]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/lib/librte_timer/rte_timer.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_timer / rte_timer.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #include <string.h>
6 #include <stdio.h>
7 #include <stdint.h>
8 #include <stdbool.h>
9 #include <inttypes.h>
10 #include <assert.h>
11 #include <sys/queue.h>
12
13 #include <rte_atomic.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_per_lcore.h>
17 #include <rte_memory.h>
18 #include <rte_launch.h>
19 #include <rte_eal.h>
20 #include <rte_lcore.h>
21 #include <rte_branch_prediction.h>
22 #include <rte_spinlock.h>
23 #include <rte_random.h>
24 #include <rte_pause.h>
25 #include <rte_memzone.h>
26 #include <rte_malloc.h>
27 #include <rte_compat.h>
28 #include <rte_errno.h>
29
30 #include "rte_timer.h"
31
32 /**
33 * Per-lcore info for timers.
34 */
35 struct priv_timer {
36 struct rte_timer pending_head; /**< dummy timer instance to head up list */
37 rte_spinlock_t list_lock; /**< lock to protect list access */
38
39 /** per-core variable that true if a timer was updated on this
40 * core since last reset of the variable */
41 int updated;
42
43 /** track the current depth of the skiplist */
44 unsigned curr_skiplist_depth;
45
46 unsigned prev_lcore; /**< used for lcore round robin */
47
48 /** running timer on this lcore now */
49 struct rte_timer *running_tim;
50
51 #ifdef RTE_LIBRTE_TIMER_DEBUG
52 /** per-lcore statistics */
53 struct rte_timer_debug_stats stats;
54 #endif
55 } __rte_cache_aligned;
56
57 #define FL_ALLOCATED (1 << 0)
58 struct rte_timer_data {
59 struct priv_timer priv_timer[RTE_MAX_LCORE];
60 uint8_t internal_flags;
61 };
62
63 #define RTE_MAX_DATA_ELS 64
64 static struct rte_timer_data *rte_timer_data_arr;
65 static const uint32_t default_data_id;
66 static uint32_t rte_timer_subsystem_initialized;
67
68 /* For maintaining older interfaces for a period */
69 static struct rte_timer_data default_timer_data;
70
71 /* when debug is enabled, store some statistics */
72 #ifdef RTE_LIBRTE_TIMER_DEBUG
73 #define __TIMER_STAT_ADD(priv_timer, name, n) do { \
74 unsigned __lcore_id = rte_lcore_id(); \
75 if (__lcore_id < RTE_MAX_LCORE) \
76 priv_timer[__lcore_id].stats.name += (n); \
77 } while(0)
78 #else
79 #define __TIMER_STAT_ADD(priv_timer, name, n) do {} while (0)
80 #endif
81
82 static inline int
83 timer_data_valid(uint32_t id)
84 {
85 return !!(rte_timer_data_arr[id].internal_flags & FL_ALLOCATED);
86 }
87
88 /* validate ID and retrieve timer data pointer, or return error value */
89 #define TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, retval) do { \
90 if (id >= RTE_MAX_DATA_ELS || !timer_data_valid(id)) \
91 return retval; \
92 timer_data = &rte_timer_data_arr[id]; \
93 } while (0)
94
95 int __rte_experimental
96 rte_timer_data_alloc(uint32_t *id_ptr)
97 {
98 int i;
99 struct rte_timer_data *data;
100
101 if (!rte_timer_subsystem_initialized)
102 return -ENOMEM;
103
104 for (i = 0; i < RTE_MAX_DATA_ELS; i++) {
105 data = &rte_timer_data_arr[i];
106 if (!(data->internal_flags & FL_ALLOCATED)) {
107 data->internal_flags |= FL_ALLOCATED;
108
109 if (id_ptr)
110 *id_ptr = i;
111
112 return 0;
113 }
114 }
115
116 return -ENOSPC;
117 }
118
119 int __rte_experimental
120 rte_timer_data_dealloc(uint32_t id)
121 {
122 struct rte_timer_data *timer_data;
123 TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, -EINVAL);
124
125 timer_data->internal_flags &= ~(FL_ALLOCATED);
126
127 return 0;
128 }
129
130 void
131 rte_timer_subsystem_init_v20(void)
132 {
133 unsigned lcore_id;
134 struct priv_timer *priv_timer = default_timer_data.priv_timer;
135
136 /* since priv_timer is static, it's zeroed by default, so only init some
137 * fields.
138 */
139 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id ++) {
140 rte_spinlock_init(&priv_timer[lcore_id].list_lock);
141 priv_timer[lcore_id].prev_lcore = lcore_id;
142 }
143 }
144 VERSION_SYMBOL(rte_timer_subsystem_init, _v20, 2.0);
145
146 /* Init the timer library. Allocate an array of timer data structs in shared
147 * memory, and allocate the zeroth entry for use with original timer
148 * APIs. Since the intersection of the sets of lcore ids in primary and
149 * secondary processes should be empty, the zeroth entry can be shared by
150 * multiple processes.
