]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/lib/librte_eal/linuxapp/eal/eal_memory.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 /* BSD LICENSE
34 *
35 * Copyright(c) 2013 6WIND.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name of 6WIND S.A. nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #define _FILE_OFFSET_BITS 64
65 #include <errno.h>
66 #include <stdarg.h>
67 #include <stdbool.h>
68 #include <stdlib.h>
69 #include <stdio.h>
70 #include <stdint.h>
71 #include <inttypes.h>
72 #include <string.h>
73 #include <stdarg.h>
74 #include <sys/mman.h>
75 #include <sys/types.h>
76 #include <sys/stat.h>
77 #include <sys/queue.h>
78 #include <sys/file.h>
79 #include <unistd.h>
80 #include <limits.h>
81 #include <errno.h>
82 #include <sys/ioctl.h>
83 #include <sys/time.h>
84 #include <signal.h>
85 #include <setjmp.h>
86
87 #include <rte_log.h>
88 #include <rte_memory.h>
89 #include <rte_memzone.h>
90 #include <rte_launch.h>
91 #include <rte_eal.h>
92 #include <rte_eal_memconfig.h>
93 #include <rte_per_lcore.h>
94 #include <rte_lcore.h>
95 #include <rte_common.h>
96 #include <rte_string_fns.h>
97
98 #include "eal_private.h"
99 #include "eal_internal_cfg.h"
100 #include "eal_filesystem.h"
101 #include "eal_hugepages.h"
102
103 #define PFN_MASK_SIZE 8
104
105 #ifdef RTE_LIBRTE_XEN_DOM0
106 int rte_xen_dom0_supported(void)
107 {
108 return internal_config.xen_dom0_support;
109 }
110 #endif
111
112 /**
113 * @file
114 * Huge page mapping under linux
115 *
116 * To reserve a big contiguous amount of memory, we use the hugepage
117 * feature of linux. For that, we need to have hugetlbfs mounted. This
118 * code will create many files in this directory (one per page) and
119 * map them in virtual memory. For each page, we will retrieve its
120 * physical address and remap it in order to have a virtual contiguous
121 * zone as well as a physical contiguous zone.
122 */
123
124 static uint64_t baseaddr_offset;
125
126 static bool phys_addrs_available = true;
127
128 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
129
130 static void
131 test_phys_addrs_available(void)
132 {
133 uint64_t tmp;
134 phys_addr_t physaddr;
135
136 /* For dom0, phys addresses can always be available */
137 if (rte_xen_dom0_supported())
138 return;
139
140 physaddr = rte_mem_virt2phy(&tmp);
141 if (physaddr == RTE_BAD_PHYS_ADDR) {
142 RTE_LOG(ERR, EAL,
143 "Cannot obtain physical addresses: %s. "
144 "Only vfio will function.\n",
145 strerror(errno));
146 phys_addrs_available = false;
147 }
148 }
149
150 /* Lock page in physical memory and prevent from swapping. */
151 int
152 rte_mem_lock_page(const void *virt)
153 {
154 unsigned long virtual = (unsigned long)virt;
155 int page_size = getpagesize();
156 unsigned long aligned = (virtual & ~ (page_size - 1));
157 return mlock((void*)aligned, page_size);
158 }
159
160 /*
161 * Get physical address of any mapped virtual address in the current process.
162 */
163 phys_addr_t
164 rte_mem_virt2phy(const void *virtaddr)
165 {
166 int fd, retval;
167 uint64_t page, physaddr;
168 unsigned long virt_pfn;
169 int page_size;
170 off_t offset;
171
172 /* when using dom0, /proc/self/pagemap always returns 0, check in
173 * dpdk memory by browsing the memsegs */
174 if (rte_xen_dom0_supported()) {
175 struct rte_mem_config *mcfg;
176 struct rte_memseg *memseg;
177 unsigned i;
178
179 mcfg = rte_eal_get_configuration()->mem_config;
180 for (i = 0; i < RTE_MAX_MEMSEG; i++) {
181 memseg = &mcfg->memseg[i];
182 if (memseg->addr == NULL)
183 break;
184 if (virtaddr > memseg->addr &&
185 virtaddr < RTE_PTR_ADD(memseg->addr,
186 memseg->len)) {
187 return memseg->phys_addr +
188 RTE_PTR_DIFF(virtaddr, memseg->addr);
189 }
190 }
191
192 return RTE_BAD_PHYS_ADDR;
193 }
194
195 /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
196 if (!phys_addrs_available)
197 return RTE_BAD_PHYS_ADDR;
198
199 /* standard page size */
200 page_size = getpagesize();
201
202 fd = open("/proc/self/pagemap", O_RDONLY);
203 if (fd < 0) {
204 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
205 __func__, strerror(errno));
206 return RTE_BAD_PHYS_ADDR;
207 }
208
209 virt_pfn = (unsigned long)virtaddr / page_size;
210 offset = sizeof(uint64_t) * virt_pfn;
211 if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
212 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
213 __func__, strerror(errno));
214 close(fd);
215 return RTE_BAD_PHYS_ADDR;
216 }
217
218 retval = read(fd, &page, PFN_MASK_SIZE);
219 close(fd);
220 if (retval < 0) {
221 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
222 __func__, strerror(errno));
223 return RTE_BAD_PHYS_ADDR;
224 } else if (retval != PFN_MASK_SIZE) {
225 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
226 "but expected %d:\n",
227 __func__, retval, PFN_MASK_SIZE);
228 return RTE_BAD_PHYS_ADDR;
229 }
230
231 /*
232 * the pfn (page frame number) are bits 0-54 (see
233 * pagemap.txt in linux Documentation)
234 */
235 if ((page & 0x7fffffffffffffULL) == 0)
236 return RTE_BAD_PHYS_ADDR;
237
238 physaddr = ((page & 0x7fffffffffffffULL) * page_size)
239 + ((unsigned long)virtaddr % page_size);
240
241 return physaddr;
242 }
243
244 /*
245 * For each hugepage in hugepg_tbl, fill the physaddr value. We find
246 * it by browsing the /proc/self/pagemap special file.
