]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/lib/librte_acl/rte_acl.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_acl / rte_acl.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #include <rte_string_fns.h>
6 #include <rte_acl.h>
7 #include "acl.h"
8
9 TAILQ_HEAD(rte_acl_list, rte_tailq_entry);
10
11 static struct rte_tailq_elem rte_acl_tailq = {
12 .name = "RTE_ACL",
13 };
14 EAL_REGISTER_TAILQ(rte_acl_tailq)
15
16 /*
17 * If the compiler doesn't support AVX2 instructions,
18 * then the dummy one would be used instead for AVX2 classify method.
19 */
20 __rte_weak int
21 rte_acl_classify_avx2(__rte_unused const struct rte_acl_ctx *ctx,
22 __rte_unused const uint8_t **data,
23 __rte_unused uint32_t *results,
24 __rte_unused uint32_t num,
25 __rte_unused uint32_t categories)
26 {
27 return -ENOTSUP;
28 }
29
30 __rte_weak int
31 rte_acl_classify_sse(__rte_unused const struct rte_acl_ctx *ctx,
32 __rte_unused const uint8_t **data,
33 __rte_unused uint32_t *results,
34 __rte_unused uint32_t num,
35 __rte_unused uint32_t categories)
36 {
37 return -ENOTSUP;
38 }
39
40 __rte_weak int
41 rte_acl_classify_neon(__rte_unused const struct rte_acl_ctx *ctx,
42 __rte_unused const uint8_t **data,
43 __rte_unused uint32_t *results,
44 __rte_unused uint32_t num,
45 __rte_unused uint32_t categories)
46 {
47 return -ENOTSUP;
48 }
49
50 __rte_weak int
51 rte_acl_classify_altivec(__rte_unused const struct rte_acl_ctx *ctx,
52 __rte_unused const uint8_t **data,
53 __rte_unused uint32_t *results,
54 __rte_unused uint32_t num,
55 __rte_unused uint32_t categories)
56 {
57 return -ENOTSUP;
58 }
59
60 static const rte_acl_classify_t classify_fns[] = {
61 [RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar,
62 [RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar,
63 [RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse,
64 [RTE_ACL_CLASSIFY_AVX2] = rte_acl_classify_avx2,
65 [RTE_ACL_CLASSIFY_NEON] = rte_acl_classify_neon,
66 [RTE_ACL_CLASSIFY_ALTIVEC] = rte_acl_classify_altivec,
67 };
68
69 /* by default, use always available scalar code path. */
70 static enum rte_acl_classify_alg rte_acl_default_classify =
71 RTE_ACL_CLASSIFY_SCALAR;
72
73 static void
74 rte_acl_set_default_classify(enum rte_acl_classify_alg alg)
75 {
76 rte_acl_default_classify = alg;
77 }
78
79 extern int
80 rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg)
81 {
82 if (ctx == NULL || (uint32_t)alg >= RTE_DIM(classify_fns))
83 return -EINVAL;
84
85 ctx->alg = alg;
86 return 0;
87 }
88
89 /*
90 * Select highest available classify method as default one.
91 * Note that CLASSIFY_AVX2 should be set as a default only
92 * if both conditions are met:
93 * at build time compiler supports AVX2 and target cpu supports AVX2.
