTES \
336 (sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
337
338 #define IPV4_L3FWD_LPM_MAX_RULES 1024
339
340 typedef struct rte_lpm lookup_struct_t;
341 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
342 #endif
343
344 struct lcore_conf {
345 uint16_t n_rx_queue;
346 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
347 uint16_t n_tx_port;
348 uint16_t tx_port_id[RTE_MAX_ETHPORTS];
349 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
350 struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
351 lookup_struct_t * ipv4_lookup_struct;
352 lookup_struct_t * ipv6_lookup_struct;
353 } __rte_cache_aligned;
354
355 struct lcore_stats {
356 /* total sleep time in ms since last frequency scaling down */
357 uint32_t sleep_time;
358 /* number of long sleep recently */
359 uint32_t nb_long_sleep;
360 /* freq. scaling up trend */
361 uint32_t trend;
362 /* total packet processed recently */
363 uint64_t nb_rx_processed;
364 /* total iterations looped recently */
365 uint64_t nb_iteration_looped;
366 uint32_t padding[9];
367 } __rte_cache_aligned;
368
369 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
370 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
371 static struct rte_timer power_timers[RTE_MAX_LCORE];
372
373 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
374 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
375 unsigned lcore_id, uint8_t port_id, uint16_t queue_id);
376
377 /* exit signal handler */
378 static void
379 signal_exit_now(int sigtype)
380 {
381 unsigned lcore_id;
382 unsigned int portid, nb_ports;
383 int ret;
384
385 if (sigtype == SIGINT) {
386 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
387 if (rte_lcore_is_enabled(lcore_id) == 0)
388 continue;
389
390 /* init power management library */
391 ret = rte_power_exit(lcore_id);
392 if (ret)
393 rte_exit(EXIT_FAILURE, "Power management "
394 "library de-initialization failed on "
395 "core%u\n", lcore_id);
396 }
397
398 nb_ports = rte_eth_dev_count();
399 for (portid = 0; portid < nb_ports; portid++) {
400 if ((enabled_port_mask & (1 << portid)) == 0)
401 continue;
402
403 rte_eth_dev_stop(portid);
404 rte_eth_dev_close(portid);
405 }
406 }
407
408 rte_exit(EXIT_SUCCESS, "User forced exit\n");
409 }
410
411 /* Freqency scale down timer callback */
412 static void
413 power_timer_cb(__attribute__((unused)) struct rte_timer *tim,
414 __attribute__((unused)) void *arg)
415 {
416 uint64_t hz;
417 float sleep_time_ratio;
418 unsigned lcore_id = rte_lcore_id();
419
420 /* accumulate total execution time in us when callback is invoked */
421 sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
422 (float)SCALING_PERIOD;
423 /**
424 * check whether need to scale down frequency a step if it sleep a lot.
425 */
426 if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) {
427 if (rte_power_freq_down)
428 rte_power_freq_down(lcore_id);
429 }
430 else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
431 stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) {
432 /**
433 * scale down a step if average packet per iteration less
434 * than expectation.
435 */
436 if (rte_power_freq_down)
437 rte_power_freq_down(lcore_id);
438 }
439
440 /**
441 * initialize another timer according to current frequency to ensure
442 * timer interval is relatively fixed.
443 */
444 hz = rte_get_timer_hz();
445 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
446 SINGLE, lcore_id, power_timer_cb, NULL);
447
448 stats[lcore_id].nb_rx_processed = 0;
449 stats[lcore_id].nb_iteration_looped = 0;
450
451 stats[lcore_id].sleep_time = 0;
452 }
453
454 /* Enqueue a single packet, and send burst if queue is filled */
455 static inline int
456 send_single_packet(struct rte_mbuf *m, uint8_t port)
457 {
458 uint32_t lcore_id;
459 struct lcore_conf *qconf;
460
461 lcore_id = rte_lcore_id();
462 qconf = &lcore_conf[lcore_id];
463
464 rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
465 qconf->tx_buffer[port], m);
466
467 return 0;
468 }
469
470 #ifdef DO_RFC_1812_CHECKS
471 static inline int
472 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
473 {
474 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
475 /*
476 * 1. The packet length reported by the Link Layer must be large
477 * enough to hold the minimum length legal IP datagram (20 bytes).
478 */
479 if (link_len < sizeof(struct ipv4_hdr))
480 return -1;
481
482 /* 2. The IP checksum must be correct. */
483 /* this is checked in H/W */
484
485 /*
486 * 3. The IP version number must be 4. If the version number is not 4
487 * then the packet may be another version of IP, such as IPng or
488 * ST-II.
489 */
490 if (((pkt->version_ihl) >> 4) != 4)
491 return -3;
492 /*
493 * 4. The IP header length field must be large enough to hold the
494 * minimum length legal IP datagram (20 bytes = 5 words).
495 */
496 if ((pkt->version_ihl & 0xf) < 5)
497 return -4;
498
499 /*
500 * 5. The IP total length field must be large enough to hold the IP
501 * datagram header, whose length is specified in the IP header length
502 * field.
