]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/lib/librte_eal/common/malloc_elem.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_eal / common / malloc_elem.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 #include <stdint.h>
34 #include <stddef.h>
35 #include <stdio.h>
36 #include <string.h>
37 #include <sys/queue.h>
38
39 #include <rte_memory.h>
40 #include <rte_eal.h>
41 #include <rte_launch.h>
42 #include <rte_per_lcore.h>
43 #include <rte_lcore.h>
44 #include <rte_debug.h>
45 #include <rte_common.h>
46 #include <rte_spinlock.h>
47
48 #include "malloc_elem.h"
49 #include "malloc_heap.h"
50
51 #define MIN_DATA_SIZE (RTE_CACHE_LINE_SIZE)
52
53 /*
54 * initialise a general malloc_elem header structure
55 */
56 void
57 malloc_elem_init(struct malloc_elem *elem,
58 struct malloc_heap *heap, const struct rte_memseg *ms, size_t size)
59 {
60 elem->heap = heap;
61 elem->ms = ms;
62 elem->prev = NULL;
63 memset(&elem->free_list, 0, sizeof(elem->free_list));
64 elem->state = ELEM_FREE;
65 elem->size = size;
66 elem->pad = 0;
67 set_header(elem);
68 set_trailer(elem);
69 }
70
71 /*
72 * initialise a dummy malloc_elem header for the end-of-memseg marker
73 */
74 void
75 malloc_elem_mkend(struct malloc_elem *elem, struct malloc_elem *prev)
76 {
77 malloc_elem_init(elem, prev->heap, prev->ms, 0);
78 elem->prev = prev;
79 elem->state = ELEM_BUSY; /* mark busy so its never merged */
80 }
81
82 /*
83 * calculate the starting point of where data of the requested size
84 * and alignment would fit in the current element. If the data doesn't
85 * fit, return NULL.
86 */
87 static void *
88 elem_start_pt(struct malloc_elem *elem, size_t size, unsigned align,
89 size_t bound)
90 {
91 const size_t bmask = ~(bound - 1);
92 uintptr_t end_pt = (uintptr_t)elem +
93 elem->size - MALLOC_ELEM_TRAILER_LEN;
94 uintptr_t new_data_start = RTE_ALIGN_FLOOR((end_pt - size), align);
95 uintptr_t new_elem_start;
96
97 /* check boundary */
98 if ((new_data_start & bmask) != ((end_pt - 1) & bmask)) {
99 end_pt = RTE_ALIGN_FLOOR(end_pt, bound);
100 new_data_start = RTE_ALIGN_FLOOR((end_pt - size), align);
101 if (((end_pt - 1) & bmask) != (new_data_start & bmask))
102 return NULL;
103 }
104
105 new_elem_start = new_data_start - MALLOC_ELEM_HEADER_LEN;
106
107 /* if the new start point is before the exist start, it won't fit */
108 return (new_elem_start < (uintptr_t)elem) ? NULL : (void *)new_elem_start;
109 }
110
111 /*
112 * use elem_start_pt to determine if we get meet the size and
113 * alignment request from the current element
114 */
115 int
116 malloc_elem_can_hold(struct malloc_elem *elem, size_t size, unsigned align,
117 size_t bound)
118 {
119 return elem_start_pt(elem, size, align, bound) != NULL;
120 }
121
122 /*
123 * split an existing element into two smaller elements at the given
124 * split_pt parameter.
125 */
126 static void
127 split_elem(struct malloc_elem *elem, struct malloc_elem *split_pt)
128 {
129 struct malloc_elem *next_elem = RTE_PTR_ADD(elem, elem->size);
130 const size_t old_elem_size = (uintptr_t)split_pt - (uintptr_t)elem;
131 const size_t new_elem_size = elem->size - old_elem_size;
132
133 malloc_elem_init(split_pt, elem->heap, elem->ms, new_elem_size);
134 split_pt->prev = elem;
135 next_elem->prev = split_pt;
136 elem->size = old_elem_size;
137 set_trailer(elem);
138 }
139
140 /*
141 * Given an element size, compute its freelist index.
