]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/lib/librte_sched/rte_approx.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_sched / rte_approx.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <stdlib.h>
35
36 #include "rte_approx.h"
37
38 /*
39 * Based on paper "Approximating Rational Numbers by Fractions" by Michal
40 * Forisek forisek@dcs.fmph.uniba.sk
41 *
42 * Given a rational number alpha with 0 < alpha < 1 and a precision d, the goal
43 * is to find positive integers p, q such that alpha - d < p/q < alpha + d, and
44 * q is minimal.
45 *
46 * http://people.ksp.sk/~misof/publications/2007approx.pdf
47 */
48
49 /* fraction comparison: compare (a/b) and (c/d) */
50 static inline uint32_t
51 less(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
52 {
53 return a*d < b*c;
54 }
55
56 static inline uint32_t
57 less_or_equal(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
58 {
59 return a*d <= b*c;
60 }
61
62 /* check whether a/b is a valid approximation */
63 static inline uint32_t
64 matches(uint32_t a, uint32_t b,
65 uint32_t alpha_num, uint32_t d_num, uint32_t denum)
66 {
67 if (less_or_equal(a, b, alpha_num - d_num, denum))
68 return 0;
69
70 if (less(a ,b, alpha_num + d_num, denum))
71 return 1;
72
73 return 0;
74 }
75
76 static inline void
77 find_exact_solution_left(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
78 uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
79 {
80 uint32_t k_num = denum * p_b - (alpha_num + d_num) * q_b;
81 uint32_t k_denum = (alpha_num + d_num) * q_a - denum * p_a;
82 uint32_t k = (k_num / k_denum) + 1;
83
84 *p = p_b + k * p_a;
85 *q = q_b + k * q_a;
86 }
87
88 static inline void
89 find_exact_solution_right(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
90 uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
91 {
92 uint32_t k_num = - denum * p_b + (alpha_num - d_num) * q_b;
93 uint32_t k_denum = - (alpha_num - d_num) * q_a + denum * p_a;
94 uint32_t k = (k_num / k_denum) + 1;
95
96 *p = p_b + k * p_a;
97 *q = q_b + k * q_a;
98 }
99
100 static int
101 find_best_rational_approximation(uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
102 {
103 uint32_t p_a, q_a, p_b, q_b;
104
105 /* check assumptions on the inputs */
106 if (!((0 < d_num) && (d_num < alpha_num) && (alpha_num < denum) && (d_num + alpha_num < denum))) {
107 return -1;
108 }
109
110 /* set initial bounds for the search */
111 p_a = 0;
112 q_a = 1;
113 p_b = 1;
114 q_b = 1;
115
116 while (1) {
117 uint32_t new_p_a, new_q_a, new_p_b, new_q_b;
118 uint32_t x_num, x_denum, x;
119 int aa, bb;
120
121 /* compute the number of steps to the left */
122 x_num = denum * p_b - alpha_num * q_b;
123 x_denum = - denum * p_a + alpha_num * q_a;
124 x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
125
126 /* check whether we have a valid approximation */
127 aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
128 bb = matches(p_b + (x-1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
129 if (aa || bb) {
130 find_exact_solution_left(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
131 return 0;
132 }
133
134 /* update the interval */
135 new_p_a = p_b + (x - 1) * p_a ;
136 new_q_a = q_b + (x - 1) * q_a;
137 new_p_b = p_b + x * p_a ;
138 new_q_b = q_b + x * q_a;
139
140 p_a = new_p_a ;
141 q_a = new_q_a;
142 p_b = new_p_b ;
143 q_b = new_q_b;
144
145 /* compute the number of steps to the right */
146 x_num = alpha_num * q_b - denum * p_b;
147 x_denum = - alpha_num * q_a + denum * p_a;
148 x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
149
150 /* check whether we have a valid approximation */
151 aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
152 bb = matches(p_b + (x - 1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
153 if (aa || bb) {
154 find_exact_solution_right(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
155 return 0;
156 }
157
158 /* update the interval */
159 new_p_a = p_b + (x - 1) * p_a;
160 new_q_a = q_b + (x - 1) * q_a;
161 new_p_b = p_b + x * p_a;
162 new_q_b = q_b + x * q_a;
163
164 p_a = new_p_a;
165 q_a = new_q_a;
166 p_b = new_p_b;
167 q_b = new_q_b;
168 }
169 }
170
171 int rte_approx(double alpha, double d, uint32_t *p, uint32_t *q)
172 {
173 uint32_t alpha_num, d_num, denum;
174
175 /* Check input arguments */
176 if (!((0.0 < d) && (d < alpha) && (alpha < 1.0))) {
177 return -1;
178 }
179
180 if ((p == NULL) || (q == NULL)) {
181 return -2;
182 }
183
184 /* Compute alpha_num, d_num and denum */
185 denum = 1;
186 while (d < 1) {
187 alpha *= 10;
188 d *= 10;
189 denum *= 10;
190 }
191 alpha_num = (uint32_t) alpha;
192 d_num = (uint32_t) d;
193
194 /* Perform approximation */
195 return find_best_rational_approximation(alpha_num, d_num, denum, p, q);
196 }