503 */
504 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
505 return -5;
506
507 return 0;
508 }
509 #endif
510
511 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
512 static void
513 print_ipv4_key(struct ipv4_5tuple key)
514 {
515 printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
516 "proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
517 key.port_dst, key.port_src, key.proto);
518 }
519 static void
520 print_ipv6_key(struct ipv6_5tuple key)
521 {
522 printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
523 "port dst = %d, port src = %d, proto = %d\n",
524 IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
525 key.port_dst, key.port_src, key.proto);
526 }
527
528 static inline uint8_t
529 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
530 lookup_struct_t * ipv4_l3fwd_lookup_struct)
531 {
532 struct ipv4_5tuple key;
533 struct tcp_hdr *tcp;
534 struct udp_hdr *udp;
535 int ret = 0;
536
537 key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
538 key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
539 key.proto = ipv4_hdr->next_proto_id;
540
541 switch (ipv4_hdr->next_proto_id) {
542 case IPPROTO_TCP:
543 tcp = (struct tcp_hdr *)((unsigned char *)ipv4_hdr +
544 sizeof(struct ipv4_hdr));
545 key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
546 key.port_src = rte_be_to_cpu_16(tcp->src_port);
547 break;
548
549 case IPPROTO_UDP:
550 udp = (struct udp_hdr *)((unsigned char *)ipv4_hdr +
551 sizeof(struct ipv4_hdr));
552 key.port_dst = rte_be_to_cpu_16(udp->dst_port);
553 key.port_src = rte_be_to_cpu_16(udp->src_port);
554 break;
555
556 default:
557 key.port_dst = 0;
558 key.port_src = 0;
559 break;
560 }
561
562 /* Find destination port */
563 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
564 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
565 }
566
567 static inline uint8_t
568 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid,
569 lookup_struct_t *ipv6_l3fwd_lookup_struct)
570 {
571 struct ipv6_5tuple key;
572 struct tcp_hdr *tcp;
573 struct udp_hdr *udp;
574 int ret = 0;
575
576 memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
577 memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
578
579 key.proto = ipv6_hdr->proto;
580
581 switch (ipv6_hdr->proto) {
582 case IPPROTO_TCP:
583 tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr +
584 sizeof(struct ipv6_hdr));
585 key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
586 key.port_src = rte_be_to_cpu_16(tcp->src_port);
587 break;
588
589 case IPPROTO_UDP:
590 udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr +
591 sizeof(struct ipv6_hdr));
592 key.port_dst = rte_be_to_cpu_16(udp->dst_port);
593 key.port_src = rte_be_to_cpu_16(udp->src_port);
594 break;
595
596 default:
597 key.port_dst = 0;
598 key.port_src = 0;
599 break;
600 }
601
602 /* Find destination port */
603 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
604 return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
605 }
606 #endif
607
608 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
609 static inline uint8_t
610 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid,
611 lookup_struct_t *ipv4_l3fwd_lookup_struct)
612 {
613 uint32_t next_hop;
614
615 return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
616 rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
617 next_hop : portid);
618 }
619 #endif
620
621 static inline void
622 parse_ptype_one(struct rte_mbuf *m)
623 {
624 struct ether_hdr *eth_hdr;
625 uint32_t packet_type = RTE_PTYPE_UNKNOWN;
626 uint16_t ether_type;
627
628 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
629 ether_type = eth_hdr->ether_type;
630 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4))
631 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
632 else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6))
633 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
634
635 m->packet_type = packet_type;
636 }
637
638 static uint16_t
639 cb_parse_ptype(uint8_t port __rte_unused, uint16_t queue __rte_unused,
640 struct rte_mbuf *pkts[], uint16_t nb_pkts,
641 uint16_t max_pkts __rte_unused,
642 void *user_param __rte_unused)
643 {
644 unsigned int i;
645
646 for (i = 0; i < nb_pkts; ++i)
647 parse_ptype_one(pkts[i]);
648
649 return nb_pkts;
650 }
651
652 static int
653 add_cb_parse_ptype(uint8_t portid, uint16_t queueid)
654 {
655 printf("Port %d: softly parse packet type info\n", portid);
656 if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL))
657 return 0;
658
659 printf("Failed to add rx callback: port=%d\n", portid);
660 return -1;
661 }
662
663 static inline void
664 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid,
665 struct lcore_conf *qconf)
666 {
667 struct ether_hdr *eth_hdr;
668 struct ipv4_hdr *ipv4_hdr;
669 void *d_addr_bytes;
670 uint8_t dst_port;
671
672 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
673
674 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
675 /* Handle IPv4 headers.*/
676 ipv4_hdr =
677 rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
678 sizeof(struct ether_hdr));
679
680 #ifdef DO_RFC_1812_CHECKS
681 /* Check to make sure the packet is valid (RFC1812) */
682 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
683 rte_pktmbuf_free(m);
684 return;
685 }
686 #endif
687
688 dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
689 qconf->ipv4_lookup_struct);
690 if (dst_port >= RTE_MAX_ETHPORTS ||
691 (enabled_port_mask & 1 << dst_port) == 0)
692 dst_port = portid;
693
694 /* 02:00:00:00:00:xx */
695 d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
696 *((uint64_t *)d_addr_bytes) =
697 0x000000000002 + ((uint64_t)dst_port << 40);
698
699 #ifdef DO_RFC_1812_CHECKS
700 /* Update time to live and header checksum */
701 --(ipv4_hdr->time_to_live);
702 ++(ipv4_hdr->hdr_checksum);
703 #endif
704
705 /* src addr */
706 ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
707
708 send_single_packet(m, dst_port);
709 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
710 /* Handle IPv6 headers.*/
711 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
712 struct ipv6_hdr *ipv6_hdr;
713
714 ipv6_hdr =
715 rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *,
716 sizeof(struct ether_hdr));
717
718 dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
719 qconf->ipv6_lookup_struct);
720
721 if (dst_port >= RTE_MAX_ETHPORTS ||
722 (enabled_port_mask & 1 << dst_port) == 0)
723 dst_port = portid;
724
725 /* 02:00:00:00:00:xx */
726 d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
727 *((uint64_t *)d_addr_bytes) =
728 0x000000000002 + ((uint64_t)dst_port << 40);
729
730 /* src addr */
731 ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
732
733 send_single_packet(m, dst_port);
734 #else
735 /* We don't currently handle IPv6 packets in LPM mode. */
736 rte_pktmbuf_free(m);
737 #endif
738 } else
739 rte_pktmbuf_free(m);
740
741 }
742
743 #define MINIMUM_SLEEP_TIME 1
744 #define SUSPEND_THRESHOLD 300
745
746 static inline uint32_t
747 power_idle_heuristic(uint32_t zero_rx_packet_count)
748 {
749 /* If zero count is less than 100, sleep 1us */
750 if (zero_rx_packet_count < SUSPEND_THRESHOLD)
751 return MINIMUM_SLEEP_TIME;
752 /* If zero count is less than 1000, sleep 100 us which is the
753 minimum latency switching from C3/C6 to C0
754 */
755 else
756 return SUSPEND_THRESHOLD;
757
758 return 0;
759 }
760
761 static inline enum freq_scale_hint_t
762 power_freq_scaleup_heuristic(unsigned lcore_id,
763 uint8_t port_id,
764 uint16_t queue_id)
765 {
766 /**
767 * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
768 * per iteration
769 */
770 #define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST
771 #define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2)
772 #define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3)
773 #define FREQ_UP_TREND1_ACC 1
774 #define FREQ_UP_TREND2_ACC 100
775 #define FREQ_UP_THRESHOLD 10000
776
777 if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
778 FREQ_GEAR3_RX_PACKET_THRESHOLD) > 0)) {
779 stats[lcore_id].trend = 0;
780 return FREQ_HIGHEST;
781 } else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
782 FREQ_GEAR2_RX_PACKET_THRESHOLD) > 0))
783 stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
784 else if (likely(rte_eth_rx_descriptor_done(port_id, queue_id,
785 FREQ_GEAR1_RX_PACKET_THRESHOLD) > 0))
786 stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
787
788 if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
789 stats[lcore_id].trend = 0;
790 return FREQ_HIGHER;
791 }
792
793 return FREQ_CURRENT;
794 }
795
796 /**
797 * force polling thread sleep until one-shot rx interrupt triggers
798 * @param port_id
799 * Port id.
