]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/lib/librte_sched/rte_red.h
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_sched / rte_red.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #ifndef __RTE_RED_H_INCLUDED__
6 #define __RTE_RED_H_INCLUDED__
7
8 #ifdef __cplusplus
9 extern "C" {
10 #endif
11
12 /**
13 * @file
14 * RTE Random Early Detection (RED)
15 *
16 *
17 ***/
18
19 #include <stdint.h>
20 #include <limits.h>
21 #include <rte_common.h>
22 #include <rte_debug.h>
23 #include <rte_cycles.h>
24 #include <rte_branch_prediction.h>
25
26 #define RTE_RED_SCALING 10 /**< Fraction size for fixed-point */
27 #define RTE_RED_S (1 << 22) /**< Packet size multiplied by number of leaf queues */
28 #define RTE_RED_MAX_TH_MAX 1023 /**< Max threshold limit in fixed point format */
29 #define RTE_RED_WQ_LOG2_MIN 1 /**< Min inverse filter weight value */
30 #define RTE_RED_WQ_LOG2_MAX 12 /**< Max inverse filter weight value */
31 #define RTE_RED_MAXP_INV_MIN 1 /**< Min inverse mark probability value */
32 #define RTE_RED_MAXP_INV_MAX 255 /**< Max inverse mark probability value */
33 #define RTE_RED_2POW16 (1<<16) /**< 2 power 16 */
34 #define RTE_RED_INT16_NBITS (sizeof(uint16_t) * CHAR_BIT)
35 #define RTE_RED_WQ_LOG2_NUM (RTE_RED_WQ_LOG2_MAX - RTE_RED_WQ_LOG2_MIN + 1)
36
37 /**
38 * Externs
39 *
40 */
41 extern uint32_t rte_red_rand_val;
42 extern uint32_t rte_red_rand_seed;
43 extern uint16_t rte_red_log2_1_minus_Wq[RTE_RED_WQ_LOG2_NUM];
44 extern uint16_t rte_red_pow2_frac_inv[16];
45
46 /**
47 * RED configuration parameters passed by user
48 *
49 */
50 struct rte_red_params {
51 uint16_t min_th; /**< Minimum threshold for queue (max_th) */
52 uint16_t max_th; /**< Maximum threshold for queue (max_th) */
53 uint16_t maxp_inv; /**< Inverse of packet marking probability maximum value (maxp = 1 / maxp_inv) */
54 uint16_t wq_log2; /**< Negated log2 of queue weight (wq = 1 / (2 ^ wq_log2)) */
55 };
56
57 /**
58 * RED configuration parameters
59 */
60 struct rte_red_config {
61 uint32_t min_th; /**< min_th scaled in fixed-point format */
62 uint32_t max_th; /**< max_th scaled in fixed-point format */
63 uint32_t pa_const; /**< Precomputed constant value used for pa calculation (scaled in fixed-point format) */
64 uint8_t maxp_inv; /**< maxp_inv */
65 uint8_t wq_log2; /**< wq_log2 */
66 };
67
68 /**
69 * RED run-time data
70 */
71 struct rte_red {
72 uint32_t avg; /**< Average queue size (avg), scaled in fixed-point format */
73 uint32_t count; /**< Number of packets since last marked packet (count) */
74 uint64_t q_time; /**< Start of the queue idle time (q_time) */
75 };
76
77 /**
78 * @brief Initialises run-time data
79 *
80 * @param red [in,out] data pointer to RED runtime data
81 *
82 * @return Operation status
83 * @retval 0 success
84 * @retval !0 error
85 */
86 int
87 rte_red_rt_data_init(struct rte_red *red);
88
89 /**
90 * @brief Configures a single RED configuration parameter structure.
91 *
92 * @param red_cfg [in,out] config pointer to a RED configuration parameter structure
93 * @param wq_log2 [in] log2 of the filter weight, valid range is:
94 * RTE_RED_WQ_LOG2_MIN <= wq_log2 <= RTE_RED_WQ_LOG2_MAX
95 * @param min_th [in] queue minimum threshold in number of packets
96 * @param max_th [in] queue maximum threshold in number of packets
97 * @param maxp_inv [in] inverse maximum mark probability
98 *
99 * @return Operation status
100 * @retval 0 success
101 * @retval !0 error
102 */
103 int
104 rte_red_config_init(struct rte_red_config *red_cfg,
105 const uint16_t wq_log2,
106 const uint16_t min_th,
107 const uint16_t max_th,
108 const uint16_t maxp_inv);
109
110 /**
111 * @brief Generate random number for RED
112 *
113 * Implementation based on:
114 * http://software.intel.com/en-us/articles/fast-random-number-generator-on-the-intel-pentiumr-4-processor/
115 *
116 * 10 bit shift has been found through empirical tests (was 16).