247 */
248 static int
249 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
250 {
251 unsigned int i;
252 phys_addr_t addr;
253
254 for (i = 0; i < hpi->num_pages[0]; i++) {
255 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
256 if (addr == RTE_BAD_PHYS_ADDR)
257 return -1;
258 hugepg_tbl[i].physaddr = addr;
259 }
260 return 0;
261 }
262
263 /*
264 * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
265 */
266 static int
267 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
268 {
269 unsigned int i;
270 static phys_addr_t addr;
271
272 for (i = 0; i < hpi->num_pages[0]; i++) {
273 hugepg_tbl[i].physaddr = addr;
274 addr += hugepg_tbl[i].size;
275 }
276 return 0;
277 }
278
279 /*
280 * Check whether address-space layout randomization is enabled in
281 * the kernel. This is important for multi-process as it can prevent
282 * two processes mapping data to the same virtual address
283 * Returns:
284 * 0 - address space randomization disabled
285 * 1/2 - address space randomization enabled
286 * negative error code on error
287 */
288 static int
289 aslr_enabled(void)
290 {
291 char c;
292 int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
293 if (fd < 0)
294 return -errno;
295 retval = read(fd, &c, 1);
296 close(fd);
297 if (retval < 0)
298 return -errno;
299 if (retval == 0)
300 return -EIO;
301 switch (c) {
302 case '0' : return 0;
303 case '1' : return 1;
304 case '2' : return 2;
305 default: return -EINVAL;
306 }
307 }
308
309 /*
310 * Try to mmap *size bytes in /dev/zero. If it is successful, return the
311 * pointer to the mmap'd area and keep *size unmodified. Else, retry
312 * with a smaller zone: decrease *size by hugepage_sz until it reaches
313 * 0. In this case, return NULL. Note: this function returns an address
314 * which is a multiple of hugepage size.
315 */
316 static void *
317 get_virtual_area(size_t *size, size_t hugepage_sz)
318 {
319 void *addr;
320 int fd;
321 long aligned_addr;
322
323 if (internal_config.base_virtaddr != 0) {
324 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
325 baseaddr_offset);
326 }
327 else addr = NULL;
328
329 RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
330
331 fd = open("/dev/zero", O_RDONLY);
332 if (fd < 0){
333 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
334 return NULL;
335 }
336 do {
337 addr = mmap(addr,
338 (*size) + hugepage_sz, PROT_READ,
339 #ifdef RTE_ARCH_PPC_64
340 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
341 #else
342 MAP_PRIVATE,
343 #endif
344 fd, 0);
345 if (addr == MAP_FAILED)
346 *size -= hugepage_sz;
347 } while (addr == MAP_FAILED && *size > 0);
348
349 if (addr == MAP_FAILED) {
350 close(fd);
351 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
352 strerror(errno));
353 return NULL;
354 }
355
356 munmap(addr, (*size) + hugepage_sz);
357 close(fd);
358
359 /* align addr to a huge page size boundary */
360 aligned_addr = (long)addr;
361 aligned_addr += (hugepage_sz - 1);
362 aligned_addr &= (~(hugepage_sz - 1));
363 addr = (void *)(aligned_addr);
364
365 RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
366 addr, *size);
367
368 /* increment offset */
369 baseaddr_offset += *size;
370
371 return addr;
372 }
373
374 static sigjmp_buf huge_jmpenv;
375
376 static void huge_sigbus_handler(int signo __rte_unused)
377 {
378 siglongjmp(huge_jmpenv, 1);
379 }
380
381 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
382 * non-static local variable in the stack frame calling sigsetjmp might be
383 * clobbered by a call to longjmp.
384 */
385 static int huge_wrap_sigsetjmp(void)
386 {
387 return sigsetjmp(huge_jmpenv, 1);
388 }
389
390 /*
391 * Mmap all hugepages of hugepage table: it first open a file in
392 * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
393 * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
394 * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
395 * map continguous physical blocks in contiguous virtual blocks.
396 */
397 static unsigned
398 map_all_hugepages(struct hugepage_file *hugepg_tbl,
399 struct hugepage_info *hpi, int orig)
400 {
401 int fd;
402 unsigned i;
403 void *virtaddr;
404 void *vma_addr = NULL;
405 size_t vma_len = 0;
406
407 for (i = 0; i < hpi->num_pages[0]; i++) {
408 uint64_t hugepage_sz = hpi->hugepage_sz;
409
410 if (orig) {
411 hugepg_tbl[i].file_id = i;
412 hugepg_tbl[i].size = hugepage_sz;
413 eal_get_hugefile_path(hugepg_tbl[i].filepath,
414 sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
415 hugepg_tbl[i].file_id);
416 hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
417 }
418 #ifndef RTE_ARCH_64
419 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
420 * original map address as final map address.
