]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/lib/librte_cryptodev/rte_crypto_sym.h
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_cryptodev / rte_crypto_sym.h
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2016 Intel Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * * Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 * * Neither the name of Intel Corporation nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #ifndef _RTE_CRYPTO_SYM_H_
34 #define _RTE_CRYPTO_SYM_H_
35
36 /**
37 * @file rte_crypto_sym.h
38 *
39 * RTE Definitions for Symmetric Cryptography
40 *
41 * Defines symmetric cipher and authentication algorithms and modes, as well
42 * as supported symmetric crypto operation combinations.
43 */
44
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
48
49 #include <string.h>
50
51 #include <rte_mbuf.h>
52 #include <rte_memory.h>
53 #include <rte_mempool.h>
54 #include <rte_common.h>
55
56
57 /** Symmetric Cipher Algorithms */
58 enum rte_crypto_cipher_algorithm {
59 RTE_CRYPTO_CIPHER_NULL = 1,
60 /**< NULL cipher algorithm. No mode applies to the NULL algorithm. */
61
62 RTE_CRYPTO_CIPHER_3DES_CBC,
63 /**< Triple DES algorithm in CBC mode */
64 RTE_CRYPTO_CIPHER_3DES_CTR,
65 /**< Triple DES algorithm in CTR mode */
66 RTE_CRYPTO_CIPHER_3DES_ECB,
67 /**< Triple DES algorithm in ECB mode */
68
69 RTE_CRYPTO_CIPHER_AES_CBC,
70 /**< AES algorithm in CBC mode */
71 RTE_CRYPTO_CIPHER_AES_CCM,
72 /**< AES algorithm in CCM mode. When this cipher algorithm is used the
73 * *RTE_CRYPTO_AUTH_AES_CCM* element of the
74 * *rte_crypto_hash_algorithm* enum MUST be used to set up the related
75 * *rte_crypto_auth_xform* structure in the session context or in
76 * the op_params of the crypto operation structure in the case of a
77 * session-less crypto operation
78 */
79 RTE_CRYPTO_CIPHER_AES_CTR,
80 /**< AES algorithm in Counter mode */
81 RTE_CRYPTO_CIPHER_AES_ECB,
82 /**< AES algorithm in ECB mode */
83 RTE_CRYPTO_CIPHER_AES_F8,
84 /**< AES algorithm in F8 mode */
85 RTE_CRYPTO_CIPHER_AES_GCM,
86 /**< AES algorithm in GCM mode. When this cipher algorithm is used the
87 * *RTE_CRYPTO_AUTH_AES_GCM* or *RTE_CRYPTO_AUTH_AES_GMAC* element
88 * of the *rte_crypto_auth_algorithm* enum MUST be used to set up
89 * the related *rte_crypto_auth_setup_data* structure in the session
90 * context or in the op_params of the crypto operation structure
91 * in the case of a session-less crypto operation.
92 */
93 RTE_CRYPTO_CIPHER_AES_XTS,
94 /**< AES algorithm in XTS mode */
95
96 RTE_CRYPTO_CIPHER_ARC4,
97 /**< (A)RC4 cipher algorithm */
98
99 RTE_CRYPTO_CIPHER_KASUMI_F8,
100 /**< KASUMI algorithm in F8 mode */
101
102 RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
103 /**< SNOW 3G algorithm in UEA2 mode */
104
105 RTE_CRYPTO_CIPHER_ZUC_EEA3,
106 /**< ZUC algorithm in EEA3 mode */
107
108 RTE_CRYPTO_CIPHER_DES_CBC,
109 /**< DES algorithm in CBC mode */
110
111 RTE_CRYPTO_CIPHER_AES_DOCSISBPI,
112 /**< AES algorithm using modes required by
113 * DOCSIS Baseline Privacy Plus Spec.
114 * Chained mbufs are not supported in this mode, i.e. rte_mbuf.next
115 * for m_src and m_dst in the rte_crypto_sym_op must be NULL.
116 */
117
118 RTE_CRYPTO_CIPHER_DES_DOCSISBPI,
119 /**< DES algorithm using modes required by
120 * DOCSIS Baseline Privacy Plus Spec.
121 * Chained mbufs are not supported in this mode, i.e. rte_mbuf.next
122 * for m_src and m_dst in the rte_crypto_sym_op must be NULL.