117 *
118 * @return Random number between 0 and (2^22 - 1)
119 */
120 static inline uint32_t
121 rte_fast_rand(void)
122 {
123 rte_red_rand_seed = (214013 * rte_red_rand_seed) + 2531011;
124 return rte_red_rand_seed >> 10;
125 }
126
127 /**
128 * @brief calculate factor to scale average queue size when queue
129 * becomes empty
130 *
131 * @param wq_log2 [in] where EWMA filter weight wq = 1/(2 ^ wq_log2)
132 * @param m [in] exponent in the computed value (1 - wq) ^ m
133 *
134 * @return computed value
135 * @retval ((1 - wq) ^ m) scaled in fixed-point format
136 */
137 static inline uint16_t
138 __rte_red_calc_qempty_factor(uint8_t wq_log2, uint16_t m)
139 {
140 uint32_t n = 0;
141 uint32_t f = 0;
142
143 /**
144 * Basic math tells us that:
145 * a^b = 2^(b * log2(a) )
146 *
147 * in our case:
148 * a = (1-Wq)
149 * b = m
150 * Wq = 1/ (2^log2n)
151 *
152 * So we are computing this equation:
153 * factor = 2 ^ ( m * log2(1-Wq))
154 *
155 * First we are computing:
156 * n = m * log2(1-Wq)
157 *
158 * To avoid dealing with signed numbers log2 values are positive
159 * but they should be negative because (1-Wq) is always < 1.
160 * Contents of log2 table values are also scaled for precision.
161 */
162
163 n = m * rte_red_log2_1_minus_Wq[wq_log2 - RTE_RED_WQ_LOG2_MIN];
164
165 /**
166 * The tricky part is computing 2^n, for this I split n into
167 * integer part and fraction part.
168 * f - is fraction part of n
169 * n - is integer part of original n
170 *
171 * Now using basic math we compute 2^n:
172 * 2^(f+n) = 2^f * 2^n
173 * 2^f - we use lookup table
174 * 2^n - can be replaced with bit shift right operations
175 */
176
177 f = (n >> 6) & 0xf;
178 n >>= 10;
179
180 if (n < RTE_RED_SCALING)
181 return (uint16_t) ((rte_red_pow2_frac_inv[f] + (1 << (n - 1))) >> n);
182
183 return 0;
184 }
185
186 /**
187 * @brief Updates queue average in condition when queue is empty
188 *
189 * Note: packet is never dropped in this particular case.
190 *
191 * @param red_cfg [in] config pointer to a RED configuration parameter structure
192 * @param red [in,out] data pointer to RED runtime data
193 * @param time [in] current time stamp
194 *
195 * @return Operation status
196 * @retval 0 enqueue the packet
197 * @retval 1 drop the packet based on max threshold criterion
198 * @retval 2 drop the packet based on mark probability criterion
199 */
200 static inline int
201 rte_red_enqueue_empty(const struct rte_red_config *red_cfg,
202 struct rte_red *red,
203 const uint64_t time)
204 {
205 uint64_t time_diff = 0, m = 0;
206
207 RTE_ASSERT(red_cfg != NULL);
208 RTE_ASSERT(red != NULL);
209
210 red->count ++;
211
212 /**
213 * We compute avg but we don't compare avg against
214 * min_th or max_th, nor calculate drop probability
215 */
216 time_diff = time - red->q_time;
217
218 /**
219 * m is the number of packets that might have arrived while the queue was empty.
220 * In this case we have time stamps provided by scheduler in byte units (bytes
221 * transmitted on network port). Such time stamp translates into time units as
222 * port speed is fixed but such approach simplifies the code.