421 */
422 else if ((hugepage_sz == RTE_PGSIZE_1G)
423 || (hugepage_sz == RTE_PGSIZE_16G)) {
424 hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
425 hugepg_tbl[i].orig_va = NULL;
426 continue;
427 }
428 #endif
429 else if (vma_len == 0) {
430 unsigned j, num_pages;
431
432 /* reserve a virtual area for next contiguous
433 * physical block: count the number of
434 * contiguous physical pages. */
435 for (j = i+1; j < hpi->num_pages[0] ; j++) {
436 #ifdef RTE_ARCH_PPC_64
437 /* The physical addresses are sorted in
438 * descending order on PPC64 */
439 if (hugepg_tbl[j].physaddr !=
440 hugepg_tbl[j-1].physaddr - hugepage_sz)
441 break;
442 #else
443 if (hugepg_tbl[j].physaddr !=
444 hugepg_tbl[j-1].physaddr + hugepage_sz)
445 break;
446 #endif
447 }
448 num_pages = j - i;
449 vma_len = num_pages * hugepage_sz;
450
451 /* get the biggest virtual memory area up to
452 * vma_len. If it fails, vma_addr is NULL, so
453 * let the kernel provide the address. */
454 vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
455 if (vma_addr == NULL)
456 vma_len = hugepage_sz;
457 }
458
459 /* try to create hugepage file */
460 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
461 if (fd < 0) {
462 RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
463 strerror(errno));
464 return i;
465 }
466
467 /* map the segment, and populate page tables,
468 * the kernel fills this segment with zeros */
469 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
470 MAP_SHARED | MAP_POPULATE, fd, 0);
471 if (virtaddr == MAP_FAILED) {
472 RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
473 strerror(errno));
474 close(fd);
475 return i;
476 }
477
478 if (orig) {
479 hugepg_tbl[i].orig_va = virtaddr;
480 }
481 else {
482 hugepg_tbl[i].final_va = virtaddr;
483 }
484
485 if (orig) {
486 /* In linux, hugetlb limitations, like cgroup, are
487 * enforced at fault time instead of mmap(), even
488 * with the option of MAP_POPULATE. Kernel will send
489 * a SIGBUS signal. To avoid to be killed, save stack
490 * environment here, if SIGBUS happens, we can jump
491 * back here.
492 */
493 if (huge_wrap_sigsetjmp()) {
494 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
495 "hugepages of size %u MB\n",
496 (unsigned)(hugepage_sz / 0x100000));
497 munmap(virtaddr, hugepage_sz);
498 close(fd);
499 unlink(hugepg_tbl[i].filepath);
500 return i;
501 }
502 *(int *)virtaddr = 0;
503 }
504
505
506 /* set shared flock on the file. */
507 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
508 RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
509 __func__, strerror(errno));
510 close(fd);
511 return i;
512 }
513
514 close(fd);
515
516 vma_addr = (char *)vma_addr + hugepage_sz;
517 vma_len -= hugepage_sz;
518 }
519
520 return i;
521 }
522
523 /* Unmap all hugepages from original mapping */
524 static int
525 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
526 {
527 unsigned i;
528 for (i = 0; i < hpi->num_pages[0]; i++) {
529 if (hugepg_tbl[i].orig_va) {
530 munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
531 hugepg_tbl[i].orig_va = NULL;
532 }
533 }
534 return 0;
535 }
536
537 /*
538 * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
539 * page.