94 */
95 RTE_INIT(rte_acl_init)
96 {
97 enum rte_acl_classify_alg alg = RTE_ACL_CLASSIFY_DEFAULT;
98
99 #if defined(RTE_ARCH_ARM64)
100 alg = RTE_ACL_CLASSIFY_NEON;
101 #elif defined(RTE_ARCH_ARM)
102 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
103 alg = RTE_ACL_CLASSIFY_NEON;
104 #elif defined(RTE_ARCH_PPC_64)
105 alg = RTE_ACL_CLASSIFY_ALTIVEC;
106 #else
107 #ifdef CC_AVX2_SUPPORT
108 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
109 alg = RTE_ACL_CLASSIFY_AVX2;
110 else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
111 #else
112 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
113 #endif
114 alg = RTE_ACL_CLASSIFY_SSE;
115
116 #endif
117 rte_acl_set_default_classify(alg);
118 }
119
120 int
121 rte_acl_classify_alg(const struct rte_acl_ctx *ctx, const uint8_t **data,
122 uint32_t *results, uint32_t num, uint32_t categories,
123 enum rte_acl_classify_alg alg)
124 {
125 if (categories != 1 &&
126 ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
127 return -EINVAL;
128
129 return classify_fns[alg](ctx, data, results, num, categories);
130 }
131
132 int
133 rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
134 uint32_t *results, uint32_t num, uint32_t categories)
135 {
136 return rte_acl_classify_alg(ctx, data, results, num, categories,
137 ctx->alg);
138 }
139
140 struct rte_acl_ctx *
141 rte_acl_find_existing(const char *name)
142 {
143 struct rte_acl_ctx *ctx = NULL;
144 struct rte_acl_list *acl_list;
145 struct rte_tailq_entry *te;
146
147 acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
148
149 rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
150 TAILQ_FOREACH(te, acl_list, next) {
151 ctx = (struct rte_acl_ctx *) te->data;
152 if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0)
153 break;
154 }
155 rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
156
157 if (te == NULL) {
158 rte_errno = ENOENT;
159 return NULL;
160 }
161 return ctx;
162 }
163
164 void
165 rte_acl_free(struct rte_acl_ctx *ctx)
166 {
167 struct rte_acl_list *acl_list;
168 struct rte_tailq_entry *te;
169
170 if (ctx == NULL)
171 return;
172
173 acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
174
175 rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
176
177 /* find our tailq entry */
178 TAILQ_FOREACH(te, acl_list, next) {
179 if (te->data == (void *) ctx)
180 break;
181 }
182 if (te == NULL) {
183 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
184 return;
185 }
186
187 TAILQ_REMOVE(acl_list, te, next);
188
189 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
190
191 rte_free(ctx->mem);
192 rte_free(ctx);
193 rte_free(te);
194 }
195
196 struct rte_acl_ctx *
197 rte_acl_create(const struct rte_acl_param *param)
198 {
199 size_t sz;
200 struct rte_acl_ctx *ctx;
201 struct rte_acl_list *acl_list;
202 struct rte_tailq_entry *te;
203 char name[sizeof(ctx->name)];
204
205 acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
206
207 /* check that input parameters are valid. */
208 if (param == NULL || param->name == NULL) {
209 rte_errno = EINVAL;
210 return NULL;
211 }
212
213 snprintf(name, sizeof(name), "ACL_%s", param->name);
214
215 /* calculate amount of memory required for pattern set. */
216 sz = sizeof(*ctx) + param->max_rule_num * param->rule_size;
217
218 /* get EAL TAILQ lock. */
219 rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
220
221 /* if we already have one with that name */
222 TAILQ_FOREACH(te, acl_list, next) {
223 ctx = (struct rte_acl_ctx *) te->data;
224 if (strncmp(param->name, ctx->name, sizeof(ctx->name)) == 0)
225 break;
226 }
227
228 /* if ACL with such name doesn't exist, then create a new one. */
229 if (te == NULL) {