151 */
152 int
153 rte_timer_subsystem_init_v1905(void)
154 {
155 const struct rte_memzone *mz;
156 struct rte_timer_data *data;
157 int i, lcore_id;
158 static const char *mz_name = "rte_timer_mz";
159 const size_t data_arr_size =
160 RTE_MAX_DATA_ELS * sizeof(*rte_timer_data_arr);
161 bool do_full_init = true;
162
163 if (rte_timer_subsystem_initialized)
164 return -EALREADY;
165
166 reserve:
167 rte_errno = 0;
168 mz = rte_memzone_reserve_aligned(mz_name, data_arr_size, SOCKET_ID_ANY,
169 0, RTE_CACHE_LINE_SIZE);
170 if (mz == NULL) {
171 if (rte_errno == EEXIST) {
172 mz = rte_memzone_lookup(mz_name);
173 if (mz == NULL)
174 goto reserve;
175
176 do_full_init = false;
177 } else
178 return -ENOMEM;
179 }
180
181 rte_timer_data_arr = mz->addr;
182
183 if (do_full_init) {
184 for (i = 0; i < RTE_MAX_DATA_ELS; i++) {
185 data = &rte_timer_data_arr[i];
186
187 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE;
188 lcore_id++) {
189 rte_spinlock_init(
190 &data->priv_timer[lcore_id].list_lock);
191 data->priv_timer[lcore_id].prev_lcore =
192 lcore_id;
193 }
194 }
195 }
196
197 rte_timer_data_arr[default_data_id].internal_flags |= FL_ALLOCATED;
198
199 rte_timer_subsystem_initialized = 1;
200
201 return 0;
202 }
203 MAP_STATIC_SYMBOL(int rte_timer_subsystem_init(void),
204 rte_timer_subsystem_init_v1905);
205 BIND_DEFAULT_SYMBOL(rte_timer_subsystem_init, _v1905, 19.05);
206
207 void __rte_experimental
208 rte_timer_subsystem_finalize(void)
209 {
210 if (!rte_timer_subsystem_initialized)
211 return;
212
213 rte_timer_subsystem_initialized = 0;
214 }
215
216 /* Initialize the timer handle tim for use */
217 void
218 rte_timer_init(struct rte_timer *tim)
219 {
220 union rte_timer_status status;
221
222 status.state = RTE_TIMER_STOP;
223 status.owner = RTE_TIMER_NO_OWNER;
224 tim->status.u32 = status.u32;
225 }
226
227 /*
228 * if timer is pending or stopped (or running on the same core than
229 * us), mark timer as configuring, and on success return the previous
230 * status of the timer
231 */
232 static int
233 timer_set_config_state(struct rte_timer *tim,
234 union rte_timer_status *ret_prev_status,
235 struct priv_timer *priv_timer)
236 {
237 union rte_timer_status prev_status, status;
238 int success = 0;
239 unsigned lcore_id;
240
241 lcore_id = rte_lcore_id();
242
243 /* wait that the timer is in correct status before update,
244 * and mark it as being configured */
245 while (success == 0) {
246 prev_status.u32 = tim->status.u32;
247
248 /* timer is running on another core
249 * or ready to run on local core, exit
250 */
251 if (prev_status.state == RTE_TIMER_RUNNING &&
252 (prev_status.owner != (uint16_t)lcore_id ||
253 tim != priv_timer[lcore_id].running_tim))
254 return -1;
255
256 /* timer is being configured on another core */
257 if (prev_status.state == RTE_TIMER_CONFIG)
258 return -1;
259
260 /* here, we know that timer is stopped or pending,
261 * mark it atomically as being configured */
262 status.state = RTE_TIMER_CONFIG;
263 status.owner = (int16_t)lcore_id;
264 success = rte_atomic32_cmpset(&tim->status.u32,
265 prev_status.u32,
266 status.u32);
267 }
268
269 ret_prev_status->u32 = prev_status.u32;
270 return 0;
271 }
272
273 /*
274 * if timer is pending, mark timer as running
275 */
276 static int
277 timer_set_running_state(struct rte_timer *tim)
278 {
279 union rte_timer_status prev_status, status;
280 unsigned lcore_id = rte_lcore_id();
281 int success = 0;
282
283 /* wait that the timer is in correct status before update,
284 * and mark it as running */
285 while (success == 0) {
286 prev_status.u32 = tim->status.u32;
287
288 /* timer is not pending anymore */
289 if (prev_status.state != RTE_TIMER_PENDING)
290 return -1;
291
292 /* here, we know that timer is stopped or pending,
293 * mark it atomically as being configured */
294 status.state = RTE_TIMER_RUNNING;
295 status.owner = (int16_t)lcore_id;
296 success = rte_atomic32_cmpset(&tim->status.u32,
297 prev_status.u32,
298 status.u32);
299 }
300
301 return 0;
302 }
303
304 /*
305 * Return a skiplist level for a new entry.
