]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/lib/librte_eal/linuxapp/kni/ethtool/ixgbe/ixgbe_common.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_eal / linuxapp / kni / ethtool / ixgbe / ixgbe_common.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "LICENSE.GPL".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include "ixgbe_common.h"
29 #include "ixgbe_phy.h"
30 #include "ixgbe_api.h"
31
32 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
33 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
34 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
35 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
36 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
37 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
38 u16 count);
39 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
40 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
41 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
42 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
43
44 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
45 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
46 u16 *san_mac_offset);
47 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
48 u16 words, u16 *data);
49 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
50 u16 words, u16 *data);
51 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
52 u16 offset);
53
54 /**
55 * ixgbe_init_ops_generic - Inits function ptrs
56 * @hw: pointer to the hardware structure
57 *
58 * Initialize the function pointers.
59 **/
60 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
61 {
62 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
63 struct ixgbe_mac_info *mac = &hw->mac;
64 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
65
66 /* EEPROM */
67 eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
68 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
69 if (eec & IXGBE_EEC_PRES) {
70 eeprom->ops.read = &ixgbe_read_eerd_generic;
71 eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
72 } else {
73 eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
74 eeprom->ops.read_buffer =
75 &ixgbe_read_eeprom_buffer_bit_bang_generic;
76 }
77 eeprom->ops.write = &ixgbe_write_eeprom_generic;
78 eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
79 eeprom->ops.validate_checksum =
80 &ixgbe_validate_eeprom_checksum_generic;
81 eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
82 eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
83
84 /* MAC */
85 mac->ops.init_hw = &ixgbe_init_hw_generic;
86 mac->ops.reset_hw = NULL;
87 mac->ops.start_hw = &ixgbe_start_hw_generic;
88 mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
89 mac->ops.get_media_type = NULL;
90 mac->ops.get_supported_physical_layer = NULL;
91 mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
92 mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
93 mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
94 mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
95 mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
96 mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
97 mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
98
99 /* LEDs */
100 mac->ops.led_on = &ixgbe_led_on_generic;
101 mac->ops.led_off = &ixgbe_led_off_generic;
102 mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
103 mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
104
105 /* RAR, Multicast, VLAN */
106 mac->ops.set_rar = &ixgbe_set_rar_generic;
107 mac->ops.clear_rar = &ixgbe_clear_rar_generic;
108 mac->ops.insert_mac_addr = NULL;
109 mac->ops.set_vmdq = NULL;
110 mac->ops.clear_vmdq = NULL;
111 mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
112 mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
113 mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
114 mac->ops.enable_mc = &ixgbe_enable_mc_generic;
115 mac->ops.disable_mc = &ixgbe_disable_mc_generic;
116 mac->ops.clear_vfta = NULL;
117 mac->ops.set_vfta = NULL;
118 mac->ops.set_vlvf = NULL;
119 mac->ops.init_uta_tables = NULL;
120
121 /* Flow Control */
122 mac->ops.fc_enable = &ixgbe_fc_enable_generic;
123
124 /* Link */
125 mac->ops.get_link_capabilities = NULL;
126 mac->ops.setup_link = NULL;
127 mac->ops.check_link = NULL;
128
129 return 0;
130 }
131
132 /**
133 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
134 * control
135 * @hw: pointer to hardware structure
136 *
137 * There are several phys that do not support autoneg flow control. This
138 * function check the device id to see if the associated phy supports
139 * autoneg flow control.
140 **/
141 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
142 {
143
144 switch (hw->device_id) {
145 case IXGBE_DEV_ID_X540T:
146 return 0;
147 case IXGBE_DEV_ID_82599_T3_LOM:
148 return 0;
149 default:
150 return IXGBE_ERR_FC_NOT_SUPPORTED;
151 }
152 }
153
154 /**
155 * ixgbe_setup_fc - Set up flow control
156 * @hw: pointer to hardware structure
157 *
158 * Called at init time to set up flow control.
159 **/
160 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
161 {
162 s32 ret_val = 0;
163 u32 reg = 0, reg_bp = 0;
164 u16 reg_cu = 0;
165
166 /*
167 * Validate the requested mode. Strict IEEE mode does not allow
168 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
169 */
170 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
171 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
172 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
173 goto out;
174 }
175
176 /*
177 * 10gig parts do not have a word in the EEPROM to determine the
178 * default flow control setting, so we explicitly set it to full.
179 */
180 if (hw->fc.requested_mode == ixgbe_fc_default)
181 hw->fc.requested_mode = ixgbe_fc_full;
182
183 /*
184 * Set up the 1G and 10G flow control advertisement registers so the
185 * HW will be able to do fc autoneg once the cable is plugged in. If
186 * we link at 10G, the 1G advertisement is harmless and vice versa.
187 */
188 switch (hw->phy.media_type) {
189 case ixgbe_media_type_fiber:
190 case ixgbe_media_type_backplane:
191 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
192 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
193 break;
194 case ixgbe_media_type_copper:
195 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
196 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
197 break;
198 default:
199 break;
200 }
201
202 /*
203 * The possible values of fc.requested_mode are:
204 * 0: Flow control is completely disabled
205 * 1: Rx flow control is enabled (we can receive pause frames,
206 * but not send pause frames).
207 * 2: Tx flow control is enabled (we can send pause frames but
208 * we do not support receiving pause frames).
209 * 3: Both Rx and Tx flow control (symmetric) are enabled.
210 * other: Invalid.
211 */
212 switch (hw->fc.requested_mode) {
213 case ixgbe_fc_none:
214 /* Flow control completely disabled by software override. */
215 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
216 if (hw->phy.media_type == ixgbe_media_type_backplane)
217 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
218 IXGBE_AUTOC_ASM_PAUSE);
219 else if (hw->phy.media_type == ixgbe_media_type_copper)
220 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
221 break;
222 case ixgbe_fc_tx_pause:
223 /*
224 * Tx Flow control is enabled, and Rx Flow control is
225 * disabled by software override.
226 */
227 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
228 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
229 if (hw->phy.media_type == ixgbe_media_type_backplane) {
230 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
231 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
232 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
233 reg_cu |= IXGBE_TAF_ASM_PAUSE;
234 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
235 }
236 break;
237 case ixgbe_fc_rx_pause:
238 /*
239 * Rx Flow control is enabled and Tx Flow control is
240 * disabled by software override. Since there really
241 * isn't a way to advertise that we are capable of RX
242 * Pause ONLY, we will advertise that we support both
243 * symmetric and asymmetric Rx PAUSE, as such we fall
244 * through to the fc_full statement. Later, we will
245 * disable the adapter's ability to send PAUSE frames.
246 */
247 case ixgbe_fc_full:
248 /* Flow control (both Rx and Tx) is enabled by SW override. */
249 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
250 if (hw->phy.media_type == ixgbe_media_type_backplane)
251 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
252 IXGBE_AUTOC_ASM_PAUSE;
253 else if (hw->phy.media_type == ixgbe_media_type_copper)
254 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
255 break;
256 default:
257 hw_dbg(hw, "Flow control param set incorrectly\n");
258 ret_val = IXGBE_ERR_CONFIG;
259 goto out;
260 break;
261 }
262
263 if (hw->mac.type != ixgbe_mac_X540) {
264 /*
265 * Enable auto-negotiation between the MAC & PHY;
266 * the MAC will advertise clause 37 flow control.
267 */
268 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
269 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
270
271 /* Disable AN timeout */
272 if (hw->fc.strict_ieee)
273 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
274
275 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
276 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
277 }
278
279 /*
280 * AUTOC restart handles negotiation of 1G and 10G on backplane
281 * and copper. There is no need to set the PCS1GCTL register.
282 *
283 */
284 if (hw->phy.media_type == ixgbe_media_type_backplane) {
285 reg_bp |= IXGBE_AUTOC_AN_RESTART;
286 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
287 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
288 (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
289 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
290 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
291 }
292
293 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
294 out:
295 return ret_val;
296 }
297
298 /**
299 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
300 * @hw: pointer to hardware structure
301 *
302 * Starts the hardware by filling the bus info structure and media type, clears
303 * all on chip counters, initializes receive address registers, multicast
304 * table, VLAN filter table, calls routine to set up link and flow control
305 * settings, and leaves transmit and receive units disabled and uninitialized
306 **/
307 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
308 {
309 s32 ret_val;
310 u32 ctrl_ext;
311
312 /* Set the media type */
313 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
314
315 /* PHY ops initialization must be done in reset_hw() */
316
317 /* Clear the VLAN filter table */
318 hw->mac.ops.clear_vfta(hw);
319
320 /* Clear statistics registers */
321 hw->mac.ops.clear_hw_cntrs(hw);
322
323 /* Set No Snoop Disable */
324 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
325 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
326 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
327 IXGBE_WRITE_FLUSH(hw);
328
329 /* Setup flow control */
330 ret_val = ixgbe_setup_fc(hw);
331 if (ret_val != 0)
332 goto out;
333
334 /* Clear adapter stopped flag */
335 hw->adapter_stopped = false;
336
337 out:
338 return ret_val;
339 }
340
341 /**
342 * ixgbe_start_hw_gen2 - Init sequence for common device family
343 * @hw: pointer to hw structure
344 *
345 * Performs the init sequence common to the second generation
346 * of 10 GbE devices.
347 * Devices in the second generation:
348 * 82599
349 * X540
350 **/
351 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
352 {
353 u32 i;
354 u32 regval;
355
356 /* Clear the rate limiters */
357 for (i = 0; i < hw->mac.max_tx_queues; i++) {
358 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
359 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
360 }
361 IXGBE_WRITE_FLUSH(hw);
362
363 /* Disable relaxed ordering */
364 for (i = 0; i < hw->mac.max_tx_queues; i++) {
365 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
366 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
367 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
368 }
369
370 for (i = 0; i < hw->mac.max_rx_queues; i++) {
371 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
372 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
373 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
374 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
375 }
376
377 return 0;
378 }
379
380 /**
381 * ixgbe_init_hw_generic - Generic hardware initialization
382 * @hw: pointer to hardware structure
383 *
384 * Initialize the hardware by resetting the hardware, filling the bus info
385 * structure and media type, clears all on chip counters, initializes receive
386 * address registers, multicast table, VLAN filter table, calls routine to set
387 * up link and flow control settings, and leaves transmit and receive units
388 * disabled and uninitialized
389 **/
390 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
391 {
392 s32 status;
393
394 /* Reset the hardware */
395 status = hw->mac.ops.reset_hw(hw);
396
397 if (status == 0) {
398 /* Start the HW */
399 status = hw->mac.ops.start_hw(hw);
400 }
401
402 return status;
403 }
404
405 /**
406 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
407 * @hw: pointer to hardware structure
408 *
409 * Clears all hardware statistics counters by reading them from the hardware
410 * Statistics counters are clear on read.
411 **/
412 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
413 {
414 u16 i = 0;
415
416 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
417 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
418 IXGBE_READ_REG(hw, IXGBE_ERRBC);
419 IXGBE_READ_REG(hw, IXGBE_MSPDC);
420 for (i = 0; i < 8; i++)
421 IXGBE_READ_REG(hw, IXGBE_MPC(i));
422
423 IXGBE_READ_REG(hw, IXGBE_MLFC);
424 IXGBE_READ_REG(hw, IXGBE_MRFC);
425 IXGBE_READ_REG(hw, IXGBE_RLEC);
426 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
427 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
428 if (hw->mac.type >= ixgbe_mac_82599EB) {
429 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
430 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
431 } else {
432 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
433 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
434 }
435
436 for (i = 0; i < 8; i++) {
437 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
438 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
439 if (hw->mac.type >= ixgbe_mac_82599EB) {
440 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
441 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
442 } else {
443 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
444 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
445 }
446 }
447 if (hw->mac.type >= ixgbe_mac_82599EB)
448 for (i = 0; i < 8; i++)
449 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
450 IXGBE_READ_REG(hw, IXGBE_PRC64);
451 IXGBE_READ_REG(hw, IXGBE_PRC127);
452 IXGBE_READ_REG(hw, IXGBE_PRC255);
453 IXGBE_READ_REG(hw, IXGBE_PRC511);
454 IXGBE_READ_REG(hw, IXGBE_PRC1023);
455 IXGBE_READ_REG(hw, IXGBE_PRC1522);
456 IXGBE_READ_REG(hw, IXGBE_GPRC);
457 IXGBE_READ_REG(hw, IXGBE_BPRC);
458 IXGBE_READ_REG(hw, IXGBE_MPRC);
459 IXGBE_READ_REG(hw, IXGBE_GPTC);
460 IXGBE_READ_REG(hw, IXGBE_GORCL);
461 IXGBE_READ_REG(hw, IXGBE_GORCH);
462 IXGBE_READ_REG(hw, IXGBE_GOTCL);
463 IXGBE_READ_REG(hw, IXGBE_GOTCH);
464 if (hw->mac.type == ixgbe_mac_82598EB)
465 for (i = 0; i < 8; i++)
466 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
467 IXGBE_READ_REG(hw, IXGBE_RUC);
468 IXGBE_READ_REG(hw, IXGBE_RFC);
469 IXGBE_READ_REG(hw, IXGBE_ROC);
470 IXGBE_READ_REG(hw, IXGBE_RJC);
471 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
472 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
473 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
474 IXGBE_READ_REG(hw, IXGBE_TORL);
475 IXGBE_READ_REG(hw, IXGBE_TORH);
476 IXGBE_READ_REG(hw, IXGBE_TPR);
477 IXGBE_READ_REG(hw, IXGBE_TPT);
478 IXGBE_READ_REG(hw, IXGBE_PTC64);
479 IXGBE_READ_REG(hw, IXGBE_PTC127);
480 IXGBE_READ_REG(hw, IXGBE_PTC255);
481 IXGBE_READ_REG(hw, IXGBE_PTC511);
482 IXGBE_READ_REG(hw, IXGBE_PTC1023);
483 IXGBE_READ_REG(hw, IXGBE_PTC1522);
484 IXGBE_READ_REG(hw, IXGBE_MPTC);
485 IXGBE_READ_REG(hw, IXGBE_BPTC);
486 for (i = 0; i < 16; i++) {
487 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
488 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
489 if (hw->mac.type >= ixgbe_mac_82599EB) {
490 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
491 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
492 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
493 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
494 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
495 } else {
496 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
497 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
498 }
499 }
500
501 if (hw->mac.type == ixgbe_mac_X540) {
502 if (hw->phy.id == 0)
503 ixgbe_identify_phy(hw);
504 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
505 IXGBE_MDIO_PCS_DEV_TYPE, &i);
506 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
507 IXGBE_MDIO_PCS_DEV_TYPE, &i);
508 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
509 IXGBE_MDIO_PCS_DEV_TYPE, &i);
510 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
511 IXGBE_MDIO_PCS_DEV_TYPE, &i);
512 }
513
514 return 0;
515 }
516
517 /**
518 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
519 * @hw: pointer to hardware structure
520 * @pba_num: stores the part number string from the EEPROM
521 * @pba_num_size: part number string buffer length
522 *
523 * Reads the part number string from the EEPROM.