800 * @param queue_id
801 * Rx queue id.
802 * @return
803 * 0 on success
804 */
805 static int
806 sleep_until_rx_interrupt(int num)
807 {
808 struct rte_epoll_event event[num];
809 int n, i;
810 uint8_t port_id, queue_id;
811 void *data;
812
813 RTE_LOG(INFO, L3FWD_POWER,
814 "lcore %u sleeps until interrupt triggers\n",
815 rte_lcore_id());
816
817 n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, -1);
818 for (i = 0; i < n; i++) {
819 data = event[i].epdata.data;
820 port_id = ((uintptr_t)data) >> CHAR_BIT;
821 queue_id = ((uintptr_t)data) &
822 RTE_LEN2MASK(CHAR_BIT, uint8_t);
823 rte_eth_dev_rx_intr_disable(port_id, queue_id);
824 RTE_LOG(INFO, L3FWD_POWER,
825 "lcore %u is waked up from rx interrupt on"
826 " port %d queue %d\n",
827 rte_lcore_id(), port_id, queue_id);
828 }
829
830 return 0;
831 }
832
833 static void turn_on_intr(struct lcore_conf *qconf)
834 {
835 int i;
836 struct lcore_rx_queue *rx_queue;
837 uint8_t port_id, queue_id;
838
839 for (i = 0; i < qconf->n_rx_queue; ++i) {
840 rx_queue = &(qconf->rx_queue_list[i]);
841 port_id = rx_queue->port_id;
842 queue_id = rx_queue->queue_id;
843
844 rte_spinlock_lock(&(locks[port_id]));
845 rte_eth_dev_rx_intr_enable(port_id, queue_id);
846 rte_spinlock_unlock(&(locks[port_id]));
847 }
848 }
849
850 static int event_register(struct lcore_conf *qconf)
851 {
852 struct lcore_rx_queue *rx_queue;
853 uint8_t portid, queueid;
854 uint32_t data;
855 int ret;
856 int i;
857
858 for (i = 0; i < qconf->n_rx_queue; ++i) {
859 rx_queue = &(qconf->rx_queue_list[i]);
860 portid = rx_queue->port_id;
861 queueid = rx_queue->queue_id;
862 data = portid << CHAR_BIT | queueid;
863
864 ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid,
865 RTE_EPOLL_PER_THREAD,
866 RTE_INTR_EVENT_ADD,
867 (void *)((uintptr_t)data));
868 if (ret)
869 return ret;
870 }
871
872 return 0;
873 }
874
875 /* main processing loop */
876 static int
877 main_loop(__attribute__((unused)) void *dummy)
878 {
879 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
880 unsigned lcore_id;
881 uint64_t prev_tsc, diff_tsc, cur_tsc;
882 uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
883 int i, j, nb_rx;
884 uint8_t portid, queueid;
885 struct lcore_conf *qconf;
886 struct lcore_rx_queue *rx_queue;
887 enum freq_scale_hint_t lcore_scaleup_hint;
888 uint32_t lcore_rx_idle_count = 0;
889 uint32_t lcore_idle_hint = 0;
890 int intr_en = 0;
891
892 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
893
894 prev_tsc = 0;
895
896 lcore_id = rte_lcore_id();
897 qconf = &lcore_conf[lcore_id];
898
899 if (qconf->n_rx_queue == 0) {
900 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
901 return 0;
902 }
903
904 RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
905
906 for (i = 0; i < qconf->n_rx_queue; i++) {
907 portid = qconf->rx_queue_list[i].port_id;
908 queueid = qconf->rx_queue_list[i].queue_id;
909 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%hhu "
910 "rxqueueid=%hhu\n", lcore_id, portid, queueid);
911 }
912
913 /* add into event wait list */
914 if (event_register(qconf) == 0)
915 intr_en = 1;
916 else
917 RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
918
919 while (1) {
920 stats[lcore_id].nb_iteration_looped++;
921
922 cur_tsc = rte_rdtsc();
923 cur_tsc_power = cur_tsc;
924
925 /*
926 * TX burst queue drain
927 */
928 diff_tsc = cur_tsc - prev_tsc;
929 if (unlikely(diff_tsc > drain_tsc)) {
930 for (i = 0; i < qconf->n_tx_port; ++i) {
931 portid = qconf->tx_port_id[i];
932 rte_eth_tx_buffer_flush(portid,
933 qconf->tx_queue_id[portid],
934 qconf->tx_buffer[portid]);
935 }
936 prev_tsc = cur_tsc;
937 }
938
939 diff_tsc_power = cur_tsc_power - prev_tsc_power;
940 if (diff_tsc_power > TIMER_RESOLUTION_CYCLES) {
941 rte_timer_manage();
942 prev_tsc_power = cur_tsc_power;
943 }
944
945 start_rx:
946 /*
947 * Read packet from RX queues
948 */
949 lcore_scaleup_hint = FREQ_CURRENT;
950 lcore_rx_idle_count = 0;
951 for (i = 0; i < qconf->n_rx_queue; ++i) {
952 rx_queue = &(qconf->rx_queue_list[i]);
953 rx_queue->idle_hint = 0;
954 portid = rx_queue->port_id;
955 queueid = rx_queue->queue_id;
956
957 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
958 MAX_PKT_BURST);
959
960 stats[lcore_id].nb_rx_processed += nb_rx;
961 if (unlikely(nb_rx == 0)) {
962 /**
963 * no packet received from rx queue, try to
964 * sleep for a while forcing CPU enter deeper
965 * C states.