123 */
124
125 RTE_CRYPTO_CIPHER_LIST_END
126
127 };
128
129 /** Cipher algorithm name strings */
130 extern const char *
131 rte_crypto_cipher_algorithm_strings[];
132
133 /** Symmetric Cipher Direction */
134 enum rte_crypto_cipher_operation {
135 RTE_CRYPTO_CIPHER_OP_ENCRYPT,
136 /**< Encrypt cipher operation */
137 RTE_CRYPTO_CIPHER_OP_DECRYPT
138 /**< Decrypt cipher operation */
139 };
140
141 /** Cipher operation name strings */
142 extern const char *
143 rte_crypto_cipher_operation_strings[];
144
145 /**
146 * Symmetric Cipher Setup Data.
147 *
148 * This structure contains data relating to Cipher (Encryption and Decryption)
149 * use to create a session.
150 */
151 struct rte_crypto_cipher_xform {
152 enum rte_crypto_cipher_operation op;
153 /**< This parameter determines if the cipher operation is an encrypt or
154 * a decrypt operation. For the RC4 algorithm and the F8/CTR modes,
155 * only encrypt operations are valid.
156 */
157 enum rte_crypto_cipher_algorithm algo;
158 /**< Cipher algorithm */
159
160 struct {
161 uint8_t *data; /**< pointer to key data */
162 size_t length; /**< key length in bytes */
163 } key;
164 /**< Cipher key
165 *
166 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.data will
167 * point to a concatenation of the AES encryption key followed by a
168 * keymask. As per RFC3711, the keymask should be padded with trailing
169 * bytes to match the length of the encryption key used.
170 *
171 * For AES-XTS mode of operation, two keys must be provided and
172 * key.data must point to the two keys concatenated together (Key1 ||
173 * Key2). The cipher key length will contain the total size of both
174 * keys.
175 *
176 * Cipher key length is in bytes. For AES it can be 128 bits (16 bytes),
177 * 192 bits (24 bytes) or 256 bits (32 bytes).
178 *
179 * For the CCM mode of operation, the only supported key length is 128
180 * bits (16 bytes).
181 *
182 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length
183 * should be set to the combined length of the encryption key and the
184 * keymask. Since the keymask and the encryption key are the same size,
185 * key.length should be set to 2 x the AES encryption key length.
186 *
187 * For the AES-XTS mode of operation:
188 * - Two keys must be provided and key.length refers to total length of
189 * the two keys.
190 * - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes).
191 * - Both keys must have the same size.
192 **/
193 };
194
195 /** Symmetric Authentication / Hash Algorithms */
196 enum rte_crypto_auth_algorithm {
197 RTE_CRYPTO_AUTH_NULL = 1,
198 /**< NULL hash algorithm. */
199
200 RTE_CRYPTO_AUTH_AES_CBC_MAC,
201 /**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */
202 RTE_CRYPTO_AUTH_AES_CCM,
203 /**< AES algorithm in CCM mode. This is an authenticated cipher. When
204 * this hash algorithm is used, the *RTE_CRYPTO_CIPHER_AES_CCM*
205 * element of the *rte_crypto_cipher_algorithm* enum MUST be used to
206 * set up the related rte_crypto_cipher_setup_data structure in the
207 * session context or the corresponding parameter in the crypto
208 * operation data structures op_params parameter MUST be set for a
209 * session-less crypto operation.
210 */
211 RTE_CRYPTO_AUTH_AES_CMAC,
212 /**< AES CMAC algorithm. */
213 RTE_CRYPTO_AUTH_AES_GCM,
214 /**< AES algorithm in GCM mode. When this hash algorithm
215 * is used, the RTE_CRYPTO_CIPHER_AES_GCM element of the
216 * rte_crypto_cipher_algorithm enum MUST be used to set up the related
217 * rte_crypto_cipher_setup_data structure in the session context, or
218 * the corresponding parameter in the crypto operation data structures
219 * op_params parameter MUST be set for a session-less crypto operation.
220 */
221 RTE_CRYPTO_AUTH_AES_GMAC,
222 /**< AES GMAC algorithm. When this hash algorithm
223 * is used, the RTE_CRYPTO_CIPHER_AES_GCM element of the
224 * rte_crypto_cipher_algorithm enum MUST be used to set up the related
225 * rte_crypto_cipher_setup_data structure in the session context, or
226 * the corresponding parameter in the crypto operation data structures
227 * op_params parameter MUST be set for a session-less crypto operation.