524 **/
525 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
526 u32 pba_num_size)
527 {
528 s32 ret_val;
529 u16 data;
530 u16 pba_ptr;
531 u16 offset;
532 u16 length;
533
534 if (pba_num == NULL) {
535 hw_dbg(hw, "PBA string buffer was null\n");
536 return IXGBE_ERR_INVALID_ARGUMENT;
537 }
538
539 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
540 if (ret_val) {
541 hw_dbg(hw, "NVM Read Error\n");
542 return ret_val;
543 }
544
545 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
546 if (ret_val) {
547 hw_dbg(hw, "NVM Read Error\n");
548 return ret_val;
549 }
550
551 /*
552 * if data is not ptr guard the PBA must be in legacy format which
553 * means pba_ptr is actually our second data word for the PBA number
554 * and we can decode it into an ascii string
555 */
556 if (data != IXGBE_PBANUM_PTR_GUARD) {
557 hw_dbg(hw, "NVM PBA number is not stored as string\n");
558
559 /* we will need 11 characters to store the PBA */
560 if (pba_num_size < 11) {
561 hw_dbg(hw, "PBA string buffer too small\n");
562 return IXGBE_ERR_NO_SPACE;
563 }
564
565 /* extract hex string from data and pba_ptr */
566 pba_num[0] = (data >> 12) & 0xF;
567 pba_num[1] = (data >> 8) & 0xF;
568 pba_num[2] = (data >> 4) & 0xF;
569 pba_num[3] = data & 0xF;
570 pba_num[4] = (pba_ptr >> 12) & 0xF;
571 pba_num[5] = (pba_ptr >> 8) & 0xF;
572 pba_num[6] = '-';
573 pba_num[7] = 0;
574 pba_num[8] = (pba_ptr >> 4) & 0xF;
575 pba_num[9] = pba_ptr & 0xF;
576
577 /* put a null character on the end of our string */
578 pba_num[10] = '\0';
579
580 /* switch all the data but the '-' to hex char */
581 for (offset = 0; offset < 10; offset++) {
582 if (pba_num[offset] < 0xA)
583 pba_num[offset] += '0';
584 else if (pba_num[offset] < 0x10)
585 pba_num[offset] += 'A' - 0xA;
586 }
587
588 return 0;
589 }
590
591 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
592 if (ret_val) {
593 hw_dbg(hw, "NVM Read Error\n");
594 return ret_val;
595 }
596
597 if (length == 0xFFFF || length == 0) {
598 hw_dbg(hw, "NVM PBA number section invalid length\n");
599 return IXGBE_ERR_PBA_SECTION;
600 }
601
602 /* check if pba_num buffer is big enough */
603 if (pba_num_size < (((u32)length * 2) - 1)) {
604 hw_dbg(hw, "PBA string buffer too small\n");
605 return IXGBE_ERR_NO_SPACE;
606 }
607
608 /* trim pba length from start of string */
609 pba_ptr++;
610 length--;
611
612 for (offset = 0; offset < length; offset++) {
613 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
614 if (ret_val) {
615 hw_dbg(hw, "NVM Read Error\n");
616 return ret_val;
617 }
618 pba_num[offset * 2] = (u8)(data >> 8);
619 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
620 }
621 pba_num[offset * 2] = '\0';
622
623 return 0;
624 }
625
626 /**
627 * ixgbe_get_mac_addr_generic - Generic get MAC address
628 * @hw: pointer to hardware structure
629 * @mac_addr: Adapter MAC address
630 *
631 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
632 * A reset of the adapter must be performed prior to calling this function
633 * in order for the MAC address to have been loaded from the EEPROM into RAR0
634 **/
635 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
636 {
637 u32 rar_high;
638 u32 rar_low;
639 u16 i;
640
641 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
642 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
643
644 for (i = 0; i < 4; i++)
645 mac_addr[i] = (u8)(rar_low >> (i*8));
646
647 for (i = 0; i < 2; i++)
648 mac_addr[i+4] = (u8)(rar_high >> (i*8));
649
650 return 0;
651 }
652
653 /**
654 * ixgbe_get_bus_info_generic - Generic set PCI bus info
655 * @hw: pointer to hardware structure
656 *
657 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
658 **/
659 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
660 {
661 struct ixgbe_mac_info *mac = &hw->mac;
662 u16 link_status;
663
664 hw->bus.type = ixgbe_bus_type_pci_express;
665
666 /* Get the negotiated link width and speed from PCI config space */
667 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
668
669 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
670 case IXGBE_PCI_LINK_WIDTH_1:
671 hw->bus.width = ixgbe_bus_width_pcie_x1;
672 break;
673 case IXGBE_PCI_LINK_WIDTH_2:
674 hw->bus.width = ixgbe_bus_width_pcie_x2;
675 break;
676 case IXGBE_PCI_LINK_WIDTH_4:
677 hw->bus.width = ixgbe_bus_width_pcie_x4;
678 break;
679 case IXGBE_PCI_LINK_WIDTH_8:
680 hw->bus.width = ixgbe_bus_width_pcie_x8;
681 break;
682 default:
683 hw->bus.width = ixgbe_bus_width_unknown;
684 break;
685 }
686
687 switch (link_status & IXGBE_PCI_LINK_SPEED) {
688 case IXGBE_PCI_LINK_SPEED_2500:
689 hw->bus.speed = ixgbe_bus_speed_2500;
690 break;
691 case IXGBE_PCI_LINK_SPEED_5000:
692 hw->bus.speed = ixgbe_bus_speed_5000;
693 break;
694 case IXGBE_PCI_LINK_SPEED_8000:
695 hw->bus.speed = ixgbe_bus_speed_8000;
696 break;
697 default:
698 hw->bus.speed = ixgbe_bus_speed_unknown;
699 break;
700 }
701
702 mac->ops.set_lan_id(hw);
703
704 return 0;
705 }
706
707 /**
708 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
709 * @hw: pointer to the HW structure
710 *
711 * Determines the LAN function id by reading memory-mapped registers
712 * and swaps the port value if requested.
713 **/
714 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
715 {
716 struct ixgbe_bus_info *bus = &hw->bus;
717 u32 reg;
718
719 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
720 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
721 bus->lan_id = bus->func;
722
723 /* check for a port swap */
724 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
725 if (reg & IXGBE_FACTPS_LFS)
726 bus->func ^= 0x1;
727 }
728
729 /**
730 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
731 * @hw: pointer to hardware structure
732 *
733 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
734 * disables transmit and receive units. The adapter_stopped flag is used by
735 * the shared code and drivers to determine if the adapter is in a stopped
736 * state and should not touch the hardware.
737 **/
738 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
739 {
740 u32 reg_val;
741 u16 i;
742
743 /*
744 * Set the adapter_stopped flag so other driver functions stop touching
745 * the hardware
746 */
747 hw->adapter_stopped = true;
748
749 /* Disable the receive unit */
750 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
751
752 /* Clear interrupt mask to stop interrupts from being generated */
753 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
754
755 /* Clear any pending interrupts, flush previous writes */
756 IXGBE_READ_REG(hw, IXGBE_EICR);
757
758 /* Disable the transmit unit. Each queue must be disabled. */
759 for (i = 0; i < hw->mac.max_tx_queues; i++)
760 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
761
762 /* Disable the receive unit by stopping each queue */
763 for (i = 0; i < hw->mac.max_rx_queues; i++) {
764 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
765 reg_val &= ~IXGBE_RXDCTL_ENABLE;
766 reg_val |= IXGBE_RXDCTL_SWFLSH;
767 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
768 }
769
770 /* flush all queues disables */
771 IXGBE_WRITE_FLUSH(hw);
772 msleep(2);
773
774 /*
775 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
776 * access and verify no pending requests
777 */
778 return ixgbe_disable_pcie_master(hw);
779 }
780
781 /**
782 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
783 * @hw: pointer to hardware structure
784 * @index: led number to turn on
785 **/
786 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
787 {
788 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
789
790 /* To turn on the LED, set mode to ON. */
791 led_reg &= ~IXGBE_LED_MODE_MASK(index);
792 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
793 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
794 IXGBE_WRITE_FLUSH(hw);
795
796 return 0;
797 }
798
799 /**
800 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
801 * @hw: pointer to hardware structure
802 * @index: led number to turn off
803 **/
804 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
805 {
806 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
807
808 /* To turn off the LED, set mode to OFF. */
809 led_reg &= ~IXGBE_LED_MODE_MASK(index);
810 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
811 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
812 IXGBE_WRITE_FLUSH(hw);
813
814 return 0;
815 }
816
817 /**
818 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
819 * @hw: pointer to hardware structure
820 *
821 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
822 * ixgbe_hw struct in order to set up EEPROM access.
823 **/
824 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
825 {
826 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
827 u32 eec;
828 u16 eeprom_size;
829
830 if (eeprom->type == ixgbe_eeprom_uninitialized) {
831 eeprom->type = ixgbe_eeprom_none;
832 /* Set default semaphore delay to 10ms which is a well
833 * tested value */
834 eeprom->semaphore_delay = 10;
835 /* Clear EEPROM page size, it will be initialized as needed */
836 eeprom->word_page_size = 0;
837
838 /*
839 * Check for EEPROM present first.
840 * If not present leave as none
841 */
842 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
843 if (eec & IXGBE_EEC_PRES) {
844 eeprom->type = ixgbe_eeprom_spi;
845
846 /*
847 * SPI EEPROM is assumed here. This code would need to
848 * change if a future EEPROM is not SPI.
849 */
850 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
851 IXGBE_EEC_SIZE_SHIFT);
852 eeprom->word_size = 1 << (eeprom_size +
853 IXGBE_EEPROM_WORD_SIZE_SHIFT);
854 }
855
856 if (eec & IXGBE_EEC_ADDR_SIZE)
857 eeprom->address_bits = 16;
858 else
859 eeprom->address_bits = 8;
860 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
861 "%d\n", eeprom->type, eeprom->word_size,
862 eeprom->address_bits);
863 }
864
865 return 0;
866 }
867
868 /**
869 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
870 * @hw: pointer to hardware structure
871 * @offset: offset within the EEPROM to write
872 * @words: number of word(s)
873 * @data: 16 bit word(s) to write to EEPROM
874 *
875 * Reads 16 bit word(s) from EEPROM through bit-bang method
876 **/
877 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
878 u16 words, u16 *data)
879 {
880 s32 status = 0;
881 u16 i, count;
882
883 hw->eeprom.ops.init_params(hw);
884
885 if (words == 0) {
886 status = IXGBE_ERR_INVALID_ARGUMENT;
887 goto out;
888 }
889
890 if (offset + words > hw->eeprom.word_size) {
891 status = IXGBE_ERR_EEPROM;
892 goto out;
893 }
894
895 /*
896 * The EEPROM page size cannot be queried from the chip. We do lazy
897 * initialization. It is worth to do that when we write large buffer.
898 */
899 if ((hw->eeprom.word_page_size == 0) &&
900 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
901 ixgbe_detect_eeprom_page_size_generic(hw, offset);
902
903 /*
904 * We cannot hold synchronization semaphores for too long
905 * to avoid other entity starvation. However it is more efficient
906 * to read in bursts than synchronizing access for each word.
907 */
908 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
909 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
910 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
911 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
912 count, &data[i]);
913
914 if (status != 0)
915 break;
916 }
917
918 out:
919 return status;
920 }
921
922 /**
923 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
924 * @hw: pointer to hardware structure
925 * @offset: offset within the EEPROM to be written to
926 * @words: number of word(s)
927 * @data: 16 bit word(s) to be written to the EEPROM
928 *
929 * If ixgbe_eeprom_update_checksum is not called after this function, the
930 * EEPROM will most likely contain an invalid checksum.
931 **/
932 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
933 u16 words, u16 *data)
934 {
935 s32 status;
936 u16 word;
937 u16 page_size;
938 u16 i;
939 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
940
941 /* Prepare the EEPROM for writing */
942 status = ixgbe_acquire_eeprom(hw);
943
944 if (status == 0) {
945 if (ixgbe_ready_eeprom(hw) != 0) {
946 ixgbe_release_eeprom(hw);
947 status = IXGBE_ERR_EEPROM;
948 }
949 }
950
951 if (status == 0) {
952 for (i = 0; i < words; i++) {
953 ixgbe_standby_eeprom(hw);
954
955 /* Send the WRITE ENABLE command (8 bit opcode ) */
956 ixgbe_shift_out_eeprom_bits(hw,
957 IXGBE_EEPROM_WREN_OPCODE_SPI,
958 IXGBE_EEPROM_OPCODE_BITS);
959
960 ixgbe_standby_eeprom(hw);
961
962 /*
963 * Some SPI eeproms use the 8th address bit embedded
964 * in the opcode
965 */
966 if ((hw->eeprom.address_bits == 8) &&
967 ((offset + i) >= 128))
968 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
969
970 /* Send the Write command (8-bit opcode + addr) */
971 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
972 IXGBE_EEPROM_OPCODE_BITS);
973 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
974 hw->eeprom.address_bits);
975
976 page_size = hw->eeprom.word_page_size;
977
978 /* Send the data in burst via SPI*/
979 do {
980 word = data[i];
981 word = (word >> 8) | (word << 8);
982 ixgbe_shift_out_eeprom_bits(hw, word, 16);
983
984 if (page_size == 0)
985 break;
986
987 /* do not wrap around page */
988 if (((offset + i) & (page_size - 1)) ==
989 (page_size - 1))
990 break;
991 } while (++i < words);
992
993 ixgbe_standby_eeprom(hw);
994 msleep(10);
995 }
996 /* Done with writing - release the EEPROM */
997 ixgbe_release_eeprom(hw);
998 }
999
1000 return status;
1001 }
1002
1003 /**
1004 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1005 * @hw: pointer to hardware structure
1006 * @offset: offset within the EEPROM to be written to
1007 * @data: 16 bit word to be written to the EEPROM
1008 *
1009 * If ixgbe_eeprom_update_checksum is not called after this function, the
1010 * EEPROM will most likely contain an invalid checksum.