306 * This probabilistically gives a level with p=1/4 that an entry at level n
307 * will also appear at level n+1.
308 */
309 static uint32_t
310 timer_get_skiplist_level(unsigned curr_depth)
311 {
312 #ifdef RTE_LIBRTE_TIMER_DEBUG
313 static uint32_t i, count = 0;
314 static uint32_t levels[MAX_SKIPLIST_DEPTH] = {0};
315 #endif
316
317 /* probability value is 1/4, i.e. all at level 0, 1 in 4 is at level 1,
318 * 1 in 16 at level 2, 1 in 64 at level 3, etc. Calculated using lowest
319 * bit position of a (pseudo)random number.
320 */
321 uint32_t rand = rte_rand() & (UINT32_MAX - 1);
322 uint32_t level = rand == 0 ? MAX_SKIPLIST_DEPTH : (rte_bsf32(rand)-1) / 2;
323
324 /* limit the levels used to one above our current level, so we don't,
325 * for instance, have a level 0 and a level 7 without anything between
326 */
327 if (level > curr_depth)
328 level = curr_depth;
329 if (level >= MAX_SKIPLIST_DEPTH)
330 level = MAX_SKIPLIST_DEPTH-1;
331 #ifdef RTE_LIBRTE_TIMER_DEBUG
332 count ++;
333 levels[level]++;
334 if (count % 10000 == 0)
335 for (i = 0; i < MAX_SKIPLIST_DEPTH; i++)
336 printf("Level %u: %u\n", (unsigned)i, (unsigned)levels[i]);
337 #endif
338 return level;
339 }
340
341 /*
342 * For a given time value, get the entries at each level which
343 * are <= that time value.
344 */
345 static void
346 timer_get_prev_entries(uint64_t time_val, unsigned tim_lcore,
347 struct rte_timer **prev, struct priv_timer *priv_timer)
348 {
349 unsigned lvl = priv_timer[tim_lcore].curr_skiplist_depth;
350 prev[lvl] = &priv_timer[tim_lcore].pending_head;
351 while(lvl != 0) {
352 lvl--;
353 prev[lvl] = prev[lvl+1];
354 while (prev[lvl]->sl_next[lvl] &&
355 prev[lvl]->sl_next[lvl]->expire <= time_val)
356 prev[lvl] = prev[lvl]->sl_next[lvl];
357 }
358 }
359
360 /*
361 * Given a timer node in the skiplist, find the previous entries for it at
362 * all skiplist levels.
363 */
364 static void
365 timer_get_prev_entries_for_node(struct rte_timer *tim, unsigned tim_lcore,
366 struct rte_timer **prev,
367 struct priv_timer *priv_timer)
368 {
369 int i;
370
371 /* to get a specific entry in the list, look for just lower than the time
372 * values, and then increment on each level individually if necessary
373 */
374 timer_get_prev_entries(tim->expire - 1, tim_lcore, prev, priv_timer);
375 for (i = priv_timer[tim_lcore].curr_skiplist_depth - 1; i >= 0; i--) {
376 while (prev[i]->sl_next[i] != NULL &&
377 prev[i]->sl_next[i] != tim &&
378 prev[i]->sl_next[i]->expire <= tim->expire)
379 prev[i] = prev[i]->sl_next[i];
380 }
381 }
382
383 /* call with lock held as necessary
384 * add in list
385 * timer must be in config state
386 * timer must not be in a list
387 */
388 static void
389 timer_add(struct rte_timer *tim, unsigned int tim_lcore,
390 struct priv_timer *priv_timer)
391 {
392 unsigned lvl;
393 struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
394
395 /* find where exactly this element goes in the list of elements
396 * for each depth. */
397 timer_get_prev_entries(tim->expire, tim_lcore, prev, priv_timer);
398
399 /* now assign it a new level and add at that level */
400 const unsigned tim_level = timer_get_skiplist_level(
401 priv_timer[tim_lcore].curr_skiplist_depth);
402 if (tim_level == priv_timer[tim_lcore].curr_skiplist_depth)
403 priv_timer[tim_lcore].curr_skiplist_depth++;
404
405 lvl = tim_level;
406 while (lvl > 0) {
407 tim->sl_next[lvl] = prev[lvl]->sl_next[lvl];
408 prev[lvl]->sl_next[lvl] = tim;
409 lvl--;
410 }
411 tim->sl_next[0] = prev[0]->sl_next[0];
412 prev[0]->sl_next[0] = tim;
413
414 /* save the lowest list entry into the expire field of the dummy hdr
415 * NOTE: this is not atomic on 32-bit*/
416 priv_timer[tim_lcore].pending_head.expire = priv_timer[tim_lcore].\
417 pending_head.sl_next[0]->expire;
418 }
419
420 /*
421 * del from list, lock if needed
422 * timer must be in config state
423 * timer must be in a list
424 */
425 static void
426 timer_del(struct rte_timer *tim, union rte_timer_status prev_status,
427 int local_is_locked, struct priv_timer *priv_timer)
428 {
429 unsigned lcore_id = rte_lcore_id();
430 unsigned prev_owner = prev_status.owner;
431 int i;
432 struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
433
434 /* if timer needs is pending another core, we need to lock the
435 * list; if it is on local core, we need to lock if we are not
436 * called from rte_timer_manage() */
437 if (prev_owner != lcore_id || !local_is_locked)
438 rte_spinlock_lock(&priv_timer[prev_owner].list_lock);
439
440 /* save the lowest list entry into the expire field of the dummy hdr.