540 */
541 static int
542 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
543 {
544 int socket_id;
545 char *end, *nodestr;
546 unsigned i, hp_count = 0;
547 uint64_t virt_addr;
548 char buf[BUFSIZ];
549 char hugedir_str[PATH_MAX];
550 FILE *f;
551
552 f = fopen("/proc/self/numa_maps", "r");
553 if (f == NULL) {
554 RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
555 " consider that all memory is in socket_id 0\n");
556 return 0;
557 }
558
559 snprintf(hugedir_str, sizeof(hugedir_str),
560 "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
561
562 /* parse numa map */
563 while (fgets(buf, sizeof(buf), f) != NULL) {
564
565 /* ignore non huge page */
566 if (strstr(buf, " huge ") == NULL &&
567 strstr(buf, hugedir_str) == NULL)
568 continue;
569
570 /* get zone addr */
571 virt_addr = strtoull(buf, &end, 16);
572 if (virt_addr == 0 || end == buf) {
573 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
574 goto error;
575 }
576
577 /* get node id (socket id) */
578 nodestr = strstr(buf, " N");
579 if (nodestr == NULL) {
580 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
581 goto error;
582 }
583 nodestr += 2;
584 end = strstr(nodestr, "=");
585 if (end == NULL) {
586 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
587 goto error;
588 }
589 end[0] = '\0';
590 end = NULL;
591
592 socket_id = strtoul(nodestr, &end, 0);
593 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
594 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
595 goto error;
596 }
597
598 /* if we find this page in our mappings, set socket_id */
599 for (i = 0; i < hpi->num_pages[0]; i++) {
600 void *va = (void *)(unsigned long)virt_addr;
601 if (hugepg_tbl[i].orig_va == va) {
602 hugepg_tbl[i].socket_id = socket_id;
603 hp_count++;
604 }
605 }
606 }
607
608 if (hp_count < hpi->num_pages[0])
609 goto error;
610
611 fclose(f);
612 return 0;
613
614 error:
615 fclose(f);
616 return -1;
617 }
618
619 static int
620 cmp_physaddr(const void *a, const void *b)
621 {
622 #ifndef RTE_ARCH_PPC_64
623 const struct hugepage_file *p1 = a;
624 const struct hugepage_file *p2 = b;
625 #else
626 /* PowerPC needs memory sorted in reverse order from x86 */
627 const struct hugepage_file *p1 = b;
628 const struct hugepage_file *p2 = a;
629 #endif
630 if (p1->physaddr < p2->physaddr)
631 return -1;
632 else if (p1->physaddr > p2->physaddr)
633 return 1;
634 else
635 return 0;
636 }
637
638 /*
639 * Uses mmap to create a shared memory area for storage of data
640 * Used in this file to store the hugepage file map on disk
641 */
642 static void *
643 create_shared_memory(const char *filename, const size_t mem_size)
644 {
645 void *retval;
646 int fd = open(filename, O_CREAT | O_RDWR, 0666);
647 if (fd < 0)
648 return NULL;
649 if (ftruncate(fd, mem_size) < 0) {
650 close(fd);
651 return NULL;
652 }
653 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
654 close(fd);
655 return retval;
656 }
657
658 /*
659 * this copies *active* hugepages from one hugepage table to another.
660 * destination is typically the shared memory.
661 */
662 static int
663 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
664 const struct hugepage_file * src, int src_size)
665 {
666 int src_pos, dst_pos = 0;
667
668 for (src_pos = 0; src_pos < src_size; src_pos++) {
669 if (src[src_pos].final_va != NULL) {
670 /* error on overflow attempt */
671 if (dst_pos == dest_size)
672 return -1;
673 memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
674 dst_pos++;
675 }
676 }
677 return 0;
678 }
679
680 static int
681 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
682 unsigned num_hp_info)
683 {
684 unsigned socket, size;
685 int page, nrpages = 0;
686
687 /* get total number of hugepages */
688 for (size = 0; size < num_hp_info; size++)
689 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
690 nrpages +=
691 internal_config.hugepage_info[size].num_pages[socket];
692
693 for (page = 0; page < nrpages; page++) {
694 struct hugepage_file *hp = &hugepg_tbl[page];
695
696 if (hp->final_va != NULL && unlink(hp->filepath)) {
697 RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
698 __func__, hp->filepath, strerror(errno));
699 }
700 }
701 return 0;
702 }
703
704 /*
705 * unmaps hugepages that are not going to be used. since we originally allocate
706 * ALL hugepages (not just those we need), additional unmapping needs to be done.
707 */
708 static int
709 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
710 struct hugepage_info *hpi,
711 unsigned num_hp_info)
712 {
713 unsigned socket, size;
714 int page, nrpages = 0;
715
716 /* get total number of hugepages */
717 for (size = 0; size < num_hp_info; size++)
718 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
719 nrpages += internal_config.hugepage_info[size].num_pages[socket];
720
721 for (size = 0; size < num_hp_info; size++) {
722 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
723 unsigned pages_found = 0;
724
725 /* traverse until we have unmapped all the unused pages */
726 for (page = 0; page < nrpages; page++) {
727 struct hugepage_file *hp = &hugepg_tbl[page];
728
729 /* find a page that matches the criteria */
730 if ((hp->size == hpi[size].hugepage_sz) &&
731 (hp->socket_id == (int) socket)) {
732
733 /* if we skipped enough pages, unmap the rest */
734 if (pages_found == hpi[size].num_pages[socket]) {
735 uint64_t unmap_len;
736
737 unmap_len = hp->size;
738
739 /* get start addr and len of the remaining segment */
740 munmap(hp->final_va, (size_t) unmap_len);
741
742 hp->final_va = NULL;
743 if (unlink(hp->filepath) == -1) {
744 RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
745 __func__, hp->filepath, strerror(errno));
746 return -1;
747 }
748 } else {
749 /* lock the page and skip */
750 pages_found++;
751 }
752
753 } /* match page */
754 } /* foreach page */
755 } /* foreach socket */
756 } /* foreach pagesize */
757
758 return 0;
759 }
760
761 static inline uint64_t
762 get_socket_mem_size(int socket)
763 {
764 uint64_t size = 0;
765 unsigned i;
766
767 for (i = 0; i < internal_config.num_hugepage_sizes; i++){
768 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
769 if (hpi->hugedir != NULL)
770 size += hpi->hugepage_sz * hpi->num_pages[socket];
771 }
772
773 return size;
774 }
775
776 /*
777 * This function is a NUMA-aware equivalent of calc_num_pages.