1011 **/
1012 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1013 {
1014 s32 status;
1015
1016 hw->eeprom.ops.init_params(hw);
1017
1018 if (offset >= hw->eeprom.word_size) {
1019 status = IXGBE_ERR_EEPROM;
1020 goto out;
1021 }
1022
1023 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1024
1025 out:
1026 return status;
1027 }
1028
1029 /**
1030 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1031 * @hw: pointer to hardware structure
1032 * @offset: offset within the EEPROM to be read
1033 * @data: read 16 bit words(s) from EEPROM
1034 * @words: number of word(s)
1035 *
1036 * Reads 16 bit word(s) from EEPROM through bit-bang method
1037 **/
1038 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1039 u16 words, u16 *data)
1040 {
1041 s32 status = 0;
1042 u16 i, count;
1043
1044 hw->eeprom.ops.init_params(hw);
1045
1046 if (words == 0) {
1047 status = IXGBE_ERR_INVALID_ARGUMENT;
1048 goto out;
1049 }
1050
1051 if (offset + words > hw->eeprom.word_size) {
1052 status = IXGBE_ERR_EEPROM;
1053 goto out;
1054 }
1055
1056 /*
1057 * We cannot hold synchronization semaphores for too long
1058 * to avoid other entity starvation. However it is more efficient
1059 * to read in bursts than synchronizing access for each word.
1060 */
1061 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1062 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1063 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1064
1065 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1066 count, &data[i]);
1067
1068 if (status != 0)
1069 break;
1070 }
1071
1072 out:
1073 return status;
1074 }
1075
1076 /**
1077 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1078 * @hw: pointer to hardware structure
1079 * @offset: offset within the EEPROM to be read
1080 * @words: number of word(s)
1081 * @data: read 16 bit word(s) from EEPROM
1082 *
1083 * Reads 16 bit word(s) from EEPROM through bit-bang method
1084 **/
1085 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1086 u16 words, u16 *data)
1087 {
1088 s32 status;
1089 u16 word_in;
1090 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1091 u16 i;
1092
1093 /* Prepare the EEPROM for reading */
1094 status = ixgbe_acquire_eeprom(hw);
1095
1096 if (status == 0) {
1097 if (ixgbe_ready_eeprom(hw) != 0) {
1098 ixgbe_release_eeprom(hw);
1099 status = IXGBE_ERR_EEPROM;
1100 }
1101 }
1102
1103 if (status == 0) {
1104 for (i = 0; i < words; i++) {
1105 ixgbe_standby_eeprom(hw);
1106 /*
1107 * Some SPI eeproms use the 8th address bit embedded
1108 * in the opcode
1109 */
1110 if ((hw->eeprom.address_bits == 8) &&
1111 ((offset + i) >= 128))
1112 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1113
1114 /* Send the READ command (opcode + addr) */
1115 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1116 IXGBE_EEPROM_OPCODE_BITS);
1117 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1118 hw->eeprom.address_bits);
1119
1120 /* Read the data. */
1121 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1122 data[i] = (word_in >> 8) | (word_in << 8);
1123 }
1124
1125 /* End this read operation */
1126 ixgbe_release_eeprom(hw);
1127 }
1128
1129 return status;
1130 }
1131
1132 /**
1133 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1134 * @hw: pointer to hardware structure
1135 * @offset: offset within the EEPROM to be read
1136 * @data: read 16 bit value from EEPROM
1137 *
1138 * Reads 16 bit value from EEPROM through bit-bang method
1139 **/
1140 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1141 u16 *data)
1142 {
1143 s32 status;
1144
1145 hw->eeprom.ops.init_params(hw);
1146
1147 if (offset >= hw->eeprom.word_size) {
1148 status = IXGBE_ERR_EEPROM;
1149 goto out;
1150 }
1151
1152 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1153
1154 out:
1155 return status;
1156 }
1157
1158 /**
1159 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1160 * @hw: pointer to hardware structure
1161 * @offset: offset of word in the EEPROM to read
1162 * @words: number of word(s)
1163 * @data: 16 bit word(s) from the EEPROM
1164 *
1165 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1166 **/
1167 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1168 u16 words, u16 *data)
1169 {
1170 u32 eerd;
1171 s32 status = 0;
1172 u32 i;
1173
1174 hw->eeprom.ops.init_params(hw);
1175
1176 if (words == 0) {
1177 status = IXGBE_ERR_INVALID_ARGUMENT;
1178 goto out;
1179 }
1180
1181 if (offset >= hw->eeprom.word_size) {
1182 status = IXGBE_ERR_EEPROM;
1183 goto out;
1184 }
1185
1186 for (i = 0; i < words; i++) {
1187 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1188 IXGBE_EEPROM_RW_REG_START;
1189
1190 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1191 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1192
1193 if (status == 0) {
1194 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1195 IXGBE_EEPROM_RW_REG_DATA);
1196 } else {
1197 hw_dbg(hw, "Eeprom read timed out\n");
1198 goto out;
1199 }
1200 }
1201 out:
1202 return status;
1203 }
1204
1205 /**
1206 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1207 * @hw: pointer to hardware structure
1208 * @offset: offset within the EEPROM to be used as a scratch pad
1209 *
1210 * Discover EEPROM page size by writing marching data at given offset.
1211 * This function is called only when we are writing a new large buffer
1212 * at given offset so the data would be overwritten anyway.
1213 **/
1214 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1215 u16 offset)
1216 {
1217 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1218 s32 status = 0;
1219 u16 i;
1220
1221 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1222 data[i] = i;
1223
1224 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1225 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1226 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1227 hw->eeprom.word_page_size = 0;
1228 if (status != 0)
1229 goto out;
1230
1231 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1232 if (status != 0)
1233 goto out;
1234
1235 /*
1236 * When writing in burst more than the actual page size
1237 * EEPROM address wraps around current page.
1238 */
1239 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1240
1241 hw_dbg(hw, "Detected EEPROM page size = %d words.",
1242 hw->eeprom.word_page_size);
1243 out:
1244 return status;
1245 }
1246
1247 /**
1248 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1249 * @hw: pointer to hardware structure
1250 * @offset: offset of word in the EEPROM to read
1251 * @data: word read from the EEPROM
1252 *
1253 * Reads a 16 bit word from the EEPROM using the EERD register.
1254 **/
1255 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1256 {
1257 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1258 }
1259
1260 /**
1261 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1262 * @hw: pointer to hardware structure
1263 * @offset: offset of word in the EEPROM to write
1264 * @words: number of word(s)
1265 * @data: word(s) write to the EEPROM
1266 *
1267 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1268 **/
1269 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1270 u16 words, u16 *data)
1271 {
1272 u32 eewr;
1273 s32 status = 0;
1274 u16 i;
1275
1276 hw->eeprom.ops.init_params(hw);
1277
1278 if (words == 0) {
1279 status = IXGBE_ERR_INVALID_ARGUMENT;
1280 goto out;
1281 }
1282
1283 if (offset >= hw->eeprom.word_size) {
1284 status = IXGBE_ERR_EEPROM;
1285 goto out;
1286 }
1287
1288 for (i = 0; i < words; i++) {
1289 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1290 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1291 IXGBE_EEPROM_RW_REG_START;
1292
1293 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1294 if (status != 0) {
1295 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1296 goto out;
1297 }
1298
1299 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1300
1301 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1302 if (status != 0) {
1303 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1304 goto out;
1305 }
1306 }
1307
1308 out:
1309 return status;
1310 }
1311
1312 /**
1313 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1314 * @hw: pointer to hardware structure
1315 * @offset: offset of word in the EEPROM to write
1316 * @data: word write to the EEPROM
1317 *
1318 * Write a 16 bit word to the EEPROM using the EEWR register.
1319 **/
1320 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1321 {
1322 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1323 }
1324
1325 /**
1326 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1327 * @hw: pointer to hardware structure
1328 * @ee_reg: EEPROM flag for polling
1329 *
1330 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1331 * read or write is done respectively.
1332 **/
1333 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1334 {
1335 u32 i;
1336 u32 reg;
1337 s32 status = IXGBE_ERR_EEPROM;
1338
1339 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1340 if (ee_reg == IXGBE_NVM_POLL_READ)
1341 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1342 else
1343 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1344
1345 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1346 status = 0;
1347 break;
1348 }
1349 udelay(5);
1350 }
1351 return status;
1352 }
1353
1354 /**
1355 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1356 * @hw: pointer to hardware structure
1357 *
1358 * Prepares EEPROM for access using bit-bang method. This function should
1359 * be called before issuing a command to the EEPROM.
1360 **/
1361 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1362 {
1363 s32 status = 0;
1364 u32 eec;
1365 u32 i;
1366
1367 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1368 != 0)
1369 status = IXGBE_ERR_SWFW_SYNC;
1370
1371 if (status == 0) {
1372 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1373
1374 /* Request EEPROM Access */
1375 eec |= IXGBE_EEC_REQ;
1376 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1377
1378 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1379 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1380 if (eec & IXGBE_EEC_GNT)
1381 break;
1382 udelay(5);
1383 }
1384
1385 /* Release if grant not acquired */
1386 if (!(eec & IXGBE_EEC_GNT)) {
1387 eec &= ~IXGBE_EEC_REQ;
1388 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1389 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1390
1391 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1392 status = IXGBE_ERR_EEPROM;
1393 }
1394
1395 /* Setup EEPROM for Read/Write */
1396 if (status == 0) {
1397 /* Clear CS and SK */
1398 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1399 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1400 IXGBE_WRITE_FLUSH(hw);
1401 udelay(1);
1402 }
1403 }
1404 return status;
1405 }
1406
1407 /**
1408 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1409 * @hw: pointer to hardware structure
1410 *
1411 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1412 **/
1413 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1414 {
1415 s32 status = IXGBE_ERR_EEPROM;
1416 u32 timeout = 2000;
1417 u32 i;
1418 u32 swsm;
1419
1420 /* Get SMBI software semaphore between device drivers first */
1421 for (i = 0; i < timeout; i++) {
1422 /*
1423 * If the SMBI bit is 0 when we read it, then the bit will be
1424 * set and we have the semaphore
1425 */
1426 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1427 if (!(swsm & IXGBE_SWSM_SMBI)) {
1428 status = 0;
1429 break;
1430 }
1431 udelay(50);
1432 }
1433
1434 if (i == timeout) {
1435 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1436 "not granted.\n");
1437 /*
1438 * this release is particularly important because our attempts
1439 * above to get the semaphore may have succeeded, and if there
1440 * was a timeout, we should unconditionally clear the semaphore
1441 * bits to free the driver to make progress
1442 */
1443 ixgbe_release_eeprom_semaphore(hw);
1444
1445 udelay(50);
1446 /*
1447 * one last try
1448 * If the SMBI bit is 0 when we read it, then the bit will be
1449 * set and we have the semaphore
1450 */
1451 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1452 if (!(swsm & IXGBE_SWSM_SMBI))
1453 status = 0;
1454 }
1455
1456 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1457 if (status == 0) {
1458 for (i = 0; i < timeout; i++) {
1459 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1460
1461 /* Set the SW EEPROM semaphore bit to request access */
1462 swsm |= IXGBE_SWSM_SWESMBI;
1463 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1464
1465 /*
1466 * If we set the bit successfully then we got the
1467 * semaphore.
1468 */
1469 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1470 if (swsm & IXGBE_SWSM_SWESMBI)
1471 break;
1472
1473 udelay(50);
1474 }
1475
1476 /*
1477 * Release semaphores and return error if SW EEPROM semaphore
1478 * was not granted because we don't have access to the EEPROM
1479 */
1480 if (i >= timeout) {
1481 hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1482 "not granted.\n");
1483 ixgbe_release_eeprom_semaphore(hw);
1484 status = IXGBE_ERR_EEPROM;
1485 }
1486 } else {
1487 hw_dbg(hw, "Software semaphore SMBI between device drivers "
1488 "not granted.\n");
1489 }
1490
1491 return status;
1492 }
1493
1494 /**
1495 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1496 * @hw: pointer to hardware structure
1497 *
1498 * This function clears hardware semaphore bits.
1499 **/
1500 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1501 {
1502 u32 swsm;
1503
1504 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1505
1506 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1507 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1508 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1509 IXGBE_WRITE_FLUSH(hw);
1510 }
1511
1512 /**
1513 * ixgbe_ready_eeprom - Polls for EEPROM ready
1514 * @hw: pointer to hardware structure
1515 **/
1516 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1517 {
1518 s32 status = 0;
1519 u16 i;
1520 u8 spi_stat_reg;
1521
1522 /*
1523 * Read "Status Register" repeatedly until the LSB is cleared. The
1524 * EEPROM will signal that the command has been completed by clearing
1525 * bit 0 of the internal status register. If it's not cleared within
1526 * 5 milliseconds, then error out.