228 */
229 RTE_CRYPTO_AUTH_AES_XCBC_MAC,
230 /**< AES XCBC algorithm. */
231
232 RTE_CRYPTO_AUTH_KASUMI_F9,
233 /**< KASUMI algorithm in F9 mode. */
234
235 RTE_CRYPTO_AUTH_MD5,
236 /**< MD5 algorithm */
237 RTE_CRYPTO_AUTH_MD5_HMAC,
238 /**< HMAC using MD5 algorithm */
239
240 RTE_CRYPTO_AUTH_SHA1,
241 /**< 128 bit SHA algorithm. */
242 RTE_CRYPTO_AUTH_SHA1_HMAC,
243 /**< HMAC using 128 bit SHA algorithm. */
244 RTE_CRYPTO_AUTH_SHA224,
245 /**< 224 bit SHA algorithm. */
246 RTE_CRYPTO_AUTH_SHA224_HMAC,
247 /**< HMAC using 224 bit SHA algorithm. */
248 RTE_CRYPTO_AUTH_SHA256,
249 /**< 256 bit SHA algorithm. */
250 RTE_CRYPTO_AUTH_SHA256_HMAC,
251 /**< HMAC using 256 bit SHA algorithm. */
252 RTE_CRYPTO_AUTH_SHA384,
253 /**< 384 bit SHA algorithm. */
254 RTE_CRYPTO_AUTH_SHA384_HMAC,
255 /**< HMAC using 384 bit SHA algorithm. */
256 RTE_CRYPTO_AUTH_SHA512,
257 /**< 512 bit SHA algorithm. */
258 RTE_CRYPTO_AUTH_SHA512_HMAC,
259 /**< HMAC using 512 bit SHA algorithm. */
260
261 RTE_CRYPTO_AUTH_SNOW3G_UIA2,
262 /**< SNOW 3G algorithm in UIA2 mode. */
263
264 RTE_CRYPTO_AUTH_ZUC_EIA3,
265 /**< ZUC algorithm in EIA3 mode */
266
267 RTE_CRYPTO_AUTH_LIST_END
268 };
269
270 /** Authentication algorithm name strings */
271 extern const char *
272 rte_crypto_auth_algorithm_strings[];
273
274 /** Symmetric Authentication / Hash Operations */
275 enum rte_crypto_auth_operation {
276 RTE_CRYPTO_AUTH_OP_VERIFY, /**< Verify authentication digest */
277 RTE_CRYPTO_AUTH_OP_GENERATE /**< Generate authentication digest */
278 };
279
280 /** Authentication operation name strings */
281 extern const char *
282 rte_crypto_auth_operation_strings[];
283
284 /**
285 * Authentication / Hash transform data.
286 *
287 * This structure contains data relating to an authentication/hash crypto
288 * transforms. The fields op, algo and digest_length are common to all
289 * authentication transforms and MUST be set.
290 */
291 struct rte_crypto_auth_xform {
292 enum rte_crypto_auth_operation op;
293 /**< Authentication operation type */
294 enum rte_crypto_auth_algorithm algo;
295 /**< Authentication algorithm selection */
296
297 struct {
298 uint8_t *data; /**< pointer to key data */
299 size_t length; /**< key length in bytes */
300 } key;
301 /**< Authentication key data.
302 * The authentication key length MUST be less than or equal to the
303 * block size of the algorithm. It is the callers responsibility to
304 * ensure that the key length is compliant with the standard being used
305 * (for example RFC 2104, FIPS 198a).
306 */
307
308 uint32_t digest_length;
309 /**< Length of the digest to be returned. If the verify option is set,
310 * this specifies the length of the digest to be compared for the
311 * session.
312 *
313 * It is the caller's responsibility to ensure that the
314 * digest length is compliant with the hash algorithm being used.
315 * If the value is less than the maximum length allowed by the hash,
316 * the result shall be truncated.
317 */
318
319 uint32_t add_auth_data_length;
320 /**< The length of the additional authenticated data (AAD) in bytes.
321 * The maximum permitted value is 65535 (2^16 - 1) bytes, unless
322 * otherwise specified below.
323 *
324 * This field must be specified when the hash algorithm is one of the
325 * following:
326 *
327 * - For SNOW 3G (@ref RTE_CRYPTO_AUTH_SNOW3G_UIA2), this is the
328 * length of the IV (which should be 16).
329 *
330 * - For GCM (@ref RTE_CRYPTO_AUTH_AES_GCM). In this case, this is
331 * the length of the Additional Authenticated Data (called A, in NIST
332 * SP800-38D).
333 *
334 * - For CCM (@ref RTE_CRYPTO_AUTH_AES_CCM). In this case, this is
335 * the length of the associated data (called A, in NIST SP800-38C).