778 * It takes in the list of hugepage sizes and the
779 * number of pages thereof, and calculates the best number of
780 * pages of each size to fulfill the request for <memory> ram
781 */
782 static int
783 calc_num_pages_per_socket(uint64_t * memory,
784 struct hugepage_info *hp_info,
785 struct hugepage_info *hp_used,
786 unsigned num_hp_info)
787 {
788 unsigned socket, j, i = 0;
789 unsigned requested, available;
790 int total_num_pages = 0;
791 uint64_t remaining_mem, cur_mem;
792 uint64_t total_mem = internal_config.memory;
793
794 if (num_hp_info == 0)
795 return -1;
796
797 /* if specific memory amounts per socket weren't requested */
798 if (internal_config.force_sockets == 0) {
799 int cpu_per_socket[RTE_MAX_NUMA_NODES];
800 size_t default_size, total_size;
801 unsigned lcore_id;
802
803 /* Compute number of cores per socket */
804 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
805 RTE_LCORE_FOREACH(lcore_id) {
806 cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
807 }
808
809 /*
810 * Automatically spread requested memory amongst detected sockets according
811 * to number of cores from cpu mask present on each socket
812 */
813 total_size = internal_config.memory;
814 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
815
816 /* Set memory amount per socket */
817 default_size = (internal_config.memory * cpu_per_socket[socket])
818 / rte_lcore_count();
819
820 /* Limit to maximum available memory on socket */
821 default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
822
823 /* Update sizes */
824 memory[socket] = default_size;
825 total_size -= default_size;
826 }
827
828 /*
829 * If some memory is remaining, try to allocate it by getting all
830 * available memory from sockets, one after the other
831 */
832 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
833 /* take whatever is available */
834 default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
835 total_size);
836
837 /* Update sizes */
838 memory[socket] += default_size;
839 total_size -= default_size;
840 }
841 }
842
843 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
844 /* skips if the memory on specific socket wasn't requested */
845 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
846 hp_used[i].hugedir = hp_info[i].hugedir;
847 hp_used[i].num_pages[socket] = RTE_MIN(
848 memory[socket] / hp_info[i].hugepage_sz,
849 hp_info[i].num_pages[socket]);
850
851 cur_mem = hp_used[i].num_pages[socket] *
852 hp_used[i].hugepage_sz;
853
854 memory[socket] -= cur_mem;
855 total_mem -= cur_mem;
856
857 total_num_pages += hp_used[i].num_pages[socket];
858
859 /* check if we have met all memory requests */
860 if (memory[socket] == 0)
861 break;
862
863 /* check if we have any more pages left at this size, if so
864 * move on to next size */
865 if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
866 continue;
867 /* At this point we know that there are more pages available that are
868 * bigger than the memory we want, so lets see if we can get enough
869 * from other page sizes.
870 */
871 remaining_mem = 0;
872 for (j = i+1; j < num_hp_info; j++)
873 remaining_mem += hp_info[j].hugepage_sz *
874 hp_info[j].num_pages[socket];
875
876 /* is there enough other memory, if not allocate another page and quit */
877 if (remaining_mem < memory[socket]){
878 cur_mem = RTE_MIN(memory[socket],
879 hp_info[i].hugepage_sz);
880 memory[socket] -= cur_mem;
881 total_mem -= cur_mem;
882 hp_used[i].num_pages[socket]++;
883 total_num_pages++;
884 break; /* we are done with this socket*/
885 }
886 }
887 /* if we didn't satisfy all memory requirements per socket */
888 if (memory[socket] > 0) {
889 /* to prevent icc errors */
890 requested = (unsigned) (internal_config.socket_mem[socket] /
891 0x100000);
892 available = requested -
893 ((unsigned) (memory[socket] / 0x100000));
894 RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
895 "Requested: %uMB, available: %uMB\n", socket,
896 requested, available);
897 return -1;
898 }
899 }
900
901 /* if we didn't satisfy total memory requirements */
902 if (total_mem > 0) {
903 requested = (unsigned) (internal_config.memory / 0x100000);
904 available = requested - (unsigned) (total_mem / 0x100000);
905 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
906 " available: %uMB\n", requested, available);
907 return -1;
908 }
909 return total_num_pages;
910 }
911
912 static inline size_t
913 eal_get_hugepage_mem_size(void)
914 {
915 uint64_t size = 0;
916 unsigned i, j;
917
918 for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
919 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
920 if (hpi->hugedir != NULL) {
921 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
922 size += hpi->hugepage_sz * hpi->num_pages[j];
923 }
924 }
925 }
926
927 return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
928 }
929
930 static struct sigaction huge_action_old;
931 static int huge_need_recover;
932
933 static void
934 huge_register_sigbus(void)
935 {
936 sigset_t mask;
937 struct sigaction action;
938
939 sigemptyset(&mask);
940 sigaddset(&mask, SIGBUS);
941 action.sa_flags = 0;
942 action.sa_mask = mask;
943 action.sa_handler = huge_sigbus_handler;
944
945 huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
946 }
947
948 static void
949 huge_recover_sigbus(void)
950 {
951 if (huge_need_recover) {
952 sigaction(SIGBUS, &huge_action_old, NULL);
953 huge_need_recover = 0;
954 }
955 }
956
957 /*
958 * Prepare physical memory mapping: fill configuration structure with
959 * these infos, return 0 on success.