1527 */
1528 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1529 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1530 IXGBE_EEPROM_OPCODE_BITS);
1531 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1532 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1533 break;
1534
1535 udelay(5);
1536 ixgbe_standby_eeprom(hw);
1537 };
1538
1539 /*
1540 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1541 * devices (and only 0-5mSec on 5V devices)
1542 */
1543 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1544 hw_dbg(hw, "SPI EEPROM Status error\n");
1545 status = IXGBE_ERR_EEPROM;
1546 }
1547
1548 return status;
1549 }
1550
1551 /**
1552 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1553 * @hw: pointer to hardware structure
1554 **/
1555 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1556 {
1557 u32 eec;
1558
1559 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1560
1561 /* Toggle CS to flush commands */
1562 eec |= IXGBE_EEC_CS;
1563 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1564 IXGBE_WRITE_FLUSH(hw);
1565 udelay(1);
1566 eec &= ~IXGBE_EEC_CS;
1567 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1568 IXGBE_WRITE_FLUSH(hw);
1569 udelay(1);
1570 }
1571
1572 /**
1573 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1574 * @hw: pointer to hardware structure
1575 * @data: data to send to the EEPROM
1576 * @count: number of bits to shift out
1577 **/
1578 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1579 u16 count)
1580 {
1581 u32 eec;
1582 u32 mask;
1583 u32 i;
1584
1585 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1586
1587 /*
1588 * Mask is used to shift "count" bits of "data" out to the EEPROM
1589 * one bit at a time. Determine the starting bit based on count
1590 */
1591 mask = 0x01 << (count - 1);
1592
1593 for (i = 0; i < count; i++) {
1594 /*
1595 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1596 * "1", and then raising and then lowering the clock (the SK
1597 * bit controls the clock input to the EEPROM). A "0" is
1598 * shifted out to the EEPROM by setting "DI" to "0" and then
1599 * raising and then lowering the clock.
1600 */
1601 if (data & mask)
1602 eec |= IXGBE_EEC_DI;
1603 else
1604 eec &= ~IXGBE_EEC_DI;
1605
1606 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1607 IXGBE_WRITE_FLUSH(hw);
1608
1609 udelay(1);
1610
1611 ixgbe_raise_eeprom_clk(hw, &eec);
1612 ixgbe_lower_eeprom_clk(hw, &eec);
1613
1614 /*
1615 * Shift mask to signify next bit of data to shift in to the
1616 * EEPROM
1617 */
1618 mask = mask >> 1;
1619 };
1620
1621 /* We leave the "DI" bit set to "0" when we leave this routine. */
1622 eec &= ~IXGBE_EEC_DI;
1623 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1624 IXGBE_WRITE_FLUSH(hw);
1625 }
1626
1627 /**
1628 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1629 * @hw: pointer to hardware structure
1630 **/
1631 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1632 {
1633 u32 eec;
1634 u32 i;
1635 u16 data = 0;
1636
1637 /*
1638 * In order to read a register from the EEPROM, we need to shift
1639 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1640 * the clock input to the EEPROM (setting the SK bit), and then reading
1641 * the value of the "DO" bit. During this "shifting in" process the
1642 * "DI" bit should always be clear.
1643 */
1644 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1645
1646 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1647
1648 for (i = 0; i < count; i++) {
1649 data = data << 1;
1650 ixgbe_raise_eeprom_clk(hw, &eec);
1651
1652 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1653
1654 eec &= ~(IXGBE_EEC_DI);
1655 if (eec & IXGBE_EEC_DO)
1656 data |= 1;
1657
1658 ixgbe_lower_eeprom_clk(hw, &eec);
1659 }
1660
1661 return data;
1662 }
1663
1664 /**
1665 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1666 * @hw: pointer to hardware structure
1667 * @eec: EEC register's current value
1668 **/
1669 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1670 {
1671 /*
1672 * Raise the clock input to the EEPROM
1673 * (setting the SK bit), then delay
1674 */
1675 *eec = *eec | IXGBE_EEC_SK;
1676 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1677 IXGBE_WRITE_FLUSH(hw);
1678 udelay(1);
1679 }
1680
1681 /**
1682 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1683 * @hw: pointer to hardware structure
1684 * @eecd: EECD's current value
1685 **/
1686 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1687 {
1688 /*
1689 * Lower the clock input to the EEPROM (clearing the SK bit), then
1690 * delay
1691 */
1692 *eec = *eec & ~IXGBE_EEC_SK;
1693 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1694 IXGBE_WRITE_FLUSH(hw);
1695 udelay(1);
1696 }
1697
1698 /**
1699 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1700 * @hw: pointer to hardware structure
1701 **/
1702 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1703 {
1704 u32 eec;
1705
1706 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1707
1708 eec |= IXGBE_EEC_CS; /* Pull CS high */
1709 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1710
1711 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1712 IXGBE_WRITE_FLUSH(hw);
1713
1714 udelay(1);
1715
1716 /* Stop requesting EEPROM access */
1717 eec &= ~IXGBE_EEC_REQ;
1718 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1719
1720 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1721
1722 /* Delay before attempt to obtain semaphore again to allow FW access */
1723 msleep(hw->eeprom.semaphore_delay);
1724 }
1725
1726 /**
1727 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1728 * @hw: pointer to hardware structure
1729 **/
1730 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1731 {
1732 u16 i;
1733 u16 j;
1734 u16 checksum = 0;
1735 u16 length = 0;
1736 u16 pointer = 0;
1737 u16 word = 0;
1738
1739 /* Include 0x0-0x3F in the checksum */
1740 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1741 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1742 hw_dbg(hw, "EEPROM read failed\n");
1743 break;
1744 }
1745 checksum += word;
1746 }
1747
1748 /* Include all data from pointers except for the fw pointer */
1749 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1750 hw->eeprom.ops.read(hw, i, &pointer);
1751
1752 /* Make sure the pointer seems valid */
1753 if (pointer != 0xFFFF && pointer != 0) {
1754 hw->eeprom.ops.read(hw, pointer, &length);
1755
1756 if (length != 0xFFFF && length != 0) {
1757 for (j = pointer+1; j <= pointer+length; j++) {
1758 hw->eeprom.ops.read(hw, j, &word);
1759 checksum += word;
1760 }
1761 }
1762 }
1763 }
1764
1765 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1766
1767 return checksum;
1768 }
1769
1770 /**
1771 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1772 * @hw: pointer to hardware structure
1773 * @checksum_val: calculated checksum
1774 *
1775 * Performs checksum calculation and validates the EEPROM checksum. If the
1776 * caller does not need checksum_val, the value can be NULL.
1777 **/
1778 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1779 u16 *checksum_val)
1780 {
1781 s32 status;
1782 u16 checksum;
1783 u16 read_checksum = 0;
1784
1785 /*
1786 * Read the first word from the EEPROM. If this times out or fails, do
1787 * not continue or we could be in for a very long wait while every
1788 * EEPROM read fails
1789 */
1790 status = hw->eeprom.ops.read(hw, 0, &checksum);
1791
1792 if (status == 0) {
1793 checksum = hw->eeprom.ops.calc_checksum(hw);
1794
1795 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1796
1797 /*
1798 * Verify read checksum from EEPROM is the same as
1799 * calculated checksum
1800 */
1801 if (read_checksum != checksum)
1802 status = IXGBE_ERR_EEPROM_CHECKSUM;
1803
1804 /* If the user cares, return the calculated checksum */
1805 if (checksum_val)
1806 *checksum_val = checksum;
1807 } else {
1808 hw_dbg(hw, "EEPROM read failed\n");
1809 }
1810
1811 return status;
1812 }
1813
1814 /**
1815 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1816 * @hw: pointer to hardware structure
1817 **/
1818 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1819 {
1820 s32 status;
1821 u16 checksum;
1822
1823 /*
1824 * Read the first word from the EEPROM. If this times out or fails, do
1825 * not continue or we could be in for a very long wait while every
1826 * EEPROM read fails
1827 */
1828 status = hw->eeprom.ops.read(hw, 0, &checksum);
1829
1830 if (status == 0) {
1831 checksum = hw->eeprom.ops.calc_checksum(hw);
1832 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1833 checksum);
1834 } else {
1835 hw_dbg(hw, "EEPROM read failed\n");
1836 }
1837
1838 return status;
1839 }
1840
1841 /**
1842 * ixgbe_validate_mac_addr - Validate MAC address
1843 * @mac_addr: pointer to MAC address.
1844 *
1845 * Tests a MAC address to ensure it is a valid Individual Address
1846 **/
1847 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1848 {
1849 s32 status = 0;
1850
1851 /* Make sure it is not a multicast address */
1852 if (IXGBE_IS_MULTICAST(mac_addr)) {
1853 hw_dbg(hw, "MAC address is multicast\n");
1854 status = IXGBE_ERR_INVALID_MAC_ADDR;
1855 /* Not a broadcast address */
1856 } else if (IXGBE_IS_BROADCAST(mac_addr)) {
1857 hw_dbg(hw, "MAC address is broadcast\n");
1858 status = IXGBE_ERR_INVALID_MAC_ADDR;
1859 /* Reject the zero address */
1860 } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1861 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
1862 hw_dbg(hw, "MAC address is all zeros\n");
1863 status = IXGBE_ERR_INVALID_MAC_ADDR;
1864 }
1865 return status;
1866 }
1867
1868 /**
1869 * ixgbe_set_rar_generic - Set Rx address register
1870 * @hw: pointer to hardware structure
1871 * @index: Receive address register to write
1872 * @addr: Address to put into receive address register
1873 * @vmdq: VMDq "set" or "pool" index
1874 * @enable_addr: set flag that address is active
1875 *
1876 * Puts an ethernet address into a receive address register.
1877 **/
1878 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1879 u32 enable_addr)
1880 {
1881 u32 rar_low, rar_high;
1882 u32 rar_entries = hw->mac.num_rar_entries;
1883
1884 /* Make sure we are using a valid rar index range */
1885 if (index >= rar_entries) {
1886 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1887 return IXGBE_ERR_INVALID_ARGUMENT;
1888 }
1889
1890 /* setup VMDq pool selection before this RAR gets enabled */
1891 hw->mac.ops.set_vmdq(hw, index, vmdq);
1892
1893 /*
1894 * HW expects these in little endian so we reverse the byte
1895 * order from network order (big endian) to little endian
1896 */
1897 rar_low = ((u32)addr[0] |
1898 ((u32)addr[1] << 8) |
1899 ((u32)addr[2] << 16) |
1900 ((u32)addr[3] << 24));
1901 /*
1902 * Some parts put the VMDq setting in the extra RAH bits,
1903 * so save everything except the lower 16 bits that hold part
1904 * of the address and the address valid bit.
1905 */
1906 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1907 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1908 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1909
1910 if (enable_addr != 0)
1911 rar_high |= IXGBE_RAH_AV;
1912
1913 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1914 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1915
1916 return 0;
1917 }
1918
1919 /**
1920 * ixgbe_clear_rar_generic - Remove Rx address register
1921 * @hw: pointer to hardware structure
1922 * @index: Receive address register to write
1923 *
1924 * Clears an ethernet address from a receive address register.
1925 **/
1926 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1927 {
1928 u32 rar_high;
1929 u32 rar_entries = hw->mac.num_rar_entries;
1930
1931 /* Make sure we are using a valid rar index range */
1932 if (index >= rar_entries) {
1933 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1934 return IXGBE_ERR_INVALID_ARGUMENT;
1935 }
1936
1937 /*
1938 * Some parts put the VMDq setting in the extra RAH bits,
1939 * so save everything except the lower 16 bits that hold part
1940 * of the address and the address valid bit.
1941 */
1942 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1943 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1944
1945 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1946 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1947
1948 /* clear VMDq pool/queue selection for this RAR */
1949 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1950
1951 return 0;
1952 }
1953
1954 /**
1955 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1956 * @hw: pointer to hardware structure
1957 *
1958 * Places the MAC address in receive address register 0 and clears the rest
1959 * of the receive address registers. Clears the multicast table. Assumes
1960 * the receiver is in reset when the routine is called.
1961 **/
1962 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1963 {
1964 u32 i;
1965 u32 rar_entries = hw->mac.num_rar_entries;
1966
1967 /*
1968 * If the current mac address is valid, assume it is a software override
1969 * to the permanent address.
1970 * Otherwise, use the permanent address from the eeprom.
1971 */
1972 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1973 IXGBE_ERR_INVALID_MAC_ADDR) {
1974 /* Get the MAC address from the RAR0 for later reference */
1975 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1976
1977 hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1978 hw->mac.addr[0], hw->mac.addr[1],
1979 hw->mac.addr[2]);
1980 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1981 hw->mac.addr[4], hw->mac.addr[5]);
1982 } else {
1983 /* Setup the receive address. */
1984 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1985 hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
1986 hw->mac.addr[0], hw->mac.addr[1],
1987 hw->mac.addr[2]);
1988 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1989 hw->mac.addr[4], hw->mac.addr[5]);
1990
1991 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1992
1993 /* clear VMDq pool/queue selection for RAR 0 */
1994 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1995 }
1996 hw->addr_ctrl.overflow_promisc = 0;
1997
1998 hw->addr_ctrl.rar_used_count = 1;
1999
2000 /* Zero out the other receive addresses. */
2001 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
2002 for (i = 1; i < rar_entries; i++) {
2003 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2004 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2005 }
2006
2007 /* Clear the MTA */
2008 hw->addr_ctrl.mta_in_use = 0;
2009 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2010
2011 hw_dbg(hw, " Clearing MTA\n");
2012 for (i = 0; i < hw->mac.mcft_size; i++)
2013 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2014
2015 ixgbe_init_uta_tables(hw);
2016
2017 return 0;
2018 }
2019
2020 /**
2021 * ixgbe_add_uc_addr - Adds a secondary unicast address.
2022 * @hw: pointer to hardware structure
2023 * @addr: new address
2024 *
2025 * Adds it to unused receive address register or goes into promiscuous mode.