966 */
967 rx_queue->zero_rx_packet_count++;
968
969 if (rx_queue->zero_rx_packet_count <=
970 MIN_ZERO_POLL_COUNT)
971 continue;
972
973 rx_queue->idle_hint = power_idle_heuristic(\
974 rx_queue->zero_rx_packet_count);
975 lcore_rx_idle_count++;
976 } else {
977 rx_queue->zero_rx_packet_count = 0;
978
979 /**
980 * do not scale up frequency immediately as
981 * user to kernel space communication is costly
982 * which might impact packet I/O for received
983 * packets.
984 */
985 rx_queue->freq_up_hint =
986 power_freq_scaleup_heuristic(lcore_id,
987 portid, queueid);
988 }
989
990 /* Prefetch first packets */
991 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
992 rte_prefetch0(rte_pktmbuf_mtod(
993 pkts_burst[j], void *));
994 }
995
996 /* Prefetch and forward already prefetched packets */
997 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
998 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
999 j + PREFETCH_OFFSET], void *));
1000 l3fwd_simple_forward(pkts_burst[j], portid,
1001 qconf);
1002 }
1003
1004 /* Forward remaining prefetched packets */
1005 for (; j < nb_rx; j++) {
1006 l3fwd_simple_forward(pkts_burst[j], portid,
1007 qconf);
1008 }
1009 }
1010
1011 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
1012 for (i = 1, lcore_scaleup_hint =
1013 qconf->rx_queue_list[0].freq_up_hint;
1014 i < qconf->n_rx_queue; ++i) {
1015 rx_queue = &(qconf->rx_queue_list[i]);
1016 if (rx_queue->freq_up_hint >
1017 lcore_scaleup_hint)
1018 lcore_scaleup_hint =
1019 rx_queue->freq_up_hint;
1020 }
1021
1022 if (lcore_scaleup_hint == FREQ_HIGHEST) {
1023 if (rte_power_freq_max)
1024 rte_power_freq_max(lcore_id);
1025 } else if (lcore_scaleup_hint == FREQ_HIGHER) {
1026 if (rte_power_freq_up)
1027 rte_power_freq_up(lcore_id);
1028 }
1029 } else {
1030 /**
1031 * All Rx queues empty in recent consecutive polls,
1032 * sleep in a conservative manner, meaning sleep as
1033 * less as possible.
1034 */
1035 for (i = 1, lcore_idle_hint =
1036 qconf->rx_queue_list[0].idle_hint;
1037 i < qconf->n_rx_queue; ++i) {
1038 rx_queue = &(qconf->rx_queue_list[i]);
1039 if (rx_queue->idle_hint < lcore_idle_hint)
1040 lcore_idle_hint = rx_queue->idle_hint;
1041 }
1042
1043 if (lcore_idle_hint < SUSPEND_THRESHOLD)
1044 /**
1045 * execute "pause" instruction to avoid context
1046 * switch which generally take hundred of
1047 * microseconds for short sleep.
1048 */
1049 rte_delay_us(lcore_idle_hint);
1050 else {
1051 /* suspend until rx interrupt trigges */
1052 if (intr_en) {
1053 turn_on_intr(qconf);
1054 sleep_until_rx_interrupt(
1055 qconf->n_rx_queue);
1056 }
1057 /* start receiving packets immediately */
1058 goto start_rx;
1059 }
1060 stats[lcore_id].sleep_time += lcore_idle_hint;
1061 }
1062 }
1063 }
1064
1065 static int
1066 check_lcore_params(void)
1067 {
1068 uint8_t queue, lcore;
1069 uint16_t i;
1070 int socketid;
1071
1072 for (i = 0; i < nb_lcore_params; ++i) {
1073 queue = lcore_params[i].queue_id;
1074 if (queue >= MAX_RX_QUEUE_PER_PORT) {
1075 printf("invalid queue number: %hhu\n", queue);
1076 return -1;
1077 }
1078 lcore = lcore_params[i].lcore_id;
1079 if (!rte_lcore_is_enabled(lcore)) {
1080 printf("error: lcore %hhu is not enabled in lcore "
1081 "mask\n", lcore);
1082 return -1;
1083 }
1084 if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1085 (numa_on == 0)) {
1086 printf("warning: lcore %hhu is on socket %d with numa "
1087 "off\n", lcore, socketid);
1088 }
1089 }
1090 return 0;
1091 }
1092
1093 static int
1094 check_port_config(const unsigned nb_ports)
1095 {
1096 unsigned portid;
1097 uint16_t i;
1098
1099 for (i = 0; i < nb_lcore_params; ++i) {
1100 portid = lcore_params[i].port_id;
1101 if ((enabled_port_mask & (1 << portid)) == 0) {
1102 printf("port %u is not enabled in port mask\n",
1103 portid);
1104 return -1;
1105 }
1106 if (portid >= nb_ports) {
1107 printf("port %u is not present on the board\n",
1108 portid);
1109 return -1;
1110 }
1111 }
1112 return 0;
1113 }
1114
1115 static uint8_t
1116 get_port_n_rx_queues(const uint8_t port)
1117 {
1118 int queue = -1;
1119 uint16_t i;
1120
1121 for (i = 0; i < nb_lcore_params; ++i) {
1122 if (lcore_params[i].port_id == port &&
1123 lcore_params[i].queue_id > queue)
1124 queue = lcore_params[i].queue_id;
1125 }
1126 return (uint8_t)(++queue);
1127 }
1128
1129 static int
1130 init_lcore_rx_queues(void)
1131 {
1132 uint16_t i, nb_rx_queue;
1133 uint8_t lcore;
1134
1135 for (i = 0; i < nb_lcore_params; ++i) {
1136 lcore = lcore_params[i].lcore_id;
1137 nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1138 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1139 printf("error: too many queues (%u) for lcore: %u\n",
1140 (unsigned)nb_rx_queue + 1, (unsigned)lcore);
1141 return -1;
1142 } else {
1143 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1144 lcore_params[i].port_id;
1145 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1146 lcore_params[i].queue_id;
1147 lcore_conf[lcore].n_rx_queue++;
1148 }
1149 }
1150 return 0;
1151 }
1152
1153 /* display usage */
1154 static void
1155 print_usage(const char *prgname)
1156 {
1157 printf ("%s [EAL options] -- -p PORTMASK -P"