960 * 1. map N huge pages in separate files in hugetlbfs
961 * 2. find associated physical addr
962 * 3. find associated NUMA socket ID
963 * 4. sort all huge pages by physical address
964 * 5. remap these N huge pages in the correct order
965 * 6. unmap the first mapping
966 * 7. fill memsegs in configuration with contiguous zones
967 */
968 int
969 rte_eal_hugepage_init(void)
970 {
971 struct rte_mem_config *mcfg;
972 struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
973 struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
974
975 uint64_t memory[RTE_MAX_NUMA_NODES];
976
977 unsigned hp_offset;
978 int i, j, new_memseg;
979 int nr_hugefiles, nr_hugepages = 0;
980 void *addr;
981
982 test_phys_addrs_available();
983
984 memset(used_hp, 0, sizeof(used_hp));
985
986 /* get pointer to global configuration */
987 mcfg = rte_eal_get_configuration()->mem_config;
988
989 /* hugetlbfs can be disabled */
990 if (internal_config.no_hugetlbfs) {
991 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
992 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
993 if (addr == MAP_FAILED) {
994 RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
995 strerror(errno));
996 return -1;
997 }
998 mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
999 mcfg->memseg[0].addr = addr;
1000 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1001 mcfg->memseg[0].len = internal_config.memory;
1002 mcfg->memseg[0].socket_id = 0;
1003 return 0;
1004 }
1005
1006 /* check if app runs on Xen Dom0 */
1007 if (internal_config.xen_dom0_support) {
1008 #ifdef RTE_LIBRTE_XEN_DOM0
1009 /* use dom0_mm kernel driver to init memory */
1010 if (rte_xen_dom0_memory_init() < 0)
1011 return -1;
1012 else
1013 return 0;
1014 #endif
1015 }
1016
1017 /* calculate total number of hugepages available. at this point we haven't
1018 * yet started sorting them so they all are on socket 0 */
1019 for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1020 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1021 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1022
1023 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1024 }
1025
1026 /*
1027 * allocate a memory area for hugepage table.
1028 * this isn't shared memory yet. due to the fact that we need some
1029 * processing done on these pages, shared memory will be created
1030 * at a later stage.
1031 */
1032 tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1033 if (tmp_hp == NULL)
1034 goto fail;
1035
1036 memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1037
1038 hp_offset = 0; /* where we start the current page size entries */
1039
1040 huge_register_sigbus();
1041
1042 /* map all hugepages and sort them */
1043 for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1044 unsigned pages_old, pages_new;
1045 struct hugepage_info *hpi;
1046
1047 /*
1048 * we don't yet mark hugepages as used at this stage, so
1049 * we just map all hugepages available to the system
1050 * all hugepages are still located on socket 0
1051 */
1052 hpi = &internal_config.hugepage_info[i];
1053
1054 if (hpi->num_pages[0] == 0)
1055 continue;
1056
1057 /* map all hugepages available */
1058 pages_old = hpi->num_pages[0];
1059 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, 1);
1060 if (pages_new < pages_old) {
1061 RTE_LOG(DEBUG, EAL,
1062 "%d not %d hugepages of size %u MB allocated\n",
1063 pages_new, pages_old,
1064 (unsigned)(hpi->hugepage_sz / 0x100000));
1065
1066 int pages = pages_old - pages_new;
1067
1068 nr_hugepages -= pages;
1069 hpi->num_pages[0] = pages_new;
1070 if (pages_new == 0)
1071 continue;
1072 }
1073
1074 if (phys_addrs_available) {
1075 /* find physical addresses for each hugepage */
1076 if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1077 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1078 "for %u MB pages\n",
1079 (unsigned int)(hpi->hugepage_sz / 0x100000));
1080 goto fail;
1081 }
1082 } else {
1083 /* set physical addresses for each hugepage */
1084 if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1085 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1086 "for %u MB pages\n",
1087 (unsigned int)(hpi->hugepage_sz / 0x100000));
1088 goto fail;
1089 }
1090 }
1091
1092 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1093 RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1094 (unsigned)(hpi->hugepage_sz / 0x100000));
1095 goto fail;
1096 }
1097
1098 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1099 sizeof(struct hugepage_file), cmp_physaddr);
1100
1101 /* remap all hugepages */
1102 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) !=
1103 hpi->num_pages[0]) {
1104 RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1105 (unsigned)(hpi->hugepage_sz / 0x100000));
1106 goto fail;
1107 }
1108
1109 /* unmap original mappings */
1110 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1111 goto fail;
1112
1113 /* we have processed a num of hugepages of this size, so inc offset */
1114 hp_offset += hpi->num_pages[0];
1115 }
1116
1117 huge_recover_sigbus();
1118
1119 if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1120 internal_config.memory = eal_get_hugepage_mem_size();
1121
1122 nr_hugefiles = nr_hugepages;
1123
1124
1125 /* clean out the numbers of pages */
1126 for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1127 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1128 internal_config.hugepage_info[i].num_pages[j] = 0;
1129
1130 /* get hugepages for each socket */
1131 for (i = 0; i < nr_hugefiles; i++) {
1132 int socket = tmp_hp[i].socket_id;
1133
1134 /* find a hugepage info with right size and increment num_pages */
1135 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1136 (int)internal_config.num_hugepage_sizes);
1137 for (j = 0; j < nb_hpsizes; j++) {
1138 if (tmp_hp[i].size ==
1139 internal_config.hugepage_info[j].hugepage_sz) {
1140 internal_config.hugepage_info[j].num_pages[socket]++;
1141 }
1142 }
1143 }
1144
1145 /* make a copy of socket_mem, needed for number of pages calculation */
1146 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1147 memory[i] = internal_config.socket_mem[i];
1148
1149 /* calculate final number of pages */
1150 nr_hugepages = calc_num_pages_per_socket(memory,
1151 internal_config.hugepage_info, used_hp,
1152 internal_config.num_hugepage_sizes);
1153
1154 /* error if not enough memory available */
1155 if (nr_hugepages < 0)
1156 goto fail;
1157
1158 /* reporting in! */
1159 for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1160 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1161 if (used_hp[i].num_pages[j] > 0) {
1162 RTE_LOG(DEBUG, EAL,
1163 "Requesting %u pages of size %uMB"
1164 " from socket %i\n",
1165 used_hp[i].num_pages[j],
1166 (unsigned)
1167 (used_hp[i].hugepage_sz / 0x100000),
1168 j);
1169 }
1170 }
1171 }
1172
1173 /* create shared memory */
1174 hugepage = create_shared_memory(eal_hugepage_info_path(),
1175 nr_hugefiles * sizeof(struct hugepage_file));
1176
1177 if (hugepage == NULL) {
1178 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1179 goto fail;
1180 }
1181 memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1182
1183 /*
1184 * unmap pages that we won't need (looks at used_hp).