2026 **/
2027 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2028 {
2029 u32 rar_entries = hw->mac.num_rar_entries;
2030 u32 rar;
2031
2032 hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2033 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2034
2035 /*
2036 * Place this address in the RAR if there is room,
2037 * else put the controller into promiscuous mode
2038 */
2039 if (hw->addr_ctrl.rar_used_count < rar_entries) {
2040 rar = hw->addr_ctrl.rar_used_count;
2041 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2042 hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
2043 hw->addr_ctrl.rar_used_count++;
2044 } else {
2045 hw->addr_ctrl.overflow_promisc++;
2046 }
2047
2048 hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
2049 }
2050
2051 /**
2052 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2053 * @hw: pointer to hardware structure
2054 * @addr_list: the list of new addresses
2055 * @addr_count: number of addresses
2056 * @next: iterator function to walk the address list
2057 *
2058 * The given list replaces any existing list. Clears the secondary addrs from
2059 * receive address registers. Uses unused receive address registers for the
2060 * first secondary addresses, and falls back to promiscuous mode as needed.
2061 *
2062 * Drivers using secondary unicast addresses must set user_set_promisc when
2063 * manually putting the device into promiscuous mode.
2064 **/
2065 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2066 u32 addr_count, ixgbe_mc_addr_itr next)
2067 {
2068 u8 *addr;
2069 u32 i;
2070 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2071 u32 uc_addr_in_use;
2072 u32 fctrl;
2073 u32 vmdq;
2074
2075 /*
2076 * Clear accounting of old secondary address list,
2077 * don't count RAR[0]
2078 */
2079 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2080 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2081 hw->addr_ctrl.overflow_promisc = 0;
2082
2083 /* Zero out the other receive addresses */
2084 hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2085 for (i = 0; i < uc_addr_in_use; i++) {
2086 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2087 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2088 }
2089
2090 /* Add the new addresses */
2091 for (i = 0; i < addr_count; i++) {
2092 hw_dbg(hw, " Adding the secondary addresses:\n");
2093 addr = next(hw, &addr_list, &vmdq);
2094 ixgbe_add_uc_addr(hw, addr, vmdq);
2095 }
2096
2097 if (hw->addr_ctrl.overflow_promisc) {
2098 /* enable promisc if not already in overflow or set by user */
2099 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2100 hw_dbg(hw, " Entering address overflow promisc mode\n");
2101 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2102 fctrl |= IXGBE_FCTRL_UPE;
2103 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2104 }
2105 } else {
2106 /* only disable if set by overflow, not by user */
2107 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2108 hw_dbg(hw, " Leaving address overflow promisc mode\n");
2109 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2110 fctrl &= ~IXGBE_FCTRL_UPE;
2111 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2112 }
2113 }
2114
2115 hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
2116 return 0;
2117 }
2118
2119 /**
2120 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2121 * @hw: pointer to hardware structure
2122 * @mc_addr: the multicast address
2123 *
2124 * Extracts the 12 bits, from a multicast address, to determine which
2125 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2126 * incoming rx multicast addresses, to determine the bit-vector to check in
2127 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2128 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2129 * to mc_filter_type.
2130 **/
2131 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2132 {
2133 u32 vector = 0;
2134
2135 switch (hw->mac.mc_filter_type) {
2136 case 0: /* use bits [47:36] of the address */
2137 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2138 break;
2139 case 1: /* use bits [46:35] of the address */
2140 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2141 break;
2142 case 2: /* use bits [45:34] of the address */
2143 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2144 break;
2145 case 3: /* use bits [43:32] of the address */
2146 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2147 break;
2148 default: /* Invalid mc_filter_type */
2149 hw_dbg(hw, "MC filter type param set incorrectly\n");
2150 break;
2151 }
2152
2153 /* vector can only be 12-bits or boundary will be exceeded */
2154 vector &= 0xFFF;
2155 return vector;
2156 }
2157
2158 /**
2159 * ixgbe_set_mta - Set bit-vector in multicast table
2160 * @hw: pointer to hardware structure
2161 * @hash_value: Multicast address hash value
2162 *
2163 * Sets the bit-vector in the multicast table.
2164 **/
2165 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2166 {
2167 u32 vector;
2168 u32 vector_bit;
2169 u32 vector_reg;
2170
2171 hw->addr_ctrl.mta_in_use++;
2172
2173 vector = ixgbe_mta_vector(hw, mc_addr);
2174 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2175
2176 /*
2177 * The MTA is a register array of 128 32-bit registers. It is treated
2178 * like an array of 4096 bits. We want to set bit
2179 * BitArray[vector_value]. So we figure out what register the bit is
2180 * in, read it, OR in the new bit, then write back the new value. The
2181 * register is determined by the upper 7 bits of the vector value and
2182 * the bit within that register are determined by the lower 5 bits of
2183 * the value.
2184 */
2185 vector_reg = (vector >> 5) & 0x7F;
2186 vector_bit = vector & 0x1F;
2187 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2188 }
2189
2190 /**
2191 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2192 * @hw: pointer to hardware structure
2193 * @mc_addr_list: the list of new multicast addresses
2194 * @mc_addr_count: number of addresses
2195 * @next: iterator function to walk the multicast address list
2196 * @clear: flag, when set clears the table beforehand
2197 *
2198 * When the clear flag is set, the given list replaces any existing list.
2199 * Hashes the given addresses into the multicast table.
2200 **/
2201 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2202 u32 mc_addr_count, ixgbe_mc_addr_itr next,
2203 bool clear)
2204 {
2205 u32 i;
2206 u32 vmdq;
2207
2208 /*
2209 * Set the new number of MC addresses that we are being requested to
2210 * use.
2211 */
2212 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2213 hw->addr_ctrl.mta_in_use = 0;
2214
2215 /* Clear mta_shadow */
2216 if (clear) {
2217 hw_dbg(hw, " Clearing MTA\n");
2218 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2219 }
2220
2221 /* Update mta_shadow */
2222 for (i = 0; i < mc_addr_count; i++) {
2223 hw_dbg(hw, " Adding the multicast addresses:\n");
2224 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2225 }
2226
2227 /* Enable mta */
2228 for (i = 0; i < hw->mac.mcft_size; i++)
2229 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2230 hw->mac.mta_shadow[i]);
2231
2232 if (hw->addr_ctrl.mta_in_use > 0)
2233 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2234 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2235
2236 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2237 return 0;
2238 }
2239
2240 /**
2241 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2242 * @hw: pointer to hardware structure
2243 *
2244 * Enables multicast address in RAR and the use of the multicast hash table.
2245 **/
2246 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2247 {
2248 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2249
2250 if (a->mta_in_use > 0)
2251 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2252 hw->mac.mc_filter_type);
2253
2254 return 0;
2255 }
2256
2257 /**
2258 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2259 * @hw: pointer to hardware structure
2260 *
2261 * Disables multicast address in RAR and the use of the multicast hash table.
2262 **/
2263 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2264 {
2265 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2266
2267 if (a->mta_in_use > 0)
2268 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2269
2270 return 0;
2271 }
2272
2273 /**
2274 * ixgbe_fc_enable_generic - Enable flow control
2275 * @hw: pointer to hardware structure
2276 *
2277 * Enable flow control according to the current settings.
2278 **/
2279 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2280 {
2281 s32 ret_val = 0;
2282 u32 mflcn_reg, fccfg_reg;
2283 u32 reg;
2284 u32 fcrtl, fcrth;
2285 int i;
2286
2287 /* Validate the water mark configuration */
2288 if (!hw->fc.pause_time) {
2289 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2290 goto out;
2291 }
2292
2293 /* Low water mark of zero causes XOFF floods */
2294 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2295 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2296 hw->fc.high_water[i]) {
2297 if (!hw->fc.low_water[i] ||
2298 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2299 hw_dbg(hw, "Invalid water mark configuration\n");
2300 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2301 goto out;
2302 }
2303 }
2304 }
2305
2306 /* Negotiate the fc mode to use */
2307 ixgbe_fc_autoneg(hw);
2308
2309 /* Disable any previous flow control settings */
2310 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2311 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2312
2313 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2314 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2315
2316 /*
2317 * The possible values of fc.current_mode are:
2318 * 0: Flow control is completely disabled
2319 * 1: Rx flow control is enabled (we can receive pause frames,
2320 * but not send pause frames).
2321 * 2: Tx flow control is enabled (we can send pause frames but
2322 * we do not support receiving pause frames).
2323 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2324 * other: Invalid.
2325 */
2326 switch (hw->fc.current_mode) {
2327 case ixgbe_fc_none:
2328 /*
2329 * Flow control is disabled by software override or autoneg.
2330 * The code below will actually disable it in the HW.
2331 */
2332 break;
2333 case ixgbe_fc_rx_pause:
2334 /*
2335 * Rx Flow control is enabled and Tx Flow control is
2336 * disabled by software override. Since there really
2337 * isn't a way to advertise that we are capable of RX
2338 * Pause ONLY, we will advertise that we support both
2339 * symmetric and asymmetric Rx PAUSE. Later, we will
2340 * disable the adapter's ability to send PAUSE frames.
2341 */
2342 mflcn_reg |= IXGBE_MFLCN_RFCE;
2343 break;
2344 case ixgbe_fc_tx_pause:
2345 /*
2346 * Tx Flow control is enabled, and Rx Flow control is
2347 * disabled by software override.
2348 */
2349 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2350 break;
2351 case ixgbe_fc_full:
2352 /* Flow control (both Rx and Tx) is enabled by SW override. */
2353 mflcn_reg |= IXGBE_MFLCN_RFCE;
2354 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2355 break;
2356 default:
2357 hw_dbg(hw, "Flow control param set incorrectly\n");
2358 ret_val = IXGBE_ERR_CONFIG;
2359 goto out;
2360 break;
2361 }
2362
2363 /* Set 802.3x based flow control settings. */
2364 mflcn_reg |= IXGBE_MFLCN_DPF;
2365 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2366 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2367
2368
2369 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2370 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2371 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2372 hw->fc.high_water[i]) {
2373 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2374 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2375 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2376 } else {
2377 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2378 /*
2379 * In order to prevent Tx hangs when the internal Tx
2380 * switch is enabled we must set the high water mark
2381 * to the maximum FCRTH value. This allows the Tx
2382 * switch to function even under heavy Rx workloads.
2383 */
2384 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2385 }
2386
2387 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2388 }
2389
2390 /* Configure pause time (2 TCs per register) */
2391 reg = hw->fc.pause_time * 0x00010001;
2392 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2393 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2394
2395 /* Configure flow control refresh threshold value */
2396 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2397
2398 out:
2399 return ret_val;
2400 }
2401
2402 /**
2403 * ixgbe_negotiate_fc - Negotiate flow control
2404 * @hw: pointer to hardware structure
2405 * @adv_reg: flow control advertised settings
2406 * @lp_reg: link partner's flow control settings
2407 * @adv_sym: symmetric pause bit in advertisement
2408 * @adv_asm: asymmetric pause bit in advertisement
2409 * @lp_sym: symmetric pause bit in link partner advertisement
2410 * @lp_asm: asymmetric pause bit in link partner advertisement
2411 *
2412 * Find the intersection between advertised settings and link partner's
2413 * advertised settings
2414 **/
2415 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2416 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2417 {
2418 if ((!(adv_reg)) || (!(lp_reg)))
2419 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2420
2421 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2422 /*
2423 * Now we need to check if the user selected Rx ONLY
2424 * of pause frames. In this case, we had to advertise
2425 * FULL flow control because we could not advertise RX
2426 * ONLY. Hence, we must now check to see if we need to
2427 * turn OFF the TRANSMISSION of PAUSE frames.
2428 */
2429 if (hw->fc.requested_mode == ixgbe_fc_full) {
2430 hw->fc.current_mode = ixgbe_fc_full;
2431 hw_dbg(hw, "Flow Control = FULL.\n");
2432 } else {
2433 hw->fc.current_mode = ixgbe_fc_rx_pause;
2434 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2435 }
2436 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2437 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2438 hw->fc.current_mode = ixgbe_fc_tx_pause;
2439 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2440 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2441 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2442 hw->fc.current_mode = ixgbe_fc_rx_pause;
2443 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2444 } else {
2445 hw->fc.current_mode = ixgbe_fc_none;
2446 hw_dbg(hw, "Flow Control = NONE.\n");
2447 }
2448 return 0;
2449 }
2450
2451 /**
2452 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2453 * @hw: pointer to hardware structure
2454 *
2455 * Enable flow control according on 1 gig fiber.
2456 **/
2457 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2458 {
2459 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2460 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2461
2462 /*
2463 * On multispeed fiber at 1g, bail out if
2464 * - link is up but AN did not complete, or if
2465 * - link is up and AN completed but timed out
2466 */
2467
2468 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2469 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2470 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2471 goto out;
2472
2473 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2474 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2475
2476 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2477 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2478 IXGBE_PCS1GANA_ASM_PAUSE,
2479 IXGBE_PCS1GANA_SYM_PAUSE,
2480 IXGBE_PCS1GANA_ASM_PAUSE);
2481
2482 out:
2483 return ret_val;
2484 }
2485
2486 /**
2487 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2488 * @hw: pointer to hardware structure
2489 *
2490 * Enable flow control according to IEEE clause 37.
2491 **/
2492 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2493 {
2494 u32 links2, anlp1_reg, autoc_reg, links;
2495 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2496
2497 /*
2498 * On backplane, bail out if
2499 * - backplane autoneg was not completed, or if
2500 * - we are 82599 and link partner is not AN enabled
2501 */
2502 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2503 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2504 goto out;
2505
2506 if (hw->mac.type == ixgbe_mac_82599EB) {
2507 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2508 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2509 goto out;
2510 }
2511 /*
2512 * Read the 10g AN autoc and LP ability registers and resolve
2513 * local flow control settings accordingly
2514 */
2515 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2516 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2517
2518 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2519 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2520 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2521
2522 out:
2523 return ret_val;
2524 }
2525
2526 /**
2527 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2528 * @hw: pointer to hardware structure
2529 *
2530 * Enable flow control according to IEEE clause 37.