142 * We free an element into the freelist containing similarly-sized elements.
143 * We try to allocate elements starting with the freelist containing
144 * similarly-sized elements, and if necessary, we search freelists
145 * containing larger elements.
146 *
147 * Example element size ranges for a heap with five free lists:
148 * heap->free_head[0] - (0 , 2^8]
149 * heap->free_head[1] - (2^8 , 2^10]
150 * heap->free_head[2] - (2^10 ,2^12]
151 * heap->free_head[3] - (2^12, 2^14]
152 * heap->free_head[4] - (2^14, MAX_SIZE]
153 */
154 size_t
155 malloc_elem_free_list_index(size_t size)
156 {
157 #define MALLOC_MINSIZE_LOG2 8
158 #define MALLOC_LOG2_INCREMENT 2
159
160 size_t log2;
161 size_t index;
162
163 if (size <= (1UL << MALLOC_MINSIZE_LOG2))
164 return 0;
165
166 /* Find next power of 2 >= size. */
167 log2 = sizeof(size) * 8 - __builtin_clzl(size-1);
168
169 /* Compute freelist index, based on log2(size). */
170 index = (log2 - MALLOC_MINSIZE_LOG2 + MALLOC_LOG2_INCREMENT - 1) /
171 MALLOC_LOG2_INCREMENT;
172
173 return index <= RTE_HEAP_NUM_FREELISTS-1?
174 index: RTE_HEAP_NUM_FREELISTS-1;
175 }
176
177 /*
178 * Add the specified element to its heap's free list.
179 */
180 void
181 malloc_elem_free_list_insert(struct malloc_elem *elem)
182 {
183 size_t idx;
184
185 idx = malloc_elem_free_list_index(elem->size - MALLOC_ELEM_HEADER_LEN);
186 elem->state = ELEM_FREE;
187 LIST_INSERT_HEAD(&elem->heap->free_head[idx], elem, free_list);
188 }
189
190 /*
191 * Remove the specified element from its heap's free list.
192 */
193 static void
194 elem_free_list_remove(struct malloc_elem *elem)
195 {
196 LIST_REMOVE(elem, free_list);
197 }
198
199 /*
200 * reserve a block of data in an existing malloc_elem. If the malloc_elem
201 * is much larger than the data block requested, we split the element in two.
202 * This function is only called from malloc_heap_alloc so parameter checking
203 * is not done here, as it's done there previously.
204 */
205 struct malloc_elem *
206 malloc_elem_alloc(struct malloc_elem *elem, size_t size, unsigned align,
207 size_t bound)
208 {
209 struct malloc_elem *new_elem = elem_start_pt(elem, size, align, bound);
210 const size_t old_elem_size = (uintptr_t)new_elem - (uintptr_t)elem;
211 const size_t trailer_size = elem->size - old_elem_size - size -
212 MALLOC_ELEM_OVERHEAD;
213
214 elem_free_list_remove(elem);
215
216 if (trailer_size > MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
217 /* split it, too much free space after elem */
218 struct malloc_elem *new_free_elem =
219 RTE_PTR_ADD(new_elem, size + MALLOC_ELEM_OVERHEAD);
220
221 split_elem(elem, new_free_elem);
222 malloc_elem_free_list_insert(new_free_elem);
223 }
224
225 if (old_elem_size < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
226 /* don't split it, pad the element instead */
227 elem->state = ELEM_BUSY;
228 elem->pad = old_elem_size;
229
230 /* put a dummy header in padding, to point to real element header */
231 if (elem->pad > 0){ /* pad will be at least 64-bytes, as everything
232 * is cache-line aligned */
233 new_elem->pad = elem->pad;
234 new_elem->state = ELEM_PAD;
235 new_elem->size = elem->size - elem->pad;
236 set_header(new_elem);
237 }
238
239 return new_elem;
240 }
241
242 /* we are going to split the element in two. The original element
243 * remains free, and the new element is the one allocated.