1158 " [--config (port,queue,lcore)[,(port,queue,lcore]]"
1159 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1160 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1161 " -P : enable promiscuous mode\n"
1162 " --config (port,queue,lcore): rx queues configuration\n"
1163 " --no-numa: optional, disable numa awareness\n"
1164 " --enable-jumbo: enable jumbo frame"
1165 " which max packet len is PKTLEN in decimal (64-9600)\n"
1166 " --parse-ptype: parse packet type by software\n",
1167 prgname);
1168 }
1169
1170 static int parse_max_pkt_len(const char *pktlen)
1171 {
1172 char *end = NULL;
1173 unsigned long len;
1174
1175 /* parse decimal string */
1176 len = strtoul(pktlen, &end, 10);
1177 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1178 return -1;
1179
1180 if (len == 0)
1181 return -1;
1182
1183 return len;
1184 }
1185
1186 static int
1187 parse_portmask(const char *portmask)
1188 {
1189 char *end = NULL;
1190 unsigned long pm;
1191
1192 /* parse hexadecimal string */
1193 pm = strtoul(portmask, &end, 16);
1194 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1195 return -1;
1196
1197 if (pm == 0)
1198 return -1;
1199
1200 return pm;
1201 }
1202
1203 static int
1204 parse_config(const char *q_arg)
1205 {
1206 char s[256];
1207 const char *p, *p0 = q_arg;
1208 char *end;
1209 enum fieldnames {
1210 FLD_PORT = 0,
1211 FLD_QUEUE,
1212 FLD_LCORE,
1213 _NUM_FLD
1214 };
1215 unsigned long int_fld[_NUM_FLD];
1216 char *str_fld[_NUM_FLD];
1217 int i;
1218 unsigned size;
1219
1220 nb_lcore_params = 0;
1221
1222 while ((p = strchr(p0,'(')) != NULL) {
1223 ++p;
1224 if((p0 = strchr(p,')')) == NULL)
1225 return -1;
1226
1227 size = p0 - p;
1228 if(size >= sizeof(s))
1229 return -1;
1230
1231 snprintf(s, sizeof(s), "%.*s", size, p);
1232 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1233 _NUM_FLD)
1234 return -1;
1235 for (i = 0; i < _NUM_FLD; i++){
1236 errno = 0;
1237 int_fld[i] = strtoul(str_fld[i], &end, 0);
1238 if (errno != 0 || end == str_fld[i] || int_fld[i] >
1239 255)
1240 return -1;
1241 }
1242 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1243 printf("exceeded max number of lcore params: %hu\n",
1244 nb_lcore_params);
1245 return -1;
1246 }
1247 lcore_params_array[nb_lcore_params].port_id =
1248 (uint8_t)int_fld[FLD_PORT];
1249 lcore_params_array[nb_lcore_params].queue_id =
1250 (uint8_t)int_fld[FLD_QUEUE];
1251 lcore_params_array[nb_lcore_params].lcore_id =
1252 (uint8_t)int_fld[FLD_LCORE];
1253 ++nb_lcore_params;
1254 }
1255 lcore_params = lcore_params_array;
1256
1257 return 0;
1258 }
1259
1260 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
1261
1262 /* Parse the argument given in the command line of the application */
1263 static int
1264 parse_args(int argc, char **argv)
1265 {
1266 int opt, ret;
1267 char **argvopt;
1268 int option_index;
1269 char *prgname = argv[0];
1270 static struct option lgopts[] = {
1271 {"config", 1, 0, 0},
1272 {"no-numa", 0, 0, 0},
1273 {"enable-jumbo", 0, 0, 0},
1274 {CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
1275 {NULL, 0, 0, 0}
1276 };
1277
1278 argvopt = argv;
1279
1280 while ((opt = getopt_long(argc, argvopt, "p:P",
1281 lgopts, &option_index)) != EOF) {
1282
1283 switch (opt) {
1284 /* portmask */
1285 case 'p':
1286 enabled_port_mask = parse_portmask(optarg);
1287 if (enabled_port_mask == 0) {
1288 printf("invalid portmask\n");
1289 print_usage(prgname);
1290 return -1;
1291 }
1292 break;
1293 case 'P':
1294 printf("Promiscuous mode selected\n");
1295 promiscuous_on = 1;
1296 break;
1297
1298 /* long options */
1299 case 0:
1300 if (!strncmp(lgopts[option_index].name, "config", 6)) {
1301 ret = parse_config(optarg);
1302 if (ret) {
1303 printf("invalid config\n");
1304 print_usage(prgname);
1305 return -1;
1306 }
1307 }
1308
1309 if (!strncmp(lgopts[option_index].name,
1310 "no-numa", 7)) {
1311 printf("numa is disabled \n");
1312 numa_on = 0;
1313 }
1314
1315 if (!strncmp(lgopts[option_index].name,
1316 "enable-jumbo", 12)) {
1317 struct option lenopts =
1318 {"max-pkt-len", required_argument, \
1319 0, 0};
1320
1321 printf("jumbo frame is enabled \n");
1322 port_conf.rxmode.jumbo_frame = 1;
1323
1324 /**
1325 * if no max-pkt-len set, use the default value
1326 * ETHER_MAX_LEN
1327 */
1328 if (0 == getopt_long(argc, argvopt, "",
1329 &lenopts, &option_index)) {
1330 ret = parse_max_pkt_len(optarg);
1331 if ((ret < 64) ||
1332 (ret > MAX_JUMBO_PKT_LEN)){
1333 printf("invalid packet "
1334 "length\n");
1335 print_usage(prgname);
1336 return -1;
1337 }
1338 port_conf.rxmode.max_rx_pkt_len = ret;
1339 }
1340 printf("set jumbo frame "
1341 "max packet length to %u\n",
1342 (unsigned int)port_conf.rxmode.max_rx_pkt_len);
1343 }
1344
1345 if (!strncmp(lgopts[option_index].name,
1346 CMD_LINE_OPT_PARSE_PTYPE,
1347 sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
1348 printf("soft parse-ptype is enabled\n");
1349 parse_ptype = 1;
1350 }
1351
1352 break;
1353
1354 default:
1355 print_usage(prgname);
1356 return -1;
1357 }
1358 }
1359
1360 if (optind >= 0)
1361 argv[optind-1] = prgname;
1362
1363 ret = optind-1;
1364 optind = 1; /* reset getopt lib */
1365 return ret;