336 * Note that this does NOT include the length of any padding, or the
337 * 18 bytes reserved at the start of the above field to store the
338 * block B0 and the encoded length. The maximum permitted value in
339 * this case is 222 bytes.
340 *
341 * @note
342 * For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) mode of operation
343 * this field is not used and should be set to 0. Instead the length
344 * of the AAD data is specified in additional authentication data
345 * length field of the rte_crypto_sym_op_data structure
346 */
347 };
348
349 /** Crypto transformation types */
350 enum rte_crypto_sym_xform_type {
351 RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0, /**< No xform specified */
352 RTE_CRYPTO_SYM_XFORM_AUTH, /**< Authentication xform */
353 RTE_CRYPTO_SYM_XFORM_CIPHER /**< Cipher xform */
354 };
355
356 /**
357 * Symmetric crypto transform structure.
358 *
359 * This is used to specify the crypto transforms required, multiple transforms
360 * can be chained together to specify a chain transforms such as authentication
361 * then cipher, or cipher then authentication. Each transform structure can
362 * hold a single transform, the type field is used to specify which transform
363 * is contained within the union
364 */
365 struct rte_crypto_sym_xform {
366 struct rte_crypto_sym_xform *next;
367 /**< next xform in chain */
368 enum rte_crypto_sym_xform_type type
369 ; /**< xform type */
370 RTE_STD_C11
371 union {
372 struct rte_crypto_auth_xform auth;
373 /**< Authentication / hash xform */
374 struct rte_crypto_cipher_xform cipher;
375 /**< Cipher xform */
376 };
377 };
378
379 /**
380 * Crypto operation session type. This is used to specify whether a crypto
381 * operation has session structure attached for immutable parameters or if all
382 * operation information is included in the operation data structure.
383 */
384 enum rte_crypto_sym_op_sess_type {
385 RTE_CRYPTO_SYM_OP_WITH_SESSION, /**< Session based crypto operation */
386 RTE_CRYPTO_SYM_OP_SESSIONLESS /**< Session-less crypto operation */
387 };
388
389
390 struct rte_cryptodev_sym_session;
391
392 /**
393 * Symmetric Cryptographic Operation.
394 *
395 * This structure contains data relating to performing symmetric cryptographic
396 * processing on a referenced mbuf data buffer.
397 *
398 * When a symmetric crypto operation is enqueued with the device for processing
399 * it must have a valid *rte_mbuf* structure attached, via m_src parameter,
400 * which contains the source data which the crypto operation is to be performed
401 * on.
402 * While the mbuf is in use by a crypto operation no part of the mbuf should be
403 * changed by the application as the device may read or write to any part of the
404 * mbuf. In the case of hardware crypto devices some or all of the mbuf
405 * may be DMAed in and out of the device, so writing over the original data,
406 * though only the part specified by the rte_crypto_sym_op for transformation
407 * will be changed.
408 * Out-of-place (OOP) operation, where the source mbuf is different to the
409 * destination mbuf, is a special case. Data will be copied from m_src to m_dst.
410 * The part copied includes all the parts of the source mbuf that will be
411 * operated on, based on the cipher.data.offset+cipher.data.length and
412 * auth.data.offset+auth.data.length values in the rte_crypto_sym_op. The part
413 * indicated by the cipher parameters will be transformed, any extra data around
414 * this indicated by the auth parameters will be copied unchanged from source to
415 * destination mbuf.
416 * Also in OOP operation the cipher.data.offset and auth.data.offset apply to
417 * both source and destination mbufs. As these offsets are relative to the
418 * data_off parameter in each mbuf this can result in the data written to the
419 * destination buffer being at a different alignment, relative to buffer start,
420 * to the data in the source buffer.
421 */
422 struct rte_crypto_sym_op {
423 struct rte_mbuf *m_src; /**< source mbuf */
424 struct rte_mbuf *m_dst; /**< destination mbuf */
425
426 enum rte_crypto_sym_op_sess_type sess_type;
427
428 RTE_STD_C11
429 union {
430 struct rte_cryptodev_sym_session *session;
431 /**< Handle for the initialised session context */
432 struct rte_crypto_sym_xform *xform;
433 /**< Session-less API crypto operation parameters */
434 };
435
436 struct {
437 struct {
438 uint32_t offset;
439 /**< Starting point for cipher processing, specified
440 * as number of bytes from start of data in the source
441 * buffer. The result of the cipher operation will be
442 * written back into the output buffer starting at
443 * this location.