441 * NOTE: this is not atomic on 32-bit */
442 if (tim == priv_timer[prev_owner].pending_head.sl_next[0])
443 priv_timer[prev_owner].pending_head.expire =
444 ((tim->sl_next[0] == NULL) ? 0 : tim->sl_next[0]->expire);
445
446 /* adjust pointers from previous entries to point past this */
447 timer_get_prev_entries_for_node(tim, prev_owner, prev, priv_timer);
448 for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--) {
449 if (prev[i]->sl_next[i] == tim)
450 prev[i]->sl_next[i] = tim->sl_next[i];
451 }
452
453 /* in case we deleted last entry at a level, adjust down max level */
454 for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--)
455 if (priv_timer[prev_owner].pending_head.sl_next[i] == NULL)
456 priv_timer[prev_owner].curr_skiplist_depth --;
457 else
458 break;
459
460 if (prev_owner != lcore_id || !local_is_locked)
461 rte_spinlock_unlock(&priv_timer[prev_owner].list_lock);
462 }
463
464 /* Reset and start the timer associated with the timer handle (private func) */
465 static int
466 __rte_timer_reset(struct rte_timer *tim, uint64_t expire,
467 uint64_t period, unsigned tim_lcore,
468 rte_timer_cb_t fct, void *arg,
469 int local_is_locked,
470 struct rte_timer_data *timer_data)
471 {
472 union rte_timer_status prev_status, status;
473 int ret;
474 unsigned lcore_id = rte_lcore_id();
475 struct priv_timer *priv_timer = timer_data->priv_timer;
476
477 /* round robin for tim_lcore */
478 if (tim_lcore == (unsigned)LCORE_ID_ANY) {
479 if (lcore_id < RTE_MAX_LCORE) {
480 /* EAL thread with valid lcore_id */
481 tim_lcore = rte_get_next_lcore(
482 priv_timer[lcore_id].prev_lcore,
483 0, 1);
484 priv_timer[lcore_id].prev_lcore = tim_lcore;
485 } else
486 /* non-EAL thread do not run rte_timer_manage(),
487 * so schedule the timer on the first enabled lcore. */
488 tim_lcore = rte_get_next_lcore(LCORE_ID_ANY, 0, 1);
489 }
490
491 /* wait that the timer is in correct status before update,
492 * and mark it as being configured */
493 ret = timer_set_config_state(tim, &prev_status, priv_timer);
494 if (ret < 0)
495 return -1;
496
497 __TIMER_STAT_ADD(priv_timer, reset, 1);
498 if (prev_status.state == RTE_TIMER_RUNNING &&
499 lcore_id < RTE_MAX_LCORE) {
500 priv_timer[lcore_id].updated = 1;
501 }
502
503 /* remove it from list */
504 if (prev_status.state == RTE_TIMER_PENDING) {
505 timer_del(tim, prev_status, local_is_locked, priv_timer);
506 __TIMER_STAT_ADD(priv_timer, pending, -1);
507 }
508
509 tim->period = period;
510 tim->expire = expire;
511 tim->f = fct;
512 tim->arg = arg;
513
514 /* if timer needs to be scheduled on another core, we need to
515 * lock the destination list; if it is on local core, we need to lock if
516 * we are not called from rte_timer_manage()
517 */
518 if (tim_lcore != lcore_id || !local_is_locked)
519 rte_spinlock_lock(&priv_timer[tim_lcore].list_lock);
520
521 __TIMER_STAT_ADD(priv_timer, pending, 1);
522 timer_add(tim, tim_lcore, priv_timer);
523
524 /* update state: as we are in CONFIG state, only us can modify
525 * the state so we don't need to use cmpset() here */
526 rte_wmb();
527 status.state = RTE_TIMER_PENDING;
528 status.owner = (int16_t)tim_lcore;
529 tim->status.u32 = status.u32;
530
531 if (tim_lcore != lcore_id || !local_is_locked)
532 rte_spinlock_unlock(&priv_timer[tim_lcore].list_lock);
533
534 return 0;
535 }
536
537 /* Reset and start the timer associated with the timer handle tim */
538 int
539 rte_timer_reset_v20(struct rte_timer *tim, uint64_t ticks,
540 enum rte_timer_type type, unsigned int tim_lcore,
541 rte_timer_cb_t fct, void *arg)
542 {
543 uint64_t cur_time = rte_get_timer_cycles();
544 uint64_t period;
545
546 if (unlikely((tim_lcore != (unsigned)LCORE_ID_ANY) &&
547 !(rte_lcore_is_enabled(tim_lcore) ||
548 rte_lcore_has_role(tim_lcore, ROLE_SERVICE))))
549 return -1;
550
551 if (type == PERIODICAL)
552 period = ticks;
553 else
554 period = 0;
555
556 return __rte_timer_reset(tim, cur_time + ticks, period, tim_lcore,
557 fct, arg, 0, &default_timer_data);