1366 }
1367
1368 static void
1369 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1370 {
1371 char buf[ETHER_ADDR_FMT_SIZE];
1372 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1373 printf("%s%s", name, buf);
1374 }
1375
1376 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1377 static void
1378 setup_hash(int socketid)
1379 {
1380 struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1381 .name = NULL,
1382 .entries = L3FWD_HASH_ENTRIES,
1383 .key_len = sizeof(struct ipv4_5tuple),
1384 .hash_func = DEFAULT_HASH_FUNC,
1385 .hash_func_init_val = 0,
1386 };
1387
1388 struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1389 .name = NULL,
1390 .entries = L3FWD_HASH_ENTRIES,
1391 .key_len = sizeof(struct ipv6_5tuple),
1392 .hash_func = DEFAULT_HASH_FUNC,
1393 .hash_func_init_val = 0,
1394 };
1395
1396 unsigned i;
1397 int ret;
1398 char s[64];
1399
1400 /* create ipv4 hash */
1401 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1402 ipv4_l3fwd_hash_params.name = s;
1403 ipv4_l3fwd_hash_params.socket_id = socketid;
1404 ipv4_l3fwd_lookup_struct[socketid] =
1405 rte_hash_create(&ipv4_l3fwd_hash_params);
1406 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1407 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1408 "socket %d\n", socketid);
1409
1410 /* create ipv6 hash */
1411 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
1412 ipv6_l3fwd_hash_params.name = s;
1413 ipv6_l3fwd_hash_params.socket_id = socketid;
1414 ipv6_l3fwd_lookup_struct[socketid] =
1415 rte_hash_create(&ipv6_l3fwd_hash_params);
1416 if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1417 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1418 "socket %d\n", socketid);
1419
1420
1421 /* populate the ipv4 hash */
1422 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1423 ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
1424 (void *) &ipv4_l3fwd_route_array[i].key);
1425 if (ret < 0) {
1426 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1427 "l3fwd hash on socket %d\n", i, socketid);
1428 }
1429 ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
1430 printf("Hash: Adding key\n");
1431 print_ipv4_key(ipv4_l3fwd_route_array[i].key);
1432 }
1433
1434 /* populate the ipv6 hash */
1435 for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
1436 ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
1437 (void *) &ipv6_l3fwd_route_array[i].key);
1438 if (ret < 0) {
1439 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1440 "l3fwd hash on socket %d\n", i, socketid);
1441 }
1442 ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
1443 printf("Hash: Adding key\n");
1444 print_ipv6_key(ipv6_l3fwd_route_array[i].key);
1445 }
1446 }
1447 #endif
1448
1449 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1450 static void
1451 setup_lpm(int socketid)
1452 {
1453 unsigned i;
1454 int ret;
1455 char s[64];
1456
1457 /* create the LPM table */
1458 struct rte_lpm_config lpm_ipv4_config;
1459
1460 lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
1461 lpm_ipv4_config.number_tbl8s = 256;
1462 lpm_ipv4_config.flags = 0;
1463
1464 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
1465 ipv4_l3fwd_lookup_struct[socketid] =
1466 rte_lpm_create(s, socketid, &lpm_ipv4_config);
1467 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1468 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1469 " on socket %d\n", socketid);
1470
1471 /* populate the LPM table */
1472 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1473 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
1474 ipv4_l3fwd_route_array[i].ip,
1475 ipv4_l3fwd_route_array[i].depth,
1476 ipv4_l3fwd_route_array[i].if_out);
1477
1478 if (ret < 0) {
1479 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1480 "l3fwd LPM table on socket %d\n",
1481 i, socketid);
1482 }
1483
1484 printf("LPM: Adding route 0x%08x / %d (%d)\n",
1485 (unsigned)ipv4_l3fwd_route_array[i].ip,
1486 ipv4_l3fwd_route_array[i].depth,
1487 ipv4_l3fwd_route_array[i].if_out);
1488 }
1489 }
1490 #endif
1491
1492 static int
1493 init_mem(unsigned nb_mbuf)
1494 {
1495 struct lcore_conf *qconf;
1496 int socketid;
1497 unsigned lcore_id;
1498 char s[64];
1499
1500 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1501 if (rte_lcore_is_enabled(lcore_id) == 0)
1502 continue;
1503
1504 if (numa_on)
1505 socketid = rte_lcore_to_socket_id(lcore_id);
1506 else
1507 socketid = 0;
1508
1509 if (socketid >= NB_SOCKETS) {
1510 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
1511 "out of range %d\n", socketid,
1512 lcore_id, NB_SOCKETS);
1513 }
1514 if (pktmbuf_pool[socketid] == NULL) {
1515 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
1516 pktmbuf_pool[socketid] =
1517 rte_pktmbuf_pool_create(s, nb_mbuf,
1518 MEMPOOL_CACHE_SIZE, 0,
1519 RTE_MBUF_DEFAULT_BUF_SIZE,
1520 socketid);
1521 if (pktmbuf_pool[socketid] == NULL)
1522 rte_exit(EXIT_FAILURE,
1523 "Cannot init mbuf pool on socket %d\n",
1524 socketid);
1525 else
1526 printf("Allocated mbuf pool on socket %d\n",
1527 socketid);
1528
1529 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1530 setup_lpm(socketid);
1531 #else