444 *
445 * @note
446 * For SNOW 3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
447 * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
448 * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
449 * this field should be in bits.
450 */
451
452 uint32_t length;
453 /**< The message length, in bytes, of the source buffer
454 * on which the cryptographic operation will be
455 * computed. This must be a multiple of the block size
456 * if a block cipher is being used. This is also the
457 * same as the result length.
458 *
459 * @note
460 * In the case of CCM @ref RTE_CRYPTO_AUTH_AES_CCM,
461 * this value should not include the length of the
462 * padding or the length of the MAC; the driver will
463 * compute the actual number of bytes over which the
464 * encryption will occur, which will include these
465 * values.
466 *
467 * @note
468 * For AES-GMAC @ref RTE_CRYPTO_AUTH_AES_GMAC, this
469 * field should be set to 0.
470 *
471 * @note
472 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2,
473 * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
474 * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
475 * this field should be in bits.
476 */
477 } data; /**< Data offsets and length for ciphering */
478
479 struct {
480 uint8_t *data;
481 /**< Initialisation Vector or Counter.
482 *
483 * - For block ciphers in CBC or F8 mode, or for KASUMI
484 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the
485 * Initialisation Vector (IV) value.
486 *
487 * - For block ciphers in CTR mode, this is the counter.
488 *
489 * - For GCM mode, this is either the IV (if the length
490 * is 96 bits) or J0 (for other sizes), where J0 is as
491 * defined by NIST SP800-38D. Regardless of the IV
492 * length, a full 16 bytes needs to be allocated.
493 *
494 * - For CCM mode, the first byte is reserved, and the
495 * nonce should be written starting at &iv[1] (to allow
496 * space for the implementation to write in the flags
497 * in the first byte). Note that a full 16 bytes should
498 * be allocated, even though the length field will
499 * have a value less than this.
500 *
501 * - For AES-XTS, this is the 128bit tweak, i, from
502 * IEEE Std 1619-2007.
503 *
504 * For optimum performance, the data pointed to SHOULD
505 * be 8-byte aligned.
506 */
507 phys_addr_t phys_addr;
508 uint16_t length;
509 /**< Length of valid IV data.
510 *
511 * - For block ciphers in CBC or F8 mode, or for KASUMI
512 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the
513 * length of the IV (which must be the same as the
514 * block length of the cipher).
515 *
516 * - For block ciphers in CTR mode, this is the length
517 * of the counter (which must be the same as the block
518 * length of the cipher).
519 *
520 * - For GCM mode, this is either 12 (for 96-bit IVs)
521 * or 16, in which case data points to J0.
522 *
523 * - For CCM mode, this is the length of the nonce,
524 * which can be in the range 7 to 13 inclusive.
525 */
526 } iv; /**< Initialisation vector parameters */
527 } cipher;
528
529 struct {
530 struct {
531 uint32_t offset;
532 /**< Starting point for hash processing, specified as
533 * number of bytes from start of packet in source
534 * buffer.
535 *
536 * @note
537 * For CCM and GCM modes of operation, this field is
538 * ignored. The field @ref aad field
539 * should be set instead.
540 *
541 * @note For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC)
542 * mode of operation, this field is set to 0. aad data
543 * pointer of rte_crypto_sym_op_data structure is
544 * used instead
545 *
546 * @note
547 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
548 * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
549 * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
550 * this field should be in bits.
551 */
552
553 uint32_t length;
554 /**< The message length, in bytes, of the source
555 * buffer that the hash will be computed on.
556 *
557 * @note
558 * For CCM and GCM modes of operation, this field is
559 * ignored. The field @ref aad field should be set
560 * instead.
561 *
562 * @note
563 * For AES-GMAC @ref RTE_CRYPTO_AUTH_AES_GMAC mode
564 * of operation, this field is set to 0.
565 * Auth.aad.length is used instead.
566 *
567 * @note
568 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
569 * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
570 * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
571 * this field should be in bits.
572 */
573 } data; /**< Data offsets and length for authentication */
574
575 struct {
576 uint8_t *data;
577 /**< This points to the location where the digest result
578 * should be inserted (in the case of digest generation)
579 * or where the purported digest exists (in the case of
580 * digest verification).
581 *
582 * At session creation time, the client specified the
583 * digest result length with the digest_length member
584 * of the @ref rte_crypto_auth_xform structure. For
585 * physical crypto devices the caller must allocate at
586 * least digest_length of physically contiguous memory
587 * at this location.