558 }
559 VERSION_SYMBOL(rte_timer_reset, _v20, 2.0);
560
561 int
562 rte_timer_reset_v1905(struct rte_timer *tim, uint64_t ticks,
563 enum rte_timer_type type, unsigned int tim_lcore,
564 rte_timer_cb_t fct, void *arg)
565 {
566 return rte_timer_alt_reset(default_data_id, tim, ticks, type,
567 tim_lcore, fct, arg);
568 }
569 MAP_STATIC_SYMBOL(int rte_timer_reset(struct rte_timer *tim, uint64_t ticks,
570 enum rte_timer_type type,
571 unsigned int tim_lcore,
572 rte_timer_cb_t fct, void *arg),
573 rte_timer_reset_v1905);
574 BIND_DEFAULT_SYMBOL(rte_timer_reset, _v1905, 19.05);
575
576 int __rte_experimental
577 rte_timer_alt_reset(uint32_t timer_data_id, struct rte_timer *tim,
578 uint64_t ticks, enum rte_timer_type type,
579 unsigned int tim_lcore, rte_timer_cb_t fct, void *arg)
580 {
581 uint64_t cur_time = rte_get_timer_cycles();
582 uint64_t period;
583 struct rte_timer_data *timer_data;
584
585 TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
586
587 if (type == PERIODICAL)
588 period = ticks;
589 else
590 period = 0;
591
592 return __rte_timer_reset(tim, cur_time + ticks, period, tim_lcore,
593 fct, arg, 0, timer_data);
594 }
595
596 /* loop until rte_timer_reset() succeed */
597 void
598 rte_timer_reset_sync(struct rte_timer *tim, uint64_t ticks,
599 enum rte_timer_type type, unsigned tim_lcore,
600 rte_timer_cb_t fct, void *arg)
601 {
602 while (rte_timer_reset(tim, ticks, type, tim_lcore,
603 fct, arg) != 0)
604 rte_pause();
605 }
606
607 static int
608 __rte_timer_stop(struct rte_timer *tim, int local_is_locked,
609 struct rte_timer_data *timer_data)
610 {
611 union rte_timer_status prev_status, status;
612 unsigned lcore_id = rte_lcore_id();
613 int ret;
614 struct priv_timer *priv_timer = timer_data->priv_timer;
615
616 /* wait that the timer is in correct status before update,
617 * and mark it as being configured */
618 ret = timer_set_config_state(tim, &prev_status, priv_timer);
619 if (ret < 0)
620 return -1;
621
622 __TIMER_STAT_ADD(priv_timer, stop, 1);
623 if (prev_status.state == RTE_TIMER_RUNNING &&
624 lcore_id < RTE_MAX_LCORE) {
625 priv_timer[lcore_id].updated = 1;
626 }
627
628 /* remove it from list */
629 if (prev_status.state == RTE_TIMER_PENDING) {
630 timer_del(tim, prev_status, local_is_locked, priv_timer);
631 __TIMER_STAT_ADD(priv_timer, pending, -1);
632 }
633
634 /* mark timer as stopped */
635 rte_wmb();
636 status.state = RTE_TIMER_STOP;
637 status.owner = RTE_TIMER_NO_OWNER;
638 tim->status.u32 = status.u32;
639
640 return 0;
641 }
642
643 /* Stop the timer associated with the timer handle tim */
644 int
645 rte_timer_stop_v20(struct rte_timer *tim)
646 {
647 return __rte_timer_stop(tim, 0, &default_timer_data);
648 }
649 VERSION_SYMBOL(rte_timer_stop, _v20, 2.0);
650
651 int
652 rte_timer_stop_v1905(struct rte_timer *tim)
653 {
654 return rte_timer_alt_stop(default_data_id, tim);
655 }
656 MAP_STATIC_SYMBOL(int rte_timer_stop(struct rte_timer *tim),
657 rte_timer_stop_v1905);
658 BIND_DEFAULT_SYMBOL(rte_timer_stop, _v1905, 19.05);
659
660 int __rte_experimental
661 rte_timer_alt_stop(uint32_t timer_data_id, struct rte_timer *tim)
662 {
663 struct rte_timer_data *timer_data;
664
665 TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
666
667 return __rte_timer_stop(tim, 0, timer_data);
668 }
669
670 /* loop until rte_timer_stop() succeed */
671 void
672 rte_timer_stop_sync(struct rte_timer *tim)
673 {
674 while (rte_timer_stop(tim) != 0)
675 rte_pause();
676 }
677
678 /* Test the PENDING status of the timer handle tim */
679 int
680 rte_timer_pending(struct rte_timer *tim)
681 {
682 return tim->status.state == RTE_TIMER_PENDING;
683 }
684
685 /* must be called periodically, run all timer that expired */
686 static void
687 __rte_timer_manage(struct rte_timer_data *timer_data)
688 {
689 union rte_timer_status status;
690 struct rte_timer *tim, *next_tim;
691 struct rte_timer *run_first_tim, **pprev;
692 unsigned lcore_id = rte_lcore_id();