1532 setup_hash(socketid);
1533 #endif
1534 }
1535 qconf = &lcore_conf[lcore_id];
1536 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
1537 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1538 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
1539 #endif
1540 }
1541 return 0;
1542 }
1543
1544 /* Check the link status of all ports in up to 9s, and print them finally */
1545 static void
1546 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1547 {
1548 #define CHECK_INTERVAL 100 /* 100ms */
1549 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1550 uint8_t portid, count, all_ports_up, print_flag = 0;
1551 struct rte_eth_link link;
1552
1553 printf("\nChecking link status");
1554 fflush(stdout);
1555 for (count = 0; count <= MAX_CHECK_TIME; count++) {
1556 all_ports_up = 1;
1557 for (portid = 0; portid < port_num; portid++) {
1558 if ((port_mask & (1 << portid)) == 0)
1559 continue;
1560 memset(&link, 0, sizeof(link));
1561 rte_eth_link_get_nowait(portid, &link);
1562 /* print link status if flag set */
1563 if (print_flag == 1) {
1564 if (link.link_status)
1565 printf("Port %d Link Up - speed %u "
1566 "Mbps - %s\n", (uint8_t)portid,
1567 (unsigned)link.link_speed,
1568 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1569 ("full-duplex") : ("half-duplex\n"));
1570 else
1571 printf("Port %d Link Down\n",
1572 (uint8_t)portid);
1573 continue;
1574 }
1575 /* clear all_ports_up flag if any link down */
1576 if (link.link_status == ETH_LINK_DOWN) {
1577 all_ports_up = 0;
1578 break;
1579 }
1580 }
1581 /* after finally printing all link status, get out */
1582 if (print_flag == 1)
1583 break;
1584
1585 if (all_ports_up == 0) {
1586 printf(".");
1587 fflush(stdout);
1588 rte_delay_ms(CHECK_INTERVAL);
1589 }
1590
1591 /* set the print_flag if all ports up or timeout */
1592 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1593 print_flag = 1;
1594 printf("done\n");
1595 }
1596 }
1597 }
1598
1599 static int check_ptype(uint8_t portid)
1600 {
1601 int i, ret;
1602 int ptype_l3_ipv4 = 0;
1603 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1604 int ptype_l3_ipv6 = 0;
1605 #endif
1606 uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
1607
1608 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
1609 if (ret <= 0)
1610 return 0;
1611
1612 uint32_t ptypes[ret];
1613
1614 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
1615 for (i = 0; i < ret; ++i) {
1616 if (ptypes[i] & RTE_PTYPE_L3_IPV4)
1617 ptype_l3_ipv4 = 1;
1618 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1619 if (ptypes[i] & RTE_PTYPE_L3_IPV6)
1620 ptype_l3_ipv6 = 1;
1621 #endif
1622 }
1623
1624 if (ptype_l3_ipv4 == 0)
1625 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
1626
1627 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1628 if (ptype_l3_ipv6 == 0)
1629 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
1630 #endif
1631
1632 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1633 if (ptype_l3_ipv4)
1634 #else /* APP_LOOKUP_EXACT_MATCH */
1635 if (ptype_l3_ipv4 && ptype_l3_ipv6)
1636 #endif
1637 return 1;
1638
1639 return 0;
1640
1641 }
1642
1643 int
1644 main(int argc, char **argv)
1645 {
1646 struct lcore_conf *qconf;
1647 struct rte_eth_dev_info dev_info;
1648 struct rte_eth_txconf *txconf;
1649 int ret;
1650 unsigned nb_ports;
1651 uint16_t queueid;
1652 unsigned lcore_id;
1653 uint64_t hz;
1654 uint32_t n_tx_queue, nb_lcores;
1655 uint32_t dev_rxq_num, dev_txq_num;
1656 uint8_t portid, nb_rx_queue, queue, socketid;
1657 uint16_t org_rxq_intr = port_conf.intr_conf.rxq;
1658
1659 /* catch SIGINT and restore cpufreq governor to ondemand */
1660 signal(SIGINT, signal_exit_now);
1661
1662 /* init EAL */
1663 ret = rte_eal_init(argc, argv);
1664 if (ret < 0)
1665 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1666 argc -= ret;
1667 argv += ret;
1668
1669 /* init RTE timer library to be used late */
1670 rte_timer_subsystem_init();
1671
1672 /* parse application arguments (after the EAL ones) */
1673 ret = parse_args(argc, argv);
1674 if (ret < 0)
1675 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
1676
1677 if (check_lcore_params() < 0)
1678 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
1679
1680 ret = init_lcore_rx_queues();
1681 if (ret < 0)
1682 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1683
1684 nb_ports = rte_eth_dev_count();
1685
1686 if (check_port_config(nb_ports) < 0)
1687 rte_exit(EXIT_FAILURE, "check_port_config failed\n");
1688
1689 nb_lcores = rte_lcore_count();
1690
1691 /* initialize all ports */
1692 for (portid = 0; portid < nb_ports; portid++) {
1693 /* skip ports that are not enabled */
1694 if ((enabled_port_mask & (1 << portid)) == 0) {
1695 printf("\nSkipping disabled port %d\n", portid);
1696 continue;
1697 }
1698
1699 /* init port */
1700 printf("Initializing port %d ... ", portid );
1701 fflush(stdout);
1702
1703 rte_eth_dev_info_get(portid, &dev_info);
1704 dev_rxq_num = dev_info.max_rx_queues;
1705 dev_txq_num = dev_info.max_tx_queues;
1706
1707 nb_rx_queue = get_port_n_rx_queues(portid);
1708 if (nb_rx_queue > dev_rxq_num)
1709 rte_exit(EXIT_FAILURE,
1710 "Cannot configure not existed rxq: "