588 *
589 * For digest generation, the digest result will
590 * overwrite any data at this location.
591 *
592 * @note
593 * For GCM (@ref RTE_CRYPTO_AUTH_AES_GCM), for
594 * "digest result" read "authentication tag T".
595 */
596 phys_addr_t phys_addr;
597 /**< Physical address of digest */
598 uint16_t length;
599 /**< Length of digest. This must be the same value as
600 * @ref rte_crypto_auth_xform.digest_length.
601 */
602 } digest; /**< Digest parameters */
603
604 struct {
605 uint8_t *data;
606 /**< Pointer to Additional Authenticated Data (AAD)
607 * needed for authenticated cipher mechanisms (CCM and
608 * GCM), and to the IV for SNOW 3G authentication
609 * (@ref RTE_CRYPTO_AUTH_SNOW3G_UIA2). For other
610 * authentication mechanisms this pointer is ignored.
611 *
612 * The length of the data pointed to by this field is
613 * set up for the session in the @ref
614 * rte_crypto_auth_xform structure as part of the @ref
615 * rte_cryptodev_sym_session_create function call.
616 * This length must not exceed 65535 (2^16-1) bytes.
617 *
618 * Specifically for CCM (@ref RTE_CRYPTO_AUTH_AES_CCM),
619 * the caller should setup this field as follows:
620 *
621 * - the nonce should be written starting at an offset
622 * of one byte into the array, leaving room for the
623 * implementation to write in the flags to the first
624 * byte.
625 *
626 * - the additional authentication data itself should
627 * be written starting at an offset of 18 bytes into
628 * the array, leaving room for the length encoding in
629 * the first two bytes of the second block.
630 *
631 * - the array should be big enough to hold the above
632 * fields, plus any padding to round this up to the
633 * nearest multiple of the block size (16 bytes).
634 * Padding will be added by the implementation.
635 *
636 * Finally, for GCM (@ref RTE_CRYPTO_AUTH_AES_GCM), the
637 * caller should setup this field as follows:
638 *
639 * - the AAD is written in starting at byte 0
640 * - the array must be big enough to hold the AAD, plus
641 * any space to round this up to the nearest multiple
642 * of the block size (16 bytes).
643 *
644 * @note
645 * For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) mode of
646 * operation, this field is used to pass plaintext.
647 */
648 phys_addr_t phys_addr; /**< physical address */
649 uint16_t length;
650 /**< Length of additional authenticated data (AAD)
651 * in bytes
652 */
653 } aad;
654 /**< Additional authentication parameters */
655 } auth;
656 } __rte_cache_aligned;
657
658
659 /**
660 * Reset the fields of a symmetric operation to their default values.
661 *
662 * @param op The crypto operation to be reset.
663 */
664 static inline void
665 __rte_crypto_sym_op_reset(struct rte_crypto_sym_op *op)
666 {
667 memset(op, 0, sizeof(*op));
668
669 op->sess_type = RTE_CRYPTO_SYM_OP_SESSIONLESS;
670 }
671
672
673 /**
674 * Allocate space for symmetric crypto xforms in the private data space of the
675 * crypto operation. This also defaults the crypto xform type to
676 * RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED and configures the chaining of the xforms
677 * in the crypto operation
678 *
679 * @return
680 * - On success returns pointer to first crypto xform in crypto operations chain
681 * - On failure returns NULL
682 */
683 static inline struct rte_crypto_sym_xform *
684 __rte_crypto_sym_op_sym_xforms_alloc(struct rte_crypto_sym_op *sym_op,
685 void *priv_data, uint8_t nb_xforms)
686 {
687 struct rte_crypto_sym_xform *xform;
688
689 sym_op->xform = xform = (struct rte_crypto_sym_xform *)priv_data;
690
691 do {
692 xform->type = RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED;
693 xform = xform->next = --nb_xforms > 0 ? xform + 1 : NULL;
694 } while (xform);
695
696 return sym_op->xform;
697 }
698
699
700 /**
701 * Attach a session to a symmetric crypto operation
702 *
703 * @param sym_op crypto operation
704 * @param sess cryptodev session
705 */
706 static inline int
707 __rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op,
708 struct rte_cryptodev_sym_session *sess)
709 {
710 sym_op->session = sess;
711 sym_op->sess_type = RTE_CRYPTO_SYM_OP_WITH_SESSION;
712
713 return 0;
714 }
715
716
717 #ifdef __cplusplus
718 }
719 #endif
720
721 #endif /* _RTE_CRYPTO_SYM_H_ */