693 struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
694 uint64_t cur_time;
695 int i, ret;
696 struct priv_timer *priv_timer = timer_data->priv_timer;
697
698 /* timer manager only runs on EAL thread with valid lcore_id */
699 assert(lcore_id < RTE_MAX_LCORE);
700
701 __TIMER_STAT_ADD(priv_timer, manage, 1);
702 /* optimize for the case where per-cpu list is empty */
703 if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL)
704 return;
705 cur_time = rte_get_timer_cycles();
706
707 #ifdef RTE_ARCH_64
708 /* on 64-bit the value cached in the pending_head.expired will be
709 * updated atomically, so we can consult that for a quick check here
710 * outside the lock */
711 if (likely(priv_timer[lcore_id].pending_head.expire > cur_time))
712 return;
713 #endif
714
715 /* browse ordered list, add expired timers in 'expired' list */
716 rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
717
718 /* if nothing to do just unlock and return */
719 if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL ||
720 priv_timer[lcore_id].pending_head.sl_next[0]->expire > cur_time) {
721 rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
722 return;
723 }
724
725 /* save start of list of expired timers */
726 tim = priv_timer[lcore_id].pending_head.sl_next[0];
727
728 /* break the existing list at current time point */
729 timer_get_prev_entries(cur_time, lcore_id, prev, priv_timer);
730 for (i = priv_timer[lcore_id].curr_skiplist_depth -1; i >= 0; i--) {
731 if (prev[i] == &priv_timer[lcore_id].pending_head)
732 continue;
733 priv_timer[lcore_id].pending_head.sl_next[i] =
734 prev[i]->sl_next[i];
735 if (prev[i]->sl_next[i] == NULL)
736 priv_timer[lcore_id].curr_skiplist_depth--;
737 prev[i] ->sl_next[i] = NULL;
738 }
739
740 /* transition run-list from PENDING to RUNNING */
741 run_first_tim = tim;
742 pprev = &run_first_tim;
743
744 for ( ; tim != NULL; tim = next_tim) {
745 next_tim = tim->sl_next[0];
746
747 ret = timer_set_running_state(tim);
748 if (likely(ret == 0)) {
749 pprev = &tim->sl_next[0];
750 } else {
751 /* another core is trying to re-config this one,
752 * remove it from local expired list
753 */
754 *pprev = next_tim;
755 }
756 }
757
758 /* update the next to expire timer value */
759 priv_timer[lcore_id].pending_head.expire =
760 (priv_timer[lcore_id].pending_head.sl_next[0] == NULL) ? 0 :
761 priv_timer[lcore_id].pending_head.sl_next[0]->expire;
762
763 rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
764
765 /* now scan expired list and call callbacks */
766 for (tim = run_first_tim; tim != NULL; tim = next_tim) {
767 next_tim = tim->sl_next[0];
768 priv_timer[lcore_id].updated = 0;
769 priv_timer[lcore_id].running_tim = tim;
770
771 /* execute callback function with list unlocked */
772 tim->f(tim, tim->arg);
773
774 __TIMER_STAT_ADD(priv_timer, pending, -1);
775 /* the timer was stopped or reloaded by the callback
776 * function, we have nothing to do here */
777 if (priv_timer[lcore_id].updated == 1)
778 continue;
779
780 if (tim->period == 0) {
781 /* remove from done list and mark timer as stopped */
782 status.state = RTE_TIMER_STOP;
783 status.owner = RTE_TIMER_NO_OWNER;
784 rte_wmb();
785 tim->status.u32 = status.u32;
786 }
787 else {
788 /* keep it in list and mark timer as pending */
789 rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
790 status.state = RTE_TIMER_PENDING;
791 __TIMER_STAT_ADD(priv_timer, pending, 1);
792 status.owner = (int16_t)lcore_id;
793 rte_wmb();
794 tim->status.u32 = status.u32;
795 __rte_timer_reset(tim, tim->expire + tim->period,
796 tim->period, lcore_id, tim->f, tim->arg, 1,
797 timer_data);
798 rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
799 }
800 }
801 priv_timer[lcore_id].running_tim = NULL;
802 }
803
804 void
805 rte_timer_manage_v20(void)
806 {
807 __rte_timer_manage(&default_timer_data);
808 }
809 VERSION_SYMBOL(rte_timer_manage, _v20, 2.0);
810
811 int
812 rte_timer_manage_v1905(void)
813 {
814 struct rte_timer_data *timer_data;
815