1711 "port=%d\n", portid);
1712
1713 n_tx_queue = nb_lcores;
1714 if (n_tx_queue > dev_txq_num)
1715 n_tx_queue = dev_txq_num;
1716 printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
1717 nb_rx_queue, (unsigned)n_tx_queue );
1718 /* If number of Rx queue is 0, no need to enable Rx interrupt */
1719 if (nb_rx_queue == 0)
1720 port_conf.intr_conf.rxq = 0;
1721 ret = rte_eth_dev_configure(portid, nb_rx_queue,
1722 (uint16_t)n_tx_queue, &port_conf);
1723 /* Revert to original value */
1724 port_conf.intr_conf.rxq = org_rxq_intr;
1725 if (ret < 0)
1726 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1727 "err=%d, port=%d\n", ret, portid);
1728
1729 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1730 print_ethaddr(" Address:", &ports_eth_addr[portid]);
1731 printf(", ");
1732
1733 /* init memory */
1734 ret = init_mem(NB_MBUF);
1735 if (ret < 0)
1736 rte_exit(EXIT_FAILURE, "init_mem failed\n");
1737
1738 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1739 if (rte_lcore_is_enabled(lcore_id) == 0)
1740 continue;
1741
1742 /* Initialize TX buffers */
1743 qconf = &lcore_conf[lcore_id];
1744 qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
1745 RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
1746 rte_eth_dev_socket_id(portid));
1747 if (qconf->tx_buffer[portid] == NULL)
1748 rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
1749 (unsigned) portid);
1750
1751 rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
1752 }
1753
1754 /* init one TX queue per couple (lcore,port) */
1755 queueid = 0;
1756 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1757 if (rte_lcore_is_enabled(lcore_id) == 0)
1758 continue;
1759
1760 if (queueid >= dev_txq_num)
1761 continue;
1762
1763 if (numa_on)
1764 socketid = \
1765 (uint8_t)rte_lcore_to_socket_id(lcore_id);
1766 else
1767 socketid = 0;
1768
1769 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
1770 fflush(stdout);
1771
1772 rte_eth_dev_info_get(portid, &dev_info);
1773 txconf = &dev_info.default_txconf;
1774 if (port_conf.rxmode.jumbo_frame)
1775 txconf->txq_flags = 0;
1776 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1777 socketid, txconf);
1778 if (ret < 0)
1779 rte_exit(EXIT_FAILURE,
1780 "rte_eth_tx_queue_setup: err=%d, "
1781 "port=%d\n", ret, portid);
1782
1783 qconf = &lcore_conf[lcore_id];
1784 qconf->tx_queue_id[portid] = queueid;
1785 queueid++;
1786
1787 qconf->tx_port_id[qconf->n_tx_port] = portid;
1788 qconf->n_tx_port++;
1789 }
1790 printf("\n");
1791 }
1792
1793 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1794 if (rte_lcore_is_enabled(lcore_id) == 0)
1795 continue;
1796
1797 /* init power management library */
1798 ret = rte_power_init(lcore_id);
1799 if (ret)
1800 RTE_LOG(ERR, POWER,
1801 "Library initialization failed on core %u\n", lcore_id);
1802
1803 /* init timer structures for each enabled lcore */
1804 rte_timer_init(&power_timers[lcore_id]);
1805 hz = rte_get_timer_hz();
1806 rte_timer_reset(&power_timers[lcore_id],
1807 hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id,
1808 power_timer_cb, NULL);
1809
1810 qconf = &lcore_conf[lcore_id];
1811 printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
1812 fflush(stdout);
1813 /* init RX queues */
1814 for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
1815 portid = qconf->rx_queue_list[queue].port_id;
1816 queueid = qconf->rx_queue_list[queue].queue_id;
1817
1818 if (numa_on)
1819 socketid = \
1820 (uint8_t)rte_lcore_to_socket_id(lcore_id);
1821 else
1822 socketid = 0;
1823
1824 printf("rxq=%d,%d,%d ", portid, queueid, socketid);
1825 fflush(stdout);
1826
1827 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
1828 socketid, NULL,
1829 pktmbuf_pool[socketid]);
1830 if (ret < 0)
1831 rte_exit(EXIT_FAILURE,
1832 "rte_eth_rx_queue_setup: err=%d, "
1833 "port=%d\n", ret, portid);
1834
1835 if (parse_ptype) {
1836 if (add_cb_parse_ptype(portid, queueid) < 0)
1837 rte_exit(EXIT_FAILURE,
1838 "Fail to add ptype cb\n");
1839 } else if (!check_ptype(portid))
1840 rte_exit(EXIT_FAILURE,
1841 "PMD can not provide needed ptypes\n");
1842 }
1843 }
1844
1845 printf("\n");
1846
1847 /* start ports */
1848 for (portid = 0; portid < nb_ports; portid++) {
1849 if ((enabled_port_mask & (1 << portid)) == 0) {
1850 continue;
1851 }
1852 /* Start device */
1853 ret = rte_eth_dev_start(portid);
1854 if (ret < 0)
1855 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
1856 "port=%d\n", ret, portid);
1857 /*
1858 * If enabled, put device in promiscuous mode.
1859 * This allows IO forwarding mode to forward packets
1860 * to itself through 2 cross-connected ports of the
1861 * target machine.
1862 */
1863 if (promiscuous_on)
1864 rte_eth_promiscuous_enable(portid);
1865 /* initialize spinlock for each port */
1866 rte_spinlock_init(&(locks[portid]));
1867 }
1868
1869 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1870
1871 /* launch per-lcore init on every lcore */
1872 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1873 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1874 if (rte_eal_wait_lcore(lcore_id) < 0)
1875 return -1;
1876 }
1877
1878 return 0;
1879 }