223 */
224 m = time_diff / RTE_RED_S;
225
226 /**
227 * Check that m will fit into 16-bit unsigned integer
228 */
229 if (m >= RTE_RED_2POW16) {
230 red->avg = 0;
231 } else {
232 red->avg = (red->avg >> RTE_RED_SCALING) * __rte_red_calc_qempty_factor(red_cfg->wq_log2, (uint16_t) m);
233 }
234
235 return 0;
236 }
237
238 /**
239 * Drop probability (Sally Floyd and Van Jacobson):
240 *
241 * pb = (1 / maxp_inv) * (avg - min_th) / (max_th - min_th)
242 * pa = pb / (2 - count * pb)
243 *
244 *
245 * (1 / maxp_inv) * (avg - min_th)
246 * ---------------------------------
247 * max_th - min_th
248 * pa = -----------------------------------------------
249 * count * (1 / maxp_inv) * (avg - min_th)
250 * 2 - -----------------------------------------
251 * max_th - min_th
252 *
253 *
254 * avg - min_th
255 * pa = -----------------------------------------------------------
256 * 2 * (max_th - min_th) * maxp_inv - count * (avg - min_th)
257 *
258 *
259 * We define pa_const as: pa_const = 2 * (max_th - min_th) * maxp_inv. Then:
260 *
261 *
262 * avg - min_th
263 * pa = -----------------------------------
264 * pa_const - count * (avg - min_th)
265 */
266
267 /**
268 * @brief make a decision to drop or enqueue a packet based on mark probability
269 * criteria
270 *
271 * @param red_cfg [in] config pointer to structure defining RED parameters
272 * @param red [in,out] data pointer to RED runtime data
273 *
274 * @return operation status
275 * @retval 0 enqueue the packet
276 * @retval 1 drop the packet
277 */
278 static inline int
279 __rte_red_drop(const struct rte_red_config *red_cfg, struct rte_red *red)
280 {
281 uint32_t pa_num = 0; /* numerator of drop-probability */
282 uint32_t pa_den = 0; /* denominator of drop-probability */
283 uint32_t pa_num_count = 0;
284
285 pa_num = (red->avg - red_cfg->min_th) >> (red_cfg->wq_log2);
286
287 pa_num_count = red->count * pa_num;
288
289 if (red_cfg->pa_const <= pa_num_count)
290 return 1;
291
292 pa_den = red_cfg->pa_const - pa_num_count;
293
294 /* If drop, generate and save random number to be used next time */
295 if (unlikely((rte_red_rand_val % pa_den) < pa_num)) {
296 rte_red_rand_val = rte_fast_rand();
297
298 return 1;
299 }
300
301 /* No drop */
302 return 0;
303 }
304
305 /**
306 * @brief Decides if new packet should be enqeued or dropped in queue non-empty case
307 *
308 * @param red_cfg [in] config pointer to a RED configuration parameter structure
309 * @param red [in,out] data pointer to RED runtime data
310 * @param q [in] current queue size (measured in packets)
311 *
312 * @return Operation status
313 * @retval 0 enqueue the packet
314 * @retval 1 drop the packet based on max threshold criterion
315 * @retval 2 drop the packet based on mark probability criterion
316 */
317 static inline int
318 rte_red_enqueue_nonempty(const struct rte_red_config *red_cfg,
319 struct rte_red *red,
320 const unsigned q)
321 {
322 RTE_ASSERT(red_cfg != NULL);
323 RTE_ASSERT(red != NULL);
324
325 /**
326 * EWMA filter (Sally Floyd and Van Jacobson):
327 * avg = (1 - wq) * avg + wq * q
328 * avg = avg + q * wq - avg * wq
329 *
330 * We select: wq = 2^(-n). Let scaled version of avg be: avg_s = avg * 2^(N+n). We get:
331 * avg_s = avg_s + q * 2^N - avg_s * 2^(-n)
332 *
333 * By using shift left/right operations, we get:
334 * avg_s = avg_s + (q << N) - (avg_s >> n)
335 * avg_s += (q << N) - (avg_s >> n)
336 */
337
338 /* avg update */
339 red->avg += (q << RTE_RED_SCALING) - (red->avg >> red_cfg->wq_log2);
340
341 /* avg < min_th: do not mark the packet */
342 if (red->avg < red_cfg->min_th) {
343 red->count ++;
344 return 0;
345 }
346
347 /* min_th <= avg < max_th: mark the packet with pa probability */
348 if (red->avg < red_cfg->max_th) {
349 if (!__rte_red_drop(red_cfg, red)) {
350 red->count ++;
351 return 0;
352 }
353
354 red->count = 0;
355 return 2;
356 }
357
358 /* max_th <= avg: always mark the packet */
359 red->count = 0;
360 return 1;
361 }
362
363 /**
364 * @brief Decides if new packet should be enqeued or dropped
365 * Updates run time data based on new queue size value.
366 * Based on new queue average and RED configuration parameters
367 * gives verdict whether to enqueue or drop the packet.
368 *
369 * @param red_cfg [in] config pointer to a RED configuration parameter structure
370 * @param red [in,out] data pointer to RED runtime data
371 * @param q [in] updated queue size in packets
372 * @param time [in] current time stamp
373 *
374 * @return Operation status
375 * @retval 0 enqueue the packet
376 * @retval 1 drop the packet based on max threshold criteria
377 * @retval 2 drop the packet based on mark probability criteria
378 */
379 static inline int
380 rte_red_enqueue(const struct rte_red_config *red_cfg,
381 struct rte_red *red,
382 const unsigned q,
383 const uint64_t time)
384 {
385 RTE_ASSERT(red_cfg != NULL);
386 RTE_ASSERT(red != NULL);
387
388 if (q != 0) {
389 return rte_red_enqueue_nonempty(red_cfg, red, q);
390 } else {
391 return rte_red_enqueue_empty(red_cfg, red, time);
392 }
393 }
394
395 /**
396 * @brief Callback to records time that queue became empty
397 *
398 * @param red [in,out] data pointer to RED runtime data
399 * @param time [in] current time stamp
400 */
401 static inline void
402 rte_red_mark_queue_empty(struct rte_red *red, const uint64_t time)
403 {
404 red->q_time = time;
405 }
406
407 #ifdef __cplusplus
408 }
409 #endif
410
411 #endif /* __RTE_RED_H_INCLUDED__ */