816 TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL);
817
818 __rte_timer_manage(timer_data);
819
820 return 0;
821 }
822 MAP_STATIC_SYMBOL(int rte_timer_manage(void), rte_timer_manage_v1905);
823 BIND_DEFAULT_SYMBOL(rte_timer_manage, _v1905, 19.05);
824
825 int __rte_experimental
826 rte_timer_alt_manage(uint32_t timer_data_id,
827 unsigned int *poll_lcores,
828 int nb_poll_lcores,
829 rte_timer_alt_manage_cb_t f)
830 {
831 unsigned int default_poll_lcores[] = {rte_lcore_id()};
832 union rte_timer_status status;
833 struct rte_timer *tim, *next_tim, **pprev;
834 struct rte_timer *run_first_tims[RTE_MAX_LCORE];
835 unsigned int this_lcore = rte_lcore_id();
836 struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
837 uint64_t cur_time;
838 int i, j, ret;
839 int nb_runlists = 0;
840 struct rte_timer_data *data;
841 struct priv_timer *privp;
842 uint32_t poll_lcore;
843
844 TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, data, -EINVAL);
845
846 /* timer manager only runs on EAL thread with valid lcore_id */
847 assert(this_lcore < RTE_MAX_LCORE);
848
849 __TIMER_STAT_ADD(data->priv_timer, manage, 1);
850
851 if (poll_lcores == NULL) {
852 poll_lcores = default_poll_lcores;
853 nb_poll_lcores = RTE_DIM(default_poll_lcores);
854 }
855
856 for (i = 0; i < nb_poll_lcores; i++) {
857 poll_lcore = poll_lcores[i];
858 privp = &data->priv_timer[poll_lcore];
859
860 /* optimize for the case where per-cpu list is empty */
861 if (privp->pending_head.sl_next[0] == NULL)
862 continue;
863 cur_time = rte_get_timer_cycles();
864
865 #ifdef RTE_ARCH_64
866 /* on 64-bit the value cached in the pending_head.expired will
867 * be updated atomically, so we can consult that for a quick
868 * check here outside the lock
869 */
870 if (likely(privp->pending_head.expire > cur_time))
871 continue;
872 #endif
873
874 /* browse ordered list, add expired timers in 'expired' list */
875 rte_spinlock_lock(&privp->list_lock);
876
877 /* if nothing to do just unlock and return */
878 if (privp->pending_head.sl_next[0] == NULL ||
879 privp->pending_head.sl_next[0]->expire > cur_time) {
880 rte_spinlock_unlock(&privp->list_lock);
881 continue;
882 }
883
884 /* save start of list of expired timers */
885 tim = privp->pending_head.sl_next[0];
886
887 /* break the existing list at current time point */
888 timer_get_prev_entries(cur_time, poll_lcore, prev,
889 data->priv_timer);
890 for (j = privp->curr_skiplist_depth - 1; j >= 0; j--) {
891 if (prev[j] == &privp->pending_head)
892 continue;
893 privp->pending_head.sl_next[j] =
894 prev[j]->sl_next[j];
895 if (prev[j]->sl_next[j] == NULL)
896 privp->curr_skiplist_depth--;
897
898 prev[j]->sl_next[j] = NULL;
899 }
900
901 /* transition run-list from PENDING to RUNNING */
902 run_first_tims[nb_runlists] = tim;
903 pprev = &run_first_tims[nb_runlists];
904 nb_runlists++;
905
906 for ( ; tim != NULL; tim = next_tim) {
907 next_tim = tim->sl_next[0];
908
909 ret = timer_set_running_state(tim);
910 if (likely(ret == 0)) {
911 pprev = &tim->sl_next[0];
912 } else {
913 /* another core is trying to re-config this one,
914 * remove it from local expired list
915 */
916 *pprev = next_tim;
917 }
918 }
919
920 /* update the next to expire timer value */
921 privp->pending_head.expire =
922 (privp->pending_head.sl_next[0] == NULL) ? 0 :
923 privp->pending_head.sl_next[0]->expire;
924
925 rte_spinlock_unlock(&privp->list_lock);
926 }
927
928 /* Now process the run lists */
929 while (1) {
930 bool done = true;
931 uint64_t min_expire = UINT64_MAX;
932 int min_idx = 0;
933
934 /* Find the next oldest timer to process */
935 for (i = 0; i < nb_runlists; i++) {
936 tim = run_first_tims[i];
937
938 if (tim != NULL && tim->expire < min_expire) {
939 min_expire = tim->expire;
940 min_idx = i;
941 done = false;
942 }
943 }
944
945 if (done)
946 break;
947
948 tim = run_first_tims[min_idx];
949
950 /* Move down the runlist from which we picked a timer to
951 * execute
952 */
953 run_first_tims[min_idx] = run_first_tims[min_idx]->sl_next[0];