1185 * also, sets final_va to NULL on pages that were unmapped.
1186 */
1187 if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1188 internal_config.num_hugepage_sizes) < 0) {
1189 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1190 goto fail;
1191 }
1192
1193 /*
1194 * copy stuff from malloc'd hugepage* to the actual shared memory.
1195 * this procedure only copies those hugepages that have final_va
1196 * not NULL. has overflow protection.
1197 */
1198 if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1199 tmp_hp, nr_hugefiles) < 0) {
1200 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1201 goto fail;
1202 }
1203
1204 /* free the hugepage backing files */
1205 if (internal_config.hugepage_unlink &&
1206 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1207 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1208 goto fail;
1209 }
1210
1211 /* free the temporary hugepage table */
1212 free(tmp_hp);
1213 tmp_hp = NULL;
1214
1215 /* first memseg index shall be 0 after incrementing it below */
1216 j = -1;
1217 for (i = 0; i < nr_hugefiles; i++) {
1218 new_memseg = 0;
1219
1220 /* if this is a new section, create a new memseg */
1221 if (i == 0)
1222 new_memseg = 1;
1223 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1224 new_memseg = 1;
1225 else if (hugepage[i].size != hugepage[i-1].size)
1226 new_memseg = 1;
1227
1228 #ifdef RTE_ARCH_PPC_64
1229 /* On PPC64 architecture, the mmap always start from higher
1230 * virtual address to lower address. Here, both the physical
1231 * address and virtual address are in descending order */
1232 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1233 hugepage[i].size)
1234 new_memseg = 1;
1235 else if (((unsigned long)hugepage[i-1].final_va -
1236 (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1237 new_memseg = 1;
1238 #else
1239 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1240 hugepage[i].size)
1241 new_memseg = 1;
1242 else if (((unsigned long)hugepage[i].final_va -
1243 (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1244 new_memseg = 1;
1245 #endif
1246
1247 if (new_memseg) {
1248 j += 1;
1249 if (j == RTE_MAX_MEMSEG)
1250 break;
1251
1252 mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1253 mcfg->memseg[j].addr = hugepage[i].final_va;
1254 mcfg->memseg[j].len = hugepage[i].size;
1255 mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1256 mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1257 }
1258 /* continuation of previous memseg */
1259 else {
1260 #ifdef RTE_ARCH_PPC_64
1261 /* Use the phy and virt address of the last page as segment
1262 * address for IBM Power architecture */
1263 mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1264 mcfg->memseg[j].addr = hugepage[i].final_va;
1265 #endif
1266 mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1267 }
1268 hugepage[i].memseg_id = j;
1269 }
1270
1271 if (i < nr_hugefiles) {
1272 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1273 "from %d requested\n"
1274 "Current %s=%d is not enough\n"
1275 "Please either increase it or request less amount "
1276 "of memory.\n",
1277 i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1278 RTE_MAX_MEMSEG);
1279 goto fail;
1280 }
1281
1282 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1283
1284 return 0;
1285
1286 fail:
1287 huge_recover_sigbus();
1288 free(tmp_hp);
1289 if (hugepage != NULL)
1290 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1291
1292 return -1;
1293 }
1294
1295 /*
1296 * uses fstat to report the size of a file on disk
1297 */
1298 static off_t
1299 getFileSize(int fd)
1300 {
1301 struct stat st;
1302 if (fstat(fd, &st) < 0)
1303 return 0;
1304 return st.st_size;
1305 }
1306
1307 /*
1308 * This creates the memory mappings in the secondary process to match that of
1309 * the server process. It goes through each memory segment in the DPDK runtime
1310 * configuration and finds the hugepages which form that segment, mapping them
1311 * in order to form a contiguous block in the virtual memory space
1312 */
1313 int
1314 rte_eal_hugepage_attach(void)
1315 {
1316 const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1317 struct hugepage_file *hp = NULL;
1318 unsigned num_hp = 0;
1319 unsigned i, s = 0; /* s used to track the segment number */
1320 unsigned max_seg = RTE_MAX_MEMSEG;
1321 off_t size = 0;
1322 int fd, fd_zero = -1, fd_hugepage = -1;
1323
1324 if (aslr_enabled() > 0) {
1325 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1326 "(ASLR) is enabled in the kernel.\n");
1327 RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory "
1328 "into secondary processes\n");
1329 }
1330
1331 test_phys_addrs_available();
1332
1333 if (internal_config.xen_dom0_support) {
1334 #ifdef RTE_LIBRTE_XEN_DOM0
1335 if (rte_xen_dom0_memory_attach() < 0) {
1336 RTE_LOG(ERR, EAL, "Failed to attach memory segments of primary "
1337 "process\n");
1338 return -1;
1339 }
1340 return 0;
1341 #endif
1342 }
1343
1344 fd_zero = open("/dev/zero", O_RDONLY);
1345 if (fd_zero < 0) {
1346 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1347 goto error;
1348 }
1349 fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1350 if (fd_hugepage < 0) {
1351 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1352 goto error;
1353 }
1354
1355 /* map all segments into memory to make sure we get the addrs */
1356 for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1357 void *base_addr;
1358
1359 /*
1360 * the first memory segment with len==0 is the one that
1361 * follows the last valid segment.
