]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/examples/performance-thread/pthread_shim/main.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / examples / performance-thread / pthread_shim / main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2015 Intel Corporation
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <unistd.h>
16 #include <sched.h>
17 #include <pthread.h>
18
19 #include <rte_common.h>
20 #include <rte_lcore.h>
21 #include <rte_per_lcore.h>
22 #include <rte_timer.h>
23
24 #include "lthread_api.h"
25 #include "lthread_diag_api.h"
26 #include "pthread_shim.h"
27
28 #define DEBUG_APP 0
29 #define HELLOW_WORLD_MAX_LTHREADS 10
30
31 #ifndef __GLIBC__ /* sched_getcpu() is glibc-specific */
32 #define sched_getcpu() rte_lcore_id()
33 #endif
34
35 __thread int print_count;
36 __thread pthread_mutex_t print_lock;
37
38 __thread pthread_mutex_t exit_lock;
39 __thread pthread_cond_t exit_cond;
40
41 /*
42 * A simple thread that demonstrates use of a mutex, a condition
43 * variable, thread local storage, explicit yield, and thread exit.
44 *
45 * The thread uses a mutex to protect a shared counter which is incremented
46 * and then it waits on condition variable before exiting.
47 *
48 * The thread argument is stored in and retrieved from TLS, using
49 * the pthread key create, get and set specific APIs.
50 *
51 * The thread yields while holding the mutex, to provide opportunity
52 * for other threads to contend.
53 *
54 * All of the pthread API functions used by this thread are actually
55 * resolved to corresponding lthread functions by the pthread shim
56 * implemented in pthread_shim.c
57 */
58 void *helloworld_pthread(void *arg);
59 void *helloworld_pthread(void *arg)
60 {
61 pthread_key_t key;
62
63 /* create a key for TLS */
64 pthread_key_create(&key, NULL);
65
66 /* store the arg in TLS */
67 pthread_setspecific(key, arg);
68
69 /* grab lock and increment shared counter */
70 pthread_mutex_lock(&print_lock);
71 print_count++;
72
73 /* yield thread to give opportunity for lock contention */
74 pthread_yield();
75
76 /* retrieve arg from TLS */
77 uint64_t thread_no = (uint64_t) pthread_getspecific(key);
78
79 printf("Hello - lcore = %d count = %d thread_no = %d thread_id = %p\n",
80 sched_getcpu(),
81 print_count,
82 (int) thread_no,
83 (void *)pthread_self());
84
85 /* release the lock */
86 pthread_mutex_unlock(&print_lock);
87
88 /*
89 * wait on condition variable
90 * before exiting
91 */
92 pthread_mutex_lock(&exit_lock);
93 pthread_cond_wait(&exit_cond, &exit_lock);
94 pthread_mutex_unlock(&exit_lock);
95
96 /* exit */
97 pthread_exit((void *) thread_no);
98 }
99
100
101 /*
102 * This is the initial thread
103 *
104 * It demonstrates pthread, mutex and condition variable creation,
105 * broadcast and pthread join APIs.
106 *
107 * This initial thread must always start life as an lthread.
108 *
109 * This thread creates many more threads then waits a short time
110 * before signalling them to exit using a broadcast.