2531 **/
2532 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2533 {
2534 u16 technology_ability_reg = 0;
2535 u16 lp_technology_ability_reg = 0;
2536
2537 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2538 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2539 &technology_ability_reg);
2540 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2541 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2542 &lp_technology_ability_reg);
2543
2544 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2545 (u32)lp_technology_ability_reg,
2546 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2547 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2548 }
2549
2550 /**
2551 * ixgbe_fc_autoneg - Configure flow control
2552 * @hw: pointer to hardware structure
2553 *
2554 * Compares our advertised flow control capabilities to those advertised by
2555 * our link partner, and determines the proper flow control mode to use.
2556 **/
2557 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2558 {
2559 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2560 ixgbe_link_speed speed;
2561 bool link_up;
2562
2563 /*
2564 * AN should have completed when the cable was plugged in.
2565 * Look for reasons to bail out. Bail out if:
2566 * - FC autoneg is disabled, or if
2567 * - link is not up.
2568 */
2569 if (hw->fc.disable_fc_autoneg)
2570 goto out;
2571
2572 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2573 if (!link_up)
2574 goto out;
2575
2576 switch (hw->phy.media_type) {
2577 /* Autoneg flow control on fiber adapters */
2578 case ixgbe_media_type_fiber:
2579 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2580 ret_val = ixgbe_fc_autoneg_fiber(hw);
2581 break;
2582
2583 /* Autoneg flow control on backplane adapters */
2584 case ixgbe_media_type_backplane:
2585 ret_val = ixgbe_fc_autoneg_backplane(hw);
2586 break;
2587
2588 /* Autoneg flow control on copper adapters */
2589 case ixgbe_media_type_copper:
2590 if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2591 ret_val = ixgbe_fc_autoneg_copper(hw);
2592 break;
2593
2594 default:
2595 break;
2596 }
2597
2598 out:
2599 if (ret_val == 0) {
2600 hw->fc.fc_was_autonegged = true;
2601 } else {
2602 hw->fc.fc_was_autonegged = false;
2603 hw->fc.current_mode = hw->fc.requested_mode;
2604 }
2605 }
2606
2607 /**
2608 * ixgbe_disable_pcie_master - Disable PCI-express master access
2609 * @hw: pointer to hardware structure
2610 *
2611 * Disables PCI-Express master access and verifies there are no pending
2612 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2613 * bit hasn't caused the master requests to be disabled, else 0
2614 * is returned signifying master requests disabled.
2615 **/
2616 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2617 {
2618 s32 status = 0;
2619 u32 i;
2620
2621 /* Always set this bit to ensure any future transactions are blocked */
2622 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2623
2624 /* Exit if master requets are blocked */
2625 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2626 goto out;
2627
2628 /* Poll for master request bit to clear */
2629 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2630 udelay(100);
2631 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2632 goto out;
2633 }
2634
2635 /*
2636 * Two consecutive resets are required via CTRL.RST per datasheet
2637 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2638 * of this need. The first reset prevents new master requests from
2639 * being issued by our device. We then must wait 1usec or more for any
2640 * remaining completions from the PCIe bus to trickle in, and then reset
2641 * again to clear out any effects they may have had on our device.
2642 */
2643 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2644 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2645
2646 /*
2647 * Before proceeding, make sure that the PCIe block does not have
2648 * transactions pending.
2649 */
2650 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2651 udelay(100);
2652 if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2653 IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2654 goto out;
2655 }
2656
2657 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2658 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2659
2660 out:
2661 return status;
2662 }
2663
2664 /**
2665 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2666 * @hw: pointer to hardware structure
2667 * @mask: Mask to specify which semaphore to acquire
2668 *
2669 * Acquires the SWFW semaphore through the GSSR register for the specified
2670 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2671 **/
2672 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2673 {
2674 u32 gssr;
2675 u32 swmask = mask;
2676 u32 fwmask = mask << 5;
2677 s32 timeout = 200;
2678
2679 while (timeout) {
2680 /*
2681 * SW EEPROM semaphore bit is used for access to all
2682 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2683 */
2684 if (ixgbe_get_eeprom_semaphore(hw))
2685 return IXGBE_ERR_SWFW_SYNC;
2686
2687 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2688 if (!(gssr & (fwmask | swmask)))
2689 break;
2690
2691 /*
2692 * Firmware currently using resource (fwmask) or other software
2693 * thread currently using resource (swmask)
2694 */
2695 ixgbe_release_eeprom_semaphore(hw);
2696 msleep(5);
2697 timeout--;
2698 }
2699
2700 if (!timeout) {
2701 hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2702 return IXGBE_ERR_SWFW_SYNC;
2703 }
2704
2705 gssr |= swmask;
2706 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2707
2708 ixgbe_release_eeprom_semaphore(hw);
2709 return 0;
2710 }
2711
2712 /**
2713 * ixgbe_release_swfw_sync - Release SWFW semaphore
2714 * @hw: pointer to hardware structure
2715 * @mask: Mask to specify which semaphore to release
2716 *
2717 * Releases the SWFW semaphore through the GSSR register for the specified
2718 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2719 **/
2720 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2721 {
2722 u32 gssr;
2723 u32 swmask = mask;
2724
2725 ixgbe_get_eeprom_semaphore(hw);
2726
2727 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2728 gssr &= ~swmask;
2729 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2730
2731 ixgbe_release_eeprom_semaphore(hw);
2732 }
2733
2734 /**
2735 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
2736 * @hw: pointer to hardware structure
2737 *
2738 * Stops the receive data path and waits for the HW to internally empty
2739 * the Rx security block
2740 **/
2741 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
2742 {
2743 #define IXGBE_MAX_SECRX_POLL 40
2744
2745 int i;
2746 int secrxreg;
2747
2748 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2749 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2750 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2751 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2752 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2753 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2754 break;
2755 else
2756 /* Use interrupt-safe sleep just in case */
2757 udelay(1000);
2758 }
2759
2760 /* For informational purposes only */
2761 if (i >= IXGBE_MAX_SECRX_POLL)
2762 hw_dbg(hw, "Rx unit being enabled before security "
2763 "path fully disabled. Continuing with init.\n");
2764
2765 return 0;
2766 }
2767
2768 /**
2769 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
2770 * @hw: pointer to hardware structure
2771 *
2772 * Enables the receive data path.
2773 **/
2774 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
2775 {
2776 int secrxreg;
2777
2778 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2779 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2780 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2781 IXGBE_WRITE_FLUSH(hw);
2782
2783 return 0;
2784 }
2785
2786 /**
2787 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2788 * @hw: pointer to hardware structure
2789 * @regval: register value to write to RXCTRL
2790 *
2791 * Enables the Rx DMA unit
2792 **/
2793 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2794 {
2795 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2796
2797 return 0;
2798 }
2799
2800 /**
2801 * ixgbe_blink_led_start_generic - Blink LED based on index.
2802 * @hw: pointer to hardware structure
2803 * @index: led number to blink
2804 **/
2805 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2806 {
2807 ixgbe_link_speed speed = 0;
2808 bool link_up = 0;
2809 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2810 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2811
2812 /*
2813 * Link must be up to auto-blink the LEDs;
2814 * Force it if link is down.
2815 */
2816 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2817
2818 if (!link_up) {
2819 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2820 autoc_reg |= IXGBE_AUTOC_FLU;
2821 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2822 IXGBE_WRITE_FLUSH(hw);
2823 msleep(10);
2824 }
2825
2826 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2827 led_reg |= IXGBE_LED_BLINK(index);
2828 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2829 IXGBE_WRITE_FLUSH(hw);
2830
2831 return 0;
2832 }
2833
2834 /**
2835 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2836 * @hw: pointer to hardware structure
2837 * @index: led number to stop blinking
2838 **/
2839 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2840 {
2841 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2842 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2843
2844 autoc_reg &= ~IXGBE_AUTOC_FLU;
2845 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2846 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2847
2848 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2849 led_reg &= ~IXGBE_LED_BLINK(index);
2850 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2851 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2852 IXGBE_WRITE_FLUSH(hw);
2853
2854 return 0;
2855 }
2856
2857 /**
2858 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2859 * @hw: pointer to hardware structure
2860 * @san_mac_offset: SAN MAC address offset
2861 *
2862 * This function will read the EEPROM location for the SAN MAC address
2863 * pointer, and returns the value at that location. This is used in both
2864 * get and set mac_addr routines.
2865 **/
2866 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2867 u16 *san_mac_offset)
2868 {
2869 /*
2870 * First read the EEPROM pointer to see if the MAC addresses are
2871 * available.
2872 */
2873 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2874
2875 return 0;
2876 }
2877
2878 /**
2879 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2880 * @hw: pointer to hardware structure
2881 * @san_mac_addr: SAN MAC address
2882 *
2883 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2884 * per-port, so set_lan_id() must be called before reading the addresses.
2885 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2886 * upon for non-SFP connections, so we must call it here.
2887 **/
2888 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2889 {
2890 u16 san_mac_data, san_mac_offset;
2891 u8 i;
2892
2893 /*
2894 * First read the EEPROM pointer to see if the MAC addresses are
2895 * available. If they're not, no point in calling set_lan_id() here.
2896 */
2897 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2898
2899 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2900 /*
2901 * No addresses available in this EEPROM. It's not an
2902 * error though, so just wipe the local address and return.
2903 */
2904 for (i = 0; i < 6; i++)
2905 san_mac_addr[i] = 0xFF;
2906
2907 goto san_mac_addr_out;
2908 }
2909
2910 /* make sure we know which port we need to program */
2911 hw->mac.ops.set_lan_id(hw);
2912 /* apply the port offset to the address offset */
2913 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2914 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2915 for (i = 0; i < 3; i++) {
2916 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2917 san_mac_addr[i * 2] = (u8)(san_mac_data);
2918 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2919 san_mac_offset++;
2920 }
2921
2922 san_mac_addr_out:
2923 return 0;
2924 }
2925
2926 /**
2927 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
2928 * @hw: pointer to hardware structure
2929 * @san_mac_addr: SAN MAC address
2930 *
2931 * Write a SAN MAC address to the EEPROM.
2932 **/
2933 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2934 {
2935 s32 status = 0;
2936 u16 san_mac_data, san_mac_offset;
2937 u8 i;
2938
2939 /* Look for SAN mac address pointer. If not defined, return */
2940 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2941
2942 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2943 status = IXGBE_ERR_NO_SAN_ADDR_PTR;
2944 goto san_mac_addr_out;
2945 }
2946
2947 /* Make sure we know which port we need to write */
2948 hw->mac.ops.set_lan_id(hw);
2949 /* Apply the port offset to the address offset */
2950 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2951 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2952
2953 for (i = 0; i < 3; i++) {
2954 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
2955 san_mac_data |= (u16)(san_mac_addr[i * 2]);
2956 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
2957 san_mac_offset++;
2958 }
2959
2960 san_mac_addr_out:
2961 return status;
2962 }
2963
2964 /**
2965 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2966 * @hw: pointer to hardware structure
2967 *
2968 * Read PCIe configuration space, and get the MSI-X vector count from
2969 * the capabilities table.
2970 **/
2971 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2972 {
2973 u16 msix_count = 1;
2974 u16 max_msix_count;
2975 u16 pcie_offset;
2976
2977 switch (hw->mac.type) {
2978 case ixgbe_mac_82598EB:
2979 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2980 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2981 break;
2982 case ixgbe_mac_82599EB:
2983 case ixgbe_mac_X540:
2984 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2985 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2986 break;
2987 default:
2988 return msix_count;
2989 }
2990
2991 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
2992 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2993
2994 /* MSI-X count is zero-based in HW */
2995 msix_count++;
2996
2997 if (msix_count > max_msix_count)
2998 msix_count = max_msix_count;
2999
3000 return msix_count;
3001 }
3002
3003 /**
3004 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3005 * @hw: pointer to hardware structure
3006 * @addr: Address to put into receive address register
3007 * @vmdq: VMDq pool to assign
3008 *
3009 * Puts an ethernet address into a receive address register, or
3010 * finds the rar that it is aleady in; adds to the pool list
3011 **/
3012 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3013 {
3014 static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3015 u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3016 u32 rar;
3017 u32 rar_low, rar_high;
3018 u32 addr_low, addr_high;
3019
3020 /* swap bytes for HW little endian */
3021 addr_low = addr[0] | (addr[1] << 8)
3022 | (addr[2] << 16)
3023 | (addr[3] << 24);
3024 addr_high = addr[4] | (addr[5] << 8);
3025
3026 /*
3027 * Either find the mac_id in rar or find the first empty space.
3028 * rar_highwater points to just after the highest currently used
3029 * rar in order to shorten the search. It grows when we add a new
3030 * rar to the top.