1362 */
1363 if (mcfg->memseg[s].len == 0)
1364 break;
1365
1366 /*
1367 * fdzero is mmapped to get a contiguous block of virtual
1368 * addresses of the appropriate memseg size.
1369 * use mmap to get identical addresses as the primary process.
1370 */
1371 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1372 PROT_READ,
1373 #ifdef RTE_ARCH_PPC_64
1374 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1375 #else
1376 MAP_PRIVATE,
1377 #endif
1378 fd_zero, 0);
1379 if (base_addr == MAP_FAILED ||
1380 base_addr != mcfg->memseg[s].addr) {
1381 max_seg = s;
1382 if (base_addr != MAP_FAILED) {
1383 /* errno is stale, don't use */
1384 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1385 "in /dev/zero at [%p], got [%p] - "
1386 "please use '--base-virtaddr' option\n",
1387 (unsigned long long)mcfg->memseg[s].len,
1388 mcfg->memseg[s].addr, base_addr);
1389 munmap(base_addr, mcfg->memseg[s].len);
1390 } else {
1391 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1392 "in /dev/zero at [%p]: '%s'\n",
1393 (unsigned long long)mcfg->memseg[s].len,
1394 mcfg->memseg[s].addr, strerror(errno));
1395 }
1396 if (aslr_enabled() > 0) {
1397 RTE_LOG(ERR, EAL, "It is recommended to "
1398 "disable ASLR in the kernel "
1399 "and retry running both primary "
1400 "and secondary processes\n");
1401 }
1402 goto error;
1403 }
1404 }
1405
1406 size = getFileSize(fd_hugepage);
1407 hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1408 if (hp == MAP_FAILED) {
1409 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1410 goto error;
1411 }
1412
1413 num_hp = size / sizeof(struct hugepage_file);
1414 RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1415
1416 s = 0;
1417 while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1418 void *addr, *base_addr;
1419 uintptr_t offset = 0;
1420 size_t mapping_size;
1421 /*
1422 * free previously mapped memory so we can map the
1423 * hugepages into the space
1424 */
1425 base_addr = mcfg->memseg[s].addr;
1426 munmap(base_addr, mcfg->memseg[s].len);
1427
1428 /* find the hugepages for this segment and map them
1429 * we don't need to worry about order, as the server sorted the
1430 * entries before it did the second mmap of them */
1431 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1432 if (hp[i].memseg_id == (int)s){
1433 fd = open(hp[i].filepath, O_RDWR);
1434 if (fd < 0) {
1435 RTE_LOG(ERR, EAL, "Could not open %s\n",
1436 hp[i].filepath);
1437 goto error;
1438 }
1439 mapping_size = hp[i].size;
1440 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1441 mapping_size, PROT_READ | PROT_WRITE,
1442 MAP_SHARED, fd, 0);
1443 close(fd); /* close file both on success and on failure */
1444 if (addr == MAP_FAILED ||
1445 addr != RTE_PTR_ADD(base_addr, offset)) {
1446 RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1447 hp[i].filepath);
1448 goto error;
1449 }
1450 offset+=mapping_size;
1451 }
1452 }
1453 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1454 (unsigned long long)mcfg->memseg[s].len);
1455 s++;
1456 }
1457 /* unmap the hugepage config file, since we are done using it */
1458 munmap(hp, size);
1459 close(fd_zero);
1460 close(fd_hugepage);
1461 return 0;
1462
1463 error:
1464 for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1465 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1466 if (hp != NULL && hp != MAP_FAILED)
1467 munmap(hp, size);
1468 if (fd_zero >= 0)
1469 close(fd_zero);
1470 if (fd_hugepage >= 0)
1471 close(fd_hugepage);
1472 return -1;
1473 }
1474
1475 bool
1476 rte_eal_using_phys_addrs(void)
1477 {
1478 return phys_addrs_available;
1479 }