111 *
112 * All of the pthread API functions used by this thread are actually
113 * resolved to corresponding lthread functions by the pthread shim
114 * implemented in pthread_shim.c
115 *
116 * After all threads have finished the lthread scheduler is shutdown
117 * and normal pthread operation is restored
118 */
119 __thread pthread_t tid[HELLOW_WORLD_MAX_LTHREADS];
120
121 static void *initial_lthread(void *args __attribute__((unused)))
122 {
123 int lcore = (int) rte_lcore_id();
124 /*
125 *
126 * We can now enable pthread API override
127 * and start to use the pthread APIs
128 */
129 pthread_override_set(1);
130
131 uint64_t i;
132 int ret;
133
134 /* initialize mutex for shared counter */
135 print_count = 0;
136 pthread_mutex_init(&print_lock, NULL);
137
138 /* initialize mutex and condition variable controlling thread exit */
139 pthread_mutex_init(&exit_lock, NULL);
140 pthread_cond_init(&exit_cond, NULL);
141
142 /* spawn a number of threads */
143 for (i = 0; i < HELLOW_WORLD_MAX_LTHREADS; i++) {
144
145 /*
146 * Not strictly necessary but
147 * for the sake of this example
148 * use an attribute to pass the desired lcore
149 */
150 pthread_attr_t attr;
151 rte_cpuset_t cpuset;
152
153 CPU_ZERO(&cpuset);
154 CPU_SET(lcore, &cpuset);
155 pthread_attr_init(&attr);
156 pthread_attr_setaffinity_np(&attr, sizeof(rte_cpuset_t), &cpuset);
157
158 /* create the thread */
159 ret = pthread_create(&tid[i], &attr,
160 helloworld_pthread, (void *) i);
161 if (ret != 0)
162 rte_exit(EXIT_FAILURE, "Cannot create helloworld thread\n");
163 }
164
165 /* wait for 1s to allow threads
166 * to block on the condition variable
167 * N.B. nanosleep() is resolved to lthread_sleep()
168 * by the shim.
169 */
170 struct timespec time;
171
172 time.tv_sec = 1;
173 time.tv_nsec = 0;
174 nanosleep(&time, NULL);
175
176 /* wake up all the threads */
177 pthread_cond_broadcast(&exit_cond);
178
179 /* wait for them to finish */
180 for (i = 0; i < HELLOW_WORLD_MAX_LTHREADS; i++) {
181
182 uint64_t thread_no;
183
184 pthread_join(tid[i], (void *) &thread_no);
185 if (thread_no != i)
186 printf("error on thread exit\n");
187 }
188
189 pthread_cond_destroy(&exit_cond);
190 pthread_mutex_destroy(&print_lock);
191 pthread_mutex_destroy(&exit_lock);
192
193 /* shutdown the lthread scheduler */
194 lthread_scheduler_shutdown(rte_lcore_id());
195 lthread_detach();
196 return NULL;
197 }
198
199
200
201 /* This thread creates a single initial lthread
202 * and then runs the scheduler
203 * An instance of this thread is created on each thread
204 * in the core mask
205 */
206 static int
207 lthread_scheduler(void *args __attribute__((unused)))
208 {
209 /* create initial thread */
210 struct lthread *lt;
211
212 lthread_create(&lt, -1, initial_lthread, (void *) NULL);
213
214 /* run the lthread scheduler */
215 lthread_run();
216
217 /* restore genuine pthread operation */
218 pthread_override_set(0);
219 return 0;
220 }
221
222 int main(int argc, char **argv)
223 {
224 int num_sched = 0;
225
226 /* basic DPDK initialization is all that is necessary to run lthreads*/
227 int ret = rte_eal_init(argc, argv);
228
229 if (ret < 0)
230 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
231
232 /* enable timer subsystem */
233 rte_timer_subsystem_init();
234
235 #if DEBUG_APP
236 lthread_diagnostic_set_mask(LT_DIAG_ALL);
237 #endif
238
239 /* create a scheduler on every core in the core mask
240 * and launch an initial lthread that will spawn many more.
241 */
242 unsigned lcore_id;
243
244 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
245 if (rte_lcore_is_enabled(lcore_id))
246 num_sched++;
247 }
248
249 /* set the number of schedulers, this forces all schedulers synchronize
250 * before entering their main loop
251 */
252 lthread_num_schedulers_set(num_sched);
253
254 /* launch all threads */
255 rte_eal_mp_remote_launch(lthread_scheduler, (void *)NULL, CALL_MASTER);
256
257 /* wait for threads to stop */
258 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
259 rte_eal_wait_lcore(lcore_id);
260 }
261 return 0;
262 }