3031 */
3032 for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3033 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3034
3035 if (((IXGBE_RAH_AV & rar_high) == 0)
3036 && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3037 first_empty_rar = rar;
3038 } else if ((rar_high & 0xFFFF) == addr_high) {
3039 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3040 if (rar_low == addr_low)
3041 break; /* found it already in the rars */
3042 }
3043 }
3044
3045 if (rar < hw->mac.rar_highwater) {
3046 /* already there so just add to the pool bits */
3047 ixgbe_set_vmdq(hw, rar, vmdq);
3048 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3049 /* stick it into first empty RAR slot we found */
3050 rar = first_empty_rar;
3051 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3052 } else if (rar == hw->mac.rar_highwater) {
3053 /* add it to the top of the list and inc the highwater mark */
3054 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3055 hw->mac.rar_highwater++;
3056 } else if (rar >= hw->mac.num_rar_entries) {
3057 return IXGBE_ERR_INVALID_MAC_ADDR;
3058 }
3059
3060 /*
3061 * If we found rar[0], make sure the default pool bit (we use pool 0)
3062 * remains cleared to be sure default pool packets will get delivered
3063 */
3064 if (rar == 0)
3065 ixgbe_clear_vmdq(hw, rar, 0);
3066
3067 return rar;
3068 }
3069
3070 /**
3071 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3072 * @hw: pointer to hardware struct
3073 * @rar: receive address register index to disassociate
3074 * @vmdq: VMDq pool index to remove from the rar
3075 **/
3076 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3077 {
3078 u32 mpsar_lo, mpsar_hi;
3079 u32 rar_entries = hw->mac.num_rar_entries;
3080
3081 /* Make sure we are using a valid rar index range */
3082 if (rar >= rar_entries) {
3083 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3084 return IXGBE_ERR_INVALID_ARGUMENT;
3085 }
3086
3087 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3088 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3089
3090 if (!mpsar_lo && !mpsar_hi)
3091 goto done;
3092
3093 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3094 if (mpsar_lo) {
3095 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3096 mpsar_lo = 0;
3097 }
3098 if (mpsar_hi) {
3099 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3100 mpsar_hi = 0;
3101 }
3102 } else if (vmdq < 32) {
3103 mpsar_lo &= ~(1 << vmdq);
3104 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3105 } else {
3106 mpsar_hi &= ~(1 << (vmdq - 32));
3107 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3108 }
3109
3110 /* was that the last pool using this rar? */
3111 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3112 hw->mac.ops.clear_rar(hw, rar);
3113 done:
3114 return 0;
3115 }
3116
3117 /**
3118 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3119 * @hw: pointer to hardware struct
3120 * @rar: receive address register index to associate with a VMDq index
3121 * @vmdq: VMDq pool index
3122 **/
3123 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3124 {
3125 u32 mpsar;
3126 u32 rar_entries = hw->mac.num_rar_entries;
3127
3128 /* Make sure we are using a valid rar index range */
3129 if (rar >= rar_entries) {
3130 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3131 return IXGBE_ERR_INVALID_ARGUMENT;
3132 }
3133
3134 if (vmdq < 32) {
3135 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3136 mpsar |= 1 << vmdq;
3137 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3138 } else {
3139 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3140 mpsar |= 1 << (vmdq - 32);
3141 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3142 }
3143 return 0;
3144 }
3145
3146 /**
3147 * This function should only be involved in the IOV mode.
3148 * In IOV mode, Default pool is next pool after the number of
3149 * VFs advertized and not 0.
3150 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3151 *
3152 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3153 * @hw: pointer to hardware struct
3154 * @vmdq: VMDq pool index
3155 **/
3156 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3157 {
3158 u32 mpsar;
3159 u32 rar = hw->mac.san_mac_rar_index;
3160
3161 if (vmdq < 32) {
3162 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3163 mpsar |= 1 << vmdq;
3164 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3165 } else {
3166 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3167 mpsar |= 1 << (vmdq - 32);
3168 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3169 }
3170
3171 return 0;
3172 }
3173
3174 /**
3175 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3176 * @hw: pointer to hardware structure
3177 **/
3178 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3179 {
3180 int i;
3181
3182 hw_dbg(hw, " Clearing UTA\n");
3183
3184 for (i = 0; i < 128; i++)
3185 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3186
3187 return 0;
3188 }
3189
3190 /**
3191 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3192 * @hw: pointer to hardware structure
3193 * @vlan: VLAN id to write to VLAN filter
3194 *
3195 * return the VLVF index where this VLAN id should be placed
3196 *
3197 **/
3198 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3199 {
3200 u32 bits = 0;
3201 u32 first_empty_slot = 0;
3202 s32 regindex;
3203
3204 /* short cut the special case */
3205 if (vlan == 0)
3206 return 0;
3207
3208 /*
3209 * Search for the vlan id in the VLVF entries. Save off the first empty
3210 * slot found along the way
3211 */
3212 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3213 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3214 if (!bits && !(first_empty_slot))
3215 first_empty_slot = regindex;
3216 else if ((bits & 0x0FFF) == vlan)
3217 break;
3218 }
3219
3220 /*
3221 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3222 * in the VLVF. Else use the first empty VLVF register for this
3223 * vlan id.
3224 */
3225 if (regindex >= IXGBE_VLVF_ENTRIES) {
3226 if (first_empty_slot)
3227 regindex = first_empty_slot;
3228 else {
3229 hw_dbg(hw, "No space in VLVF.\n");
3230 regindex = IXGBE_ERR_NO_SPACE;
3231 }
3232 }
3233
3234 return regindex;
3235 }
3236
3237 /**
3238 * ixgbe_set_vfta_generic - Set VLAN filter table
3239 * @hw: pointer to hardware structure
3240 * @vlan: VLAN id to write to VLAN filter
3241 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3242 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3243 *
3244 * Turn on/off specified VLAN in the VLAN filter table.
3245 **/
3246 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3247 bool vlan_on)
3248 {
3249 s32 regindex;
3250 u32 bitindex;
3251 u32 vfta;
3252 u32 targetbit;
3253 s32 ret_val = 0;
3254 bool vfta_changed = false;
3255
3256 if (vlan > 4095)
3257 return IXGBE_ERR_PARAM;
3258
3259 /*
3260 * this is a 2 part operation - first the VFTA, then the
3261 * VLVF and VLVFB if VT Mode is set
3262 * We don't write the VFTA until we know the VLVF part succeeded.
3263 */
3264
3265 /* Part 1
3266 * The VFTA is a bitstring made up of 128 32-bit registers
3267 * that enable the particular VLAN id, much like the MTA:
3268 * bits[11-5]: which register
3269 * bits[4-0]: which bit in the register
3270 */
3271 regindex = (vlan >> 5) & 0x7F;
3272 bitindex = vlan & 0x1F;
3273 targetbit = (1 << bitindex);
3274 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3275
3276 if (vlan_on) {
3277 if (!(vfta & targetbit)) {
3278 vfta |= targetbit;
3279 vfta_changed = true;
3280 }
3281 } else {
3282 if ((vfta & targetbit)) {
3283 vfta &= ~targetbit;
3284 vfta_changed = true;
3285 }
3286 }
3287
3288 /* Part 2
3289 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3290 */
3291 ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3292 &vfta_changed);
3293 if (ret_val != 0)
3294 return ret_val;
3295
3296 if (vfta_changed)
3297 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3298
3299 return 0;
3300 }
3301
3302 /**
3303 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3304 * @hw: pointer to hardware structure
3305 * @vlan: VLAN id to write to VLAN filter
3306 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3307 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3308 * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3309 * should be changed
3310 *
3311 * Turn on/off specified bit in VLVF table.
3312 **/
3313 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3314 bool vlan_on, bool *vfta_changed)
3315 {
3316 u32 vt;
3317
3318 if (vlan > 4095)
3319 return IXGBE_ERR_PARAM;
3320
3321 /* If VT Mode is set
3322 * Either vlan_on
3323 * make sure the vlan is in VLVF
3324 * set the vind bit in the matching VLVFB
3325 * Or !vlan_on
3326 * clear the pool bit and possibly the vind
3327 */
3328 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3329 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3330 s32 vlvf_index;
3331 u32 bits;
3332
3333 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3334 if (vlvf_index < 0)
3335 return vlvf_index;
3336
3337 if (vlan_on) {
3338 /* set the pool bit */
3339 if (vind < 32) {
3340 bits = IXGBE_READ_REG(hw,
3341 IXGBE_VLVFB(vlvf_index * 2));
3342 bits |= (1 << vind);
3343 IXGBE_WRITE_REG(hw,
3344 IXGBE_VLVFB(vlvf_index * 2),
3345 bits);
3346 } else {
3347 bits = IXGBE_READ_REG(hw,
3348 IXGBE_VLVFB((vlvf_index * 2) + 1));
3349 bits |= (1 << (vind - 32));
3350 IXGBE_WRITE_REG(hw,
3351 IXGBE_VLVFB((vlvf_index * 2) + 1),
3352 bits);
3353 }
3354 } else {
3355 /* clear the pool bit */
3356 if (vind < 32) {
3357 bits = IXGBE_READ_REG(hw,
3358 IXGBE_VLVFB(vlvf_index * 2));
3359 bits &= ~(1 << vind);
3360 IXGBE_WRITE_REG(hw,
3361 IXGBE_VLVFB(vlvf_index * 2),
3362 bits);
3363 bits |= IXGBE_READ_REG(hw,
3364 IXGBE_VLVFB((vlvf_index * 2) + 1));
3365 } else {
3366 bits = IXGBE_READ_REG(hw,
3367 IXGBE_VLVFB((vlvf_index * 2) + 1));
3368 bits &= ~(1 << (vind - 32));
3369 IXGBE_WRITE_REG(hw,
3370 IXGBE_VLVFB((vlvf_index * 2) + 1),
3371 bits);
3372 bits |= IXGBE_READ_REG(hw,
3373 IXGBE_VLVFB(vlvf_index * 2));
3374 }
3375 }
3376
3377 /*
3378 * If there are still bits set in the VLVFB registers
3379 * for the VLAN ID indicated we need to see if the
3380 * caller is requesting that we clear the VFTA entry bit.
3381 * If the caller has requested that we clear the VFTA
3382 * entry bit but there are still pools/VFs using this VLAN
3383 * ID entry then ignore the request. We're not worried
3384 * about the case where we're turning the VFTA VLAN ID
3385 * entry bit on, only when requested to turn it off as
3386 * there may be multiple pools and/or VFs using the
3387 * VLAN ID entry. In that case we cannot clear the
3388 * VFTA bit until all pools/VFs using that VLAN ID have also
3389 * been cleared. This will be indicated by "bits" being
3390 * zero.
3391 */
3392 if (bits) {
3393 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3394 (IXGBE_VLVF_VIEN | vlan));
3395 if ((!vlan_on) && (vfta_changed != NULL)) {
3396 /* someone wants to clear the vfta entry
3397 * but some pools/VFs are still using it.
3398 * Ignore it. */
3399 *vfta_changed = false;
3400 }
3401 } else
3402 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3403 }
3404
3405 return 0;
3406 }
3407
3408 /**
3409 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3410 * @hw: pointer to hardware structure
3411 *
3412 * Clears the VLAN filer table, and the VMDq index associated with the filter
3413 **/
3414 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3415 {
3416 u32 offset;
3417
3418 for (offset = 0; offset < hw->mac.vft_size; offset++)
3419 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3420
3421 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3422 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3423 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3424 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
3425 }
3426
3427 return 0;
3428 }
3429
3430 /**
3431 * ixgbe_check_mac_link_generic - Determine link and speed status
3432 * @hw: pointer to hardware structure
3433 * @speed: pointer to link speed
3434 * @link_up: true when link is up
3435 * @link_up_wait_to_complete: bool used to wait for link up or not
3436 *
3437 * Reads the links register to determine if link is up and the current speed
3438 **/
3439 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3440 bool *link_up, bool link_up_wait_to_complete)
3441 {
3442 u32 links_reg, links_orig;
3443 u32 i;
3444
3445 /* clear the old state */
3446 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3447
3448 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3449
3450 if (links_orig != links_reg) {
3451 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3452 links_orig, links_reg);
3453 }
3454
3455 if (link_up_wait_to_complete) {
3456 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3457 if (links_reg & IXGBE_LINKS_UP) {
3458 *link_up = true;
3459 break;
3460 } else {
3461 *link_up = false;
3462 }
3463 msleep(100);
3464 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3465 }
3466 } else {
3467 if (links_reg & IXGBE_LINKS_UP)
3468 *link_up = true;
3469 else
3470 *link_up = false;
3471 }
3472
3473 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3474 IXGBE_LINKS_SPEED_10G_82599)
3475 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3476 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3477 IXGBE_LINKS_SPEED_1G_82599)
3478 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3479 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3480 IXGBE_LINKS_SPEED_100_82599)
3481 *speed = IXGBE_LINK_SPEED_100_FULL;
3482 else
3483 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3484
3485 return 0;
3486 }
3487
3488 /**
3489 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3490 * the EEPROM
3491 * @hw: pointer to hardware structure
3492 * @wwnn_prefix: the alternative WWNN prefix
3493 * @wwpn_prefix: the alternative WWPN prefix
3494 *
3495 * This function will read the EEPROM from the alternative SAN MAC address
3496 * block to check the support for the alternative WWNN/WWPN prefix support.
3497 **/
3498 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3499 u16 *wwpn_prefix)
3500 {
3501 u16 offset, caps;
3502 u16 alt_san_mac_blk_offset;
3503
3504 /* clear output first */
3505 *wwnn_prefix = 0xFFFF;
3506 *wwpn_prefix = 0xFFFF;
3507
3508 /* check if alternative SAN MAC is supported */
3509 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3510 &alt_san_mac_blk_offset);
3511
3512 if ((alt_san_mac_blk_offset == 0) ||
3513 (alt_san_mac_blk_offset == 0xFFFF))
3514 goto wwn_prefix_out;
3515
3516 /* check capability in alternative san mac address block */
3517 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3518 hw->eeprom.ops.read(hw, offset, &caps);
3519 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3520 goto wwn_prefix_out;
3521
3522 /* get the corresponding prefix for WWNN/WWPN */
3523 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3524 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3525
3526 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3527 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3528
3529 wwn_prefix_out:
3530 return 0;
3531 }
3532
3533 /**
3534 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3535 * @hw: pointer to hardware structure
3536 * @bs: the fcoe boot status
3537 *
3538 * This function will read the FCOE boot status from the iSCSI FCOE block
3539 **/
3540 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3541 {
3542 u16 offset, caps, flags;
3543 s32 status;
3544
3545 /* clear output first */
3546 *bs = ixgbe_fcoe_bootstatus_unavailable;
3547
3548 /* check if FCOE IBA block is present */
3549 offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
3550 status = hw->eeprom.ops.read(hw, offset, &caps);
3551 if (status != 0)
3552 goto out;
3553
3554 if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
3555 goto out;
3556
3557 /* check if iSCSI FCOE block is populated */
3558 status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
3559 if (status != 0)
3560 goto out;
3561
3562 if ((offset == 0) || (offset == 0xFFFF))
3563 goto out;
3564
3565 /* read fcoe flags in iSCSI FCOE block */
3566 offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
3567 status = hw->eeprom.ops.read(hw, offset, &flags);
3568 if (status != 0)
3569 goto out;
3570
3571 if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
3572 *bs = ixgbe_fcoe_bootstatus_enabled;
3573 else
3574 *bs = ixgbe_fcoe_bootstatus_disabled;
3575
3576 out:
3577 return status;
3578 }
3579
3580 /**
3581 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3582 * @hw: pointer to hardware structure
3583 * @enable: enable or disable switch for anti-spoofing
3584 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3585 *
3586 **/
3587 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3588 {
3589 int j;
3590 int pf_target_reg = pf >> 3;
3591 int pf_target_shift = pf % 8;
3592 u32 pfvfspoof = 0;
3593
3594 if (hw->mac.type == ixgbe_mac_82598EB)
3595 return;
3596
3597 if (enable)
3598 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3599
3600 /*
3601 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3602 * MAC anti-spoof enables in each register array element.