230 ctx = NULL;
231 te = rte_zmalloc("ACL_TAILQ_ENTRY", sizeof(*te), 0);
232
233 if (te == NULL) {
234 RTE_LOG(ERR, ACL, "Cannot allocate tailq entry!\n");
235 goto exit;
236 }
237
238 ctx = rte_zmalloc_socket(name, sz, RTE_CACHE_LINE_SIZE, param->socket_id);
239
240 if (ctx == NULL) {
241 RTE_LOG(ERR, ACL,
242 "allocation of %zu bytes on socket %d for %s failed\n",
243 sz, param->socket_id, name);
244 rte_free(te);
245 goto exit;
246 }
247 /* init new allocated context. */
248 ctx->rules = ctx + 1;
249 ctx->max_rules = param->max_rule_num;
250 ctx->rule_sz = param->rule_size;
251 ctx->socket_id = param->socket_id;
252 ctx->alg = rte_acl_default_classify;
253 strlcpy(ctx->name, param->name, sizeof(ctx->name));
254
255 te->data = (void *) ctx;
256
257 TAILQ_INSERT_TAIL(acl_list, te, next);
258 }
259
260 exit:
261 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
262 return ctx;
263 }
264
265 static int
266 acl_add_rules(struct rte_acl_ctx *ctx, const void *rules, uint32_t num)
267 {
268 uint8_t *pos;
269
270 if (num + ctx->num_rules > ctx->max_rules)
271 return -ENOMEM;
272
273 pos = ctx->rules;
274 pos += ctx->rule_sz * ctx->num_rules;
275 memcpy(pos, rules, num * ctx->rule_sz);
276 ctx->num_rules += num;
277
278 return 0;
279 }
280
281 static int
282 acl_check_rule(const struct rte_acl_rule_data *rd)
283 {
284 if ((RTE_LEN2MASK(RTE_ACL_MAX_CATEGORIES, typeof(rd->category_mask)) &
285 rd->category_mask) == 0 ||
286 rd->priority > RTE_ACL_MAX_PRIORITY ||
287 rd->priority < RTE_ACL_MIN_PRIORITY)
288 return -EINVAL;
289 return 0;
290 }
291
292 int
293 rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules,
294 uint32_t num)
295 {
296 const struct rte_acl_rule *rv;
297 uint32_t i;
298 int32_t rc;
299
300 if (ctx == NULL || rules == NULL || 0 == ctx->rule_sz)
301 return -EINVAL;
302
303 for (i = 0; i != num; i++) {
304 rv = (const struct rte_acl_rule *)
305 ((uintptr_t)rules + i * ctx->rule_sz);
306 rc = acl_check_rule(&rv->data);
307 if (rc != 0) {
308 RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n",
309 __func__, ctx->name, i + 1);
310 return rc;
311 }
312 }
313
314 return acl_add_rules(ctx, rules, num);
315 }
316
317 /*
318 * Reset all rules.
319 * Note that RT structures are not affected.
320 */
321 void
322 rte_acl_reset_rules(struct rte_acl_ctx *ctx)
323 {
324 if (ctx != NULL)
325 ctx->num_rules = 0;
326 }
327
328 /*
329 * Reset all rules and destroys RT structures.
330 */
331 void
332 rte_acl_reset(struct rte_acl_ctx *ctx)
333 {
334 if (ctx != NULL) {
335 rte_acl_reset_rules(ctx);
336 rte_acl_build(ctx, &ctx->config);
337 }
338 }
339
340 /*
341 * Dump ACL context to the stdout.
342 */
343 void
344 rte_acl_dump(const struct rte_acl_ctx *ctx)
345 {
346 if (!ctx)
347 return;
348 printf("acl context <%s>@%p\n", ctx->name, ctx);
349 printf(" socket_id=%"PRId32"\n", ctx->socket_id);
350 printf(" alg=%"PRId32"\n", ctx->alg);
351 printf(" max_rules=%"PRIu32"\n", ctx->max_rules);
352 printf(" rule_size=%"PRIu32"\n", ctx->rule_sz);
353 printf(" num_rules=%"PRIu32"\n", ctx->num_rules);
354 printf(" num_categories=%"PRIu32"\n", ctx->num_categories);
355 printf(" num_tries=%"PRIu32"\n", ctx->num_tries);
356 }
357
358 /*
359 * Dump all ACL contexts to the stdout.
360 */
361 void
362 rte_acl_list_dump(void)
363 {
364 struct rte_acl_ctx *ctx;
365 struct rte_acl_list *acl_list;
366 struct rte_tailq_entry *te;
367
368 acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
369
370 rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
371 TAILQ_FOREACH(te, acl_list, next) {
372 ctx = (struct rte_acl_ctx *) te->data;
373 rte_acl_dump(ctx);
374 }
375 rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
376 }