954
955 data->priv_timer[this_lcore].updated = 0;
956 data->priv_timer[this_lcore].running_tim = tim;
957
958 /* Call the provided callback function */
959 f(tim);
960
961 __TIMER_STAT_ADD(data->priv_timer, pending, -1);
962
963 /* the timer was stopped or reloaded by the callback
964 * function, we have nothing to do here
965 */
966 if (data->priv_timer[this_lcore].updated == 1)
967 continue;
968
969 if (tim->period == 0) {
970 /* remove from done list and mark timer as stopped */
971 status.state = RTE_TIMER_STOP;
972 status.owner = RTE_TIMER_NO_OWNER;
973 rte_wmb();
974 tim->status.u32 = status.u32;
975 } else {
976 /* keep it in list and mark timer as pending */
977 rte_spinlock_lock(
978 &data->priv_timer[this_lcore].list_lock);
979 status.state = RTE_TIMER_PENDING;
980 __TIMER_STAT_ADD(data->priv_timer, pending, 1);
981 status.owner = (int16_t)this_lcore;
982 rte_wmb();
983 tim->status.u32 = status.u32;
984 __rte_timer_reset(tim, tim->expire + tim->period,
985 tim->period, this_lcore, tim->f, tim->arg, 1,
986 data);
987 rte_spinlock_unlock(
988 &data->priv_timer[this_lcore].list_lock);
989 }
990
991 data->priv_timer[this_lcore].running_tim = NULL;
992 }
993
994 return 0;
995 }
996
997 /* Walk pending lists, stopping timers and calling user-specified function */
998 int __rte_experimental
999 rte_timer_stop_all(uint32_t timer_data_id, unsigned int *walk_lcores,
1000 int nb_walk_lcores,
1001 rte_timer_stop_all_cb_t f, void *f_arg)
1002 {
1003 int i;
1004 struct priv_timer *priv_timer;
1005 uint32_t walk_lcore;
1006 struct rte_timer *tim, *next_tim;
1007 struct rte_timer_data *timer_data;
1008
1009 TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
1010
1011 for (i = 0; i < nb_walk_lcores; i++) {
1012 walk_lcore = walk_lcores[i];
1013 priv_timer = &timer_data->priv_timer[walk_lcore];
1014
1015 rte_spinlock_lock(&priv_timer->list_lock);
1016
1017 for (tim = priv_timer->pending_head.sl_next[0];
1018 tim != NULL;
1019 tim = next_tim) {
1020 next_tim = tim->sl_next[0];
1021
1022 /* Call timer_stop with lock held */
1023 __rte_timer_stop(tim, 1, timer_data);
1024
1025 if (f)
1026 f(tim, f_arg);
1027 }
1028
1029 rte_spinlock_unlock(&priv_timer->list_lock);
1030 }
1031
1032 return 0;
1033 }
1034
1035 /* dump statistics about timers */
1036 static void
1037 __rte_timer_dump_stats(struct rte_timer_data *timer_data __rte_unused, FILE *f)
1038 {
1039 #ifdef RTE_LIBRTE_TIMER_DEBUG
1040 struct rte_timer_debug_stats sum;
1041 unsigned lcore_id;
1042 struct priv_timer *priv_timer = timer_data->priv_timer;
1043
1044 memset(&sum, 0, sizeof(sum));
1045 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1046 sum.reset += priv_timer[lcore_id].stats.reset;
1047 sum.stop += priv_timer[lcore_id].stats.stop;
1048 sum.manage += priv_timer[lcore_id].stats.manage;
1049 sum.pending += priv_timer[lcore_id].stats.pending;
1050 }
1051 fprintf(f, "Timer statistics:\n");
1052 fprintf(f, " reset = %"PRIu64"\n", sum.reset);
1053 fprintf(f, " stop = %"PRIu64"\n", sum.stop);
1054 fprintf(f, " manage = %"PRIu64"\n", sum.manage);
1055 fprintf(f, " pending = %"PRIu64"\n", sum.pending);
1056 #else
1057 fprintf(f, "No timer statistics, RTE_LIBRTE_TIMER_DEBUG is disabled\n");
1058 #endif
1059 }
1060
1061 void
1062 rte_timer_dump_stats_v20(FILE *f)
1063 {
1064 __rte_timer_dump_stats(&default_timer_data, f);
1065 }
1066 VERSION_SYMBOL(rte_timer_dump_stats, _v20, 2.0);
1067
1068 int
1069 rte_timer_dump_stats_v1905(FILE *f)
1070 {
1071 return rte_timer_alt_dump_stats(default_data_id, f);
1072 }
1073 MAP_STATIC_SYMBOL(int rte_timer_dump_stats(FILE *f),
1074 rte_timer_dump_stats_v1905);
1075 BIND_DEFAULT_SYMBOL(rte_timer_dump_stats, _v1905, 19.05);
1076
1077 int __rte_experimental
1078 rte_timer_alt_dump_stats(uint32_t timer_data_id __rte_unused, FILE *f)
1079 {
1080 struct rte_timer_data *timer_data;
1081
1082 TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
1083
1084 __rte_timer_dump_stats(timer_data, f);
1085
1086 return 0;
1087 }