3603 */
3604 for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3605 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3606
3607 /* If not enabling anti-spoofing then done */
3608 if (!enable)
3609 return;
3610
3611 /*
3612 * The PF should be allowed to spoof so that it can support
3613 * emulation mode NICs. Reset the bit assigned to the PF
3614 */
3615 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3616 pfvfspoof ^= (1 << pf_target_shift);
3617 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3618 }
3619
3620 /**
3621 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3622 * @hw: pointer to hardware structure
3623 * @enable: enable or disable switch for VLAN anti-spoofing
3624 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3625 *
3626 **/
3627 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3628 {
3629 int vf_target_reg = vf >> 3;
3630 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3631 u32 pfvfspoof;
3632
3633 if (hw->mac.type == ixgbe_mac_82598EB)
3634 return;
3635
3636 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3637 if (enable)
3638 pfvfspoof |= (1 << vf_target_shift);
3639 else
3640 pfvfspoof &= ~(1 << vf_target_shift);
3641 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3642 }
3643
3644 /**
3645 * ixgbe_get_device_caps_generic - Get additional device capabilities
3646 * @hw: pointer to hardware structure
3647 * @device_caps: the EEPROM word with the extra device capabilities
3648 *
3649 * This function will read the EEPROM location for the device capabilities,
3650 * and return the word through device_caps.
3651 **/
3652 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3653 {
3654 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3655
3656 return 0;
3657 }
3658
3659 /**
3660 * ixgbe_calculate_checksum - Calculate checksum for buffer
3661 * @buffer: pointer to EEPROM
3662 * @length: size of EEPROM to calculate a checksum for
3663 * Calculates the checksum for some buffer on a specified length. The
3664 * checksum calculated is returned.
3665 **/
3666 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3667 {
3668 u32 i;
3669 u8 sum = 0;
3670
3671 if (!buffer)
3672 return 0;
3673 for (i = 0; i < length; i++)
3674 sum += buffer[i];
3675
3676 return (u8) (0 - sum);
3677 }
3678
3679 /**
3680 * ixgbe_host_interface_command - Issue command to manageability block
3681 * @hw: pointer to the HW structure
3682 * @buffer: contains the command to write and where the return status will
3683 * be placed
3684 * @length: length of buffer, must be multiple of 4 bytes
3685 *
3686 * Communicates with the manageability block. On success return 0
3687 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3688 **/
3689 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3690 u32 length)
3691 {
3692 u32 hicr, i, bi;
3693 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3694 u8 buf_len, dword_len;
3695
3696 s32 ret_val = 0;
3697
3698 if (length == 0 || length & 0x3 ||
3699 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3700 hw_dbg(hw, "Buffer length failure.\n");
3701 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3702 goto out;
3703 }
3704
3705 /* Check that the host interface is enabled. */
3706 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3707 if ((hicr & IXGBE_HICR_EN) == 0) {
3708 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3709 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3710 goto out;
3711 }
3712
3713 /* Calculate length in DWORDs */
3714 dword_len = length >> 2;
3715
3716 /*
3717 * The device driver writes the relevant command block
3718 * into the ram area.
3719 */
3720 for (i = 0; i < dword_len; i++)
3721 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3722 i, IXGBE_CPU_TO_LE32(buffer[i]));
3723
3724 /* Setting this bit tells the ARC that a new command is pending. */
3725 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3726
3727 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3728 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3729 if (!(hicr & IXGBE_HICR_C))
3730 break;
3731 msleep(1);
3732 }
3733
3734 /* Check command successful completion. */
3735 if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3736 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3737 hw_dbg(hw, "Command has failed with no status valid.\n");
3738 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3739 goto out;
3740 }
3741
3742 /* Calculate length in DWORDs */
3743 dword_len = hdr_size >> 2;
3744
3745 /* first pull in the header so we know the buffer length */
3746 for (bi = 0; bi < dword_len; bi++) {
3747 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3748 IXGBE_LE32_TO_CPUS(&buffer[bi]);
3749 }
3750
3751 /* If there is any thing in data position pull it in */
3752 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3753 if (buf_len == 0)
3754 goto out;
3755
3756 if (length < (buf_len + hdr_size)) {
3757 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3758 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3759 goto out;
3760 }
3761
3762 /* Calculate length in DWORDs, add 3 for odd lengths */
3763 dword_len = (buf_len + 3) >> 2;
3764
3765 /* Pull in the rest of the buffer (bi is where we left off)*/
3766 for (; bi <= dword_len; bi++) {
3767 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3768 IXGBE_LE32_TO_CPUS(&buffer[bi]);
3769 }
3770
3771 out:
3772 return ret_val;
3773 }
3774
3775 /**
3776 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3777 * @hw: pointer to the HW structure
3778 * @maj: driver version major number
3779 * @min: driver version minor number
3780 * @build: driver version build number
3781 * @sub: driver version sub build number
3782 *
3783 * Sends driver version number to firmware through the manageability
3784 * block. On success return 0
3785 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3786 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3787 **/
3788 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3789 u8 build, u8 sub)
3790 {
3791 struct ixgbe_hic_drv_info fw_cmd;
3792 int i;
3793 s32 ret_val = 0;
3794
3795 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
3796 != 0) {
3797 ret_val = IXGBE_ERR_SWFW_SYNC;
3798 goto out;
3799 }
3800
3801 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3802 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3803 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3804 fw_cmd.port_num = (u8)hw->bus.func;
3805 fw_cmd.ver_maj = maj;
3806 fw_cmd.ver_min = min;
3807 fw_cmd.ver_build = build;
3808 fw_cmd.ver_sub = sub;
3809 fw_cmd.hdr.checksum = 0;
3810 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3811 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3812 fw_cmd.pad = 0;
3813 fw_cmd.pad2 = 0;
3814
3815 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3816 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3817 sizeof(fw_cmd));
3818 if (ret_val != 0)
3819 continue;
3820
3821 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3822 FW_CEM_RESP_STATUS_SUCCESS)
3823 ret_val = 0;
3824 else
3825 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3826
3827 break;
3828 }
3829
3830 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3831 out:
3832 return ret_val;
3833 }
3834
3835 /**
3836 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
3837 * @hw: pointer to hardware structure
3838 * @num_pb: number of packet buffers to allocate
3839 * @headroom: reserve n KB of headroom
3840 * @strategy: packet buffer allocation strategy
3841 **/
3842 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
3843 int strategy)
3844 {
3845 u32 pbsize = hw->mac.rx_pb_size;
3846 int i = 0;
3847 u32 rxpktsize, txpktsize, txpbthresh;
3848
3849 /* Reserve headroom */
3850 pbsize -= headroom;
3851
3852 if (!num_pb)
3853 num_pb = 1;
3854
3855 /* Divide remaining packet buffer space amongst the number of packet
3856 * buffers requested using supplied strategy.
3857 */
3858 switch (strategy) {
3859 case PBA_STRATEGY_WEIGHTED:
3860 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
3861 * buffer with 5/8 of the packet buffer space.
3862 */
3863 rxpktsize = (pbsize * 5) / (num_pb * 4);
3864 pbsize -= rxpktsize * (num_pb / 2);
3865 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3866 for (; i < (num_pb / 2); i++)
3867 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3868 /* Fall through to configure remaining packet buffers */
3869 case PBA_STRATEGY_EQUAL:
3870 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3871 for (; i < num_pb; i++)
3872 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3873 break;
3874 default:
3875 break;
3876 }
3877
3878 /* Only support an equally distributed Tx packet buffer strategy. */
3879 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3880 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3881 for (i = 0; i < num_pb; i++) {
3882 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3883 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3884 }
3885
3886 /* Clear unused TCs, if any, to zero buffer size*/
3887 for (; i < IXGBE_MAX_PB; i++) {
3888 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3889 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3890 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3891 }
3892 }
3893
3894 /**
3895 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3896 * @hw: pointer to the hardware structure
3897 *
3898 * The 82599 and x540 MACs can experience issues if TX work is still pending
3899 * when a reset occurs. This function prevents this by flushing the PCIe
3900 * buffers on the system.
3901 **/
3902 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3903 {
3904 u32 gcr_ext, hlreg0;
3905
3906 /*
3907 * If double reset is not requested then all transactions should
3908 * already be clear and as such there is no work to do
3909 */
3910 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3911 return;
3912
3913 /*
3914 * Set loopback enable to prevent any transmits from being sent
3915 * should the link come up. This assumes that the RXCTRL.RXEN bit
3916 * has already been cleared.
3917 */
3918 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3919 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3920
3921 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3922 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3923 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3924 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3925
3926 /* Flush all writes and allow 20usec for all transactions to clear */
3927 IXGBE_WRITE_FLUSH(hw);
3928 udelay(20);
3929
3930 /* restore previous register values */
3931 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3932 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3933 }
3934
3935 static const u8 ixgbe_emc_temp_data[4] = {
3936 IXGBE_EMC_INTERNAL_DATA,
3937 IXGBE_EMC_DIODE1_DATA,
3938 IXGBE_EMC_DIODE2_DATA,
3939 IXGBE_EMC_DIODE3_DATA
3940 };
3941 static const u8 ixgbe_emc_therm_limit[4] = {
3942 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3943 IXGBE_EMC_DIODE1_THERM_LIMIT,
3944 IXGBE_EMC_DIODE2_THERM_LIMIT,
3945 IXGBE_EMC_DIODE3_THERM_LIMIT
3946 };
3947
3948 /**
3949 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3950 * @hw: pointer to hardware structure
3951 * @data: pointer to the thermal sensor data structure
3952 *
3953 * Returns the thermal sensor data structure
3954 **/
3955 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3956 {
3957 s32 status = 0;
3958 u16 ets_offset;
3959 u16 ets_cfg;
3960 u16 ets_sensor;
3961 u8 num_sensors;
3962 u8 sensor_index;
3963 u8 sensor_location;
3964 u8 i;
3965 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3966
3967 /* Only support thermal sensors attached to 82599 physical port 0 */
3968 if ((hw->mac.type != ixgbe_mac_82599EB) ||
3969 (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3970 status = IXGBE_NOT_IMPLEMENTED;
3971 goto out;
3972 }
3973
3974 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, &ets_offset);
3975 if (status)
3976 goto out;
3977
3978 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) {
3979 status = IXGBE_NOT_IMPLEMENTED;
3980 goto out;
3981 }
3982
3983 status = hw->eeprom.ops.read(hw, ets_offset, &ets_cfg);
3984 if (status)
3985 goto out;
3986
3987 if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT)
3988 != IXGBE_ETS_TYPE_EMC) {
3989 status = IXGBE_NOT_IMPLEMENTED;
3990 goto out;
3991 }
3992
3993 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3994 if (num_sensors > IXGBE_MAX_SENSORS)
3995 num_sensors = IXGBE_MAX_SENSORS;
3996
3997 for (i = 0; i < num_sensors; i++) {
3998 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3999 &ets_sensor);
4000 if (status)
4001 goto out;
4002
4003 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4004 IXGBE_ETS_DATA_INDEX_SHIFT);
4005 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4006 IXGBE_ETS_DATA_LOC_SHIFT);
4007
4008 if (sensor_location != 0) {
4009 status = hw->phy.ops.read_i2c_byte(hw,
4010 ixgbe_emc_temp_data[sensor_index],
4011 IXGBE_I2C_THERMAL_SENSOR_ADDR,
4012 &data->sensor[i].temp);
4013 if (status)
4014 goto out;
4015 }
4016 }
4017 out:
4018 return status;
4019 }
4020
4021 /**
4022 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
4023 * @hw: pointer to hardware structure
4024 *
4025 * Inits the thermal sensor thresholds according to the NVM map
4026 * and save off the threshold and location values into mac.thermal_sensor_data
4027 **/
4028 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
4029 {
4030 s32 status = 0;
4031 u16 ets_offset;
4032 u16 ets_cfg;
4033 u16 ets_sensor;
4034 u8 low_thresh_delta;
4035 u8 num_sensors;
4036 u8 sensor_index;
4037 u8 sensor_location;
4038 u8 therm_limit;
4039 u8 i;
4040 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
4041
4042 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
4043
4044 /* Only support thermal sensors attached to 82599 physical port 0 */
4045 if ((hw->mac.type != ixgbe_mac_82599EB) ||
4046 (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
4047 return IXGBE_NOT_IMPLEMENTED;
4048
4049 hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, &ets_offset);
4050 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
4051 return IXGBE_NOT_IMPLEMENTED;
4052
4053 hw->eeprom.ops.read(hw, ets_offset, &ets_cfg);
4054 if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT)
4055 != IXGBE_ETS_TYPE_EMC)
4056 return IXGBE_NOT_IMPLEMENTED;
4057
4058 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
4059 IXGBE_ETS_LTHRES_DELTA_SHIFT);
4060 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4061
4062 for (i = 0; i < num_sensors; i++) {
4063 hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
4064 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4065 IXGBE_ETS_DATA_INDEX_SHIFT);
4066 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4067 IXGBE_ETS_DATA_LOC_SHIFT);
4068 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4069
4070 hw->phy.ops.write_i2c_byte(hw,
4071 ixgbe_emc_therm_limit[sensor_index],
4072 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4073
4074 if ((i < IXGBE_MAX_SENSORS) && (sensor_location != 0)) {
4075 data->sensor[i].location = sensor_location;
4076 data->sensor[i].caution_thresh = therm_limit;
4077 data->sensor[i].max_op_thresh = therm_limit -
4078 low_thresh_delta;
4079 }
4080 }
4081 return status;
4082 }