244 * Re-insert original element, in case its new size makes it
245 * belong on a different list.
246 */
247 split_elem(elem, new_elem);
248 new_elem->state = ELEM_BUSY;
249 malloc_elem_free_list_insert(elem);
250
251 return new_elem;
252 }
253
254 /*
255 * joing two struct malloc_elem together. elem1 and elem2 must
256 * be contiguous in memory.
257 */
258 static inline void
259 join_elem(struct malloc_elem *elem1, struct malloc_elem *elem2)
260 {
261 struct malloc_elem *next = RTE_PTR_ADD(elem2, elem2->size);
262 elem1->size += elem2->size;
263 next->prev = elem1;
264 }
265
266 /*
267 * free a malloc_elem block by adding it to the free list. If the
268 * blocks either immediately before or immediately after newly freed block
269 * are also free, the blocks are merged together.
270 */
271 int
272 malloc_elem_free(struct malloc_elem *elem)
273 {
274 if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
275 return -1;
276
277 rte_spinlock_lock(&(elem->heap->lock));
278 size_t sz = elem->size - sizeof(*elem);
279 uint8_t *ptr = (uint8_t *)&elem[1];
280 struct malloc_elem *next = RTE_PTR_ADD(elem, elem->size);
281 if (next->state == ELEM_FREE){
282 /* remove from free list, join to this one */
283 elem_free_list_remove(next);
284 join_elem(elem, next);
285 sz += sizeof(*elem);
286 }
287
288 /* check if previous element is free, if so join with it and return,
289 * need to re-insert in free list, as that element's size is changing
290 */
291 if (elem->prev != NULL && elem->prev->state == ELEM_FREE) {
292 elem_free_list_remove(elem->prev);
293 join_elem(elem->prev, elem);
294 sz += sizeof(*elem);
295 ptr -= sizeof(*elem);
296 elem = elem->prev;
297 }
298 malloc_elem_free_list_insert(elem);
299
300 /* decrease heap's count of allocated elements */
301 elem->heap->alloc_count--;
302
303 memset(ptr, 0, sz);
304
305 rte_spinlock_unlock(&(elem->heap->lock));
306
307 return 0;
308 }
309
310 /*
311 * attempt to resize a malloc_elem by expanding into any free space
312 * immediately after it in memory.
313 */
314 int
315 malloc_elem_resize(struct malloc_elem *elem, size_t size)
316 {
317 const size_t new_size = size + MALLOC_ELEM_OVERHEAD;
318 /* if we request a smaller size, then always return ok */
319 const size_t current_size = elem->size - elem->pad;
320 if (current_size >= new_size)
321 return 0;
322
323 struct malloc_elem *next = RTE_PTR_ADD(elem, elem->size);
324 rte_spinlock_lock(&elem->heap->lock);
325 if (next ->state != ELEM_FREE)
326 goto err_return;
327 if (current_size + next->size < new_size)
328 goto err_return;
329
330 /* we now know the element fits, so remove from free list,
331 * join the two
332 */
333 elem_free_list_remove(next);
334 join_elem(elem, next);
335
336 if (elem->size - new_size >= MIN_DATA_SIZE + MALLOC_ELEM_OVERHEAD){
337 /* now we have a big block together. Lets cut it down a bit, by splitting */
338 struct malloc_elem *split_pt = RTE_PTR_ADD(elem, new_size);
339 split_pt = RTE_PTR_ALIGN_CEIL(split_pt, RTE_CACHE_LINE_SIZE);
340 split_elem(elem, split_pt);
341 malloc_elem_free_list_insert(split_pt);
342 }
343 rte_spinlock_unlock(&elem->heap->lock);
344 return 0;
345
346 err_return:
347 rte_spinlock_unlock(&elem->heap->lock);
348 return -1;
349 }