]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/app/test/test_memcpy_perf.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / app / test / test_memcpy_perf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #include <stdint.h>
6 #include <stdio.h>
7 #include <string.h>
8 #include <stdlib.h>
9 #include <sys/time.h>
10
11 #include <rte_common.h>
12 #include <rte_cycles.h>
13 #include <rte_random.h>
14 #include <rte_malloc.h>
15
16 #include <rte_memcpy.h>
17
18 #include "test.h"
19
20 /*
21 * Set this to the maximum buffer size you want to test. If it is 0, then the
22 * values in the buf_sizes[] array below will be used.
23 */
24 #define TEST_VALUE_RANGE 0
25
26 /* List of buffer sizes to test */
27 #if TEST_VALUE_RANGE == 0
28 static size_t buf_sizes[] = {
29 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128,
30 129, 191, 192, 193, 255, 256, 257, 319, 320, 321, 383, 384, 385, 447, 448,
31 449, 511, 512, 513, 767, 768, 769, 1023, 1024, 1025, 1518, 1522, 1536, 1600,
32 2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168, 7680, 8192
33 };
34 /* MUST be as large as largest packet size above */
35 #define SMALL_BUFFER_SIZE 8192
36 #else /* TEST_VALUE_RANGE != 0 */
37 static size_t buf_sizes[TEST_VALUE_RANGE];
38 #define SMALL_BUFFER_SIZE TEST_VALUE_RANGE
39 #endif /* TEST_VALUE_RANGE == 0 */
40
41
42 /*
43 * Arrays of this size are used for measuring uncached memory accesses by
44 * picking a random location within the buffer. Make this smaller if there are
45 * memory allocation errors.
46 */
47 #define LARGE_BUFFER_SIZE (100 * 1024 * 1024)
48
49 /* How many times to run timing loop for performance tests */
50 #define TEST_ITERATIONS 1000000
51 #define TEST_BATCH_SIZE 100
52
53 /* Data is aligned on this many bytes (power of 2) */
54 #ifdef RTE_MACHINE_CPUFLAG_AVX512F
55 #define ALIGNMENT_UNIT 64
56 #elif defined RTE_MACHINE_CPUFLAG_AVX2
57 #define ALIGNMENT_UNIT 32
58 #else /* RTE_MACHINE_CPUFLAG */
59 #define ALIGNMENT_UNIT 16
60 #endif /* RTE_MACHINE_CPUFLAG */
61
62 /*
63 * Pointers used in performance tests. The two large buffers are for uncached
64 * access where random addresses within the buffer are used for each
65 * memcpy. The two small buffers are for cached access.
66 */
67 static uint8_t *large_buf_read, *large_buf_write;
68 static uint8_t *small_buf_read, *small_buf_write;
69
70 /* Initialise data buffers. */
71 static int
72 init_buffers(void)
73 {
74 unsigned i;
75
76 large_buf_read = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
77 if (large_buf_read == NULL)
78 goto error_large_buf_read;
79
80 large_buf_write = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
81 if (large_buf_write == NULL)
82 goto error_large_buf_write;
83
84 small_buf_read = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
85 if (small_buf_read == NULL)
86 goto error_small_buf_read;
87
88 small_buf_write = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
89 if (small_buf_write == NULL)
90 goto error_small_buf_write;
91
92 for (i = 0; i < LARGE_BUFFER_SIZE; i++)
93 large_buf_read[i] = rte_rand();
94 for (i = 0; i < SMALL_BUFFER_SIZE; i++)
95 small_buf_read[i] = rte_rand();
96
97 return 0;
98
99 error_small_buf_write:
100 rte_free(small_buf_read);
101 error_small_buf_read:
102 rte_free(large_buf_write);
103 error_large_buf_write:
104 rte_free(large_buf_read);
105 error_large_buf_read:
106 printf("ERROR: not enough memory\n");
107 return -1;
108 }
109
110 /* Cleanup data buffers */
111 static void
112 free_buffers(void)
113 {
114 rte_free(large_buf_read);
115 rte_free(large_buf_write);
116 rte_free(small_buf_read);
117 rte_free(small_buf_write);
118 }
119
120 /*
121 * Get a random offset into large array, with enough space needed to perform
122 * max copy size. Offset is aligned, uoffset is used for unalignment setting.
123 */
124 static inline size_t
125 get_rand_offset(size_t uoffset)
126 {
127 return ((rte_rand() % (LARGE_BUFFER_SIZE - SMALL_BUFFER_SIZE)) &
128 ~(ALIGNMENT_UNIT - 1)) + uoffset;
129 }
130
131 /* Fill in source and destination addresses. */
132 static inline void
133 fill_addr_arrays(size_t *dst_addr, int is_dst_cached, size_t dst_uoffset,
134 size_t *src_addr, int is_src_cached, size_t src_uoffset)
135 {
136 unsigned int i;
137
138 for (i = 0; i < TEST_BATCH_SIZE; i++) {
139 dst_addr[i] = (is_dst_cached) ? dst_uoffset : get_rand_offset(dst_uoffset);
140 src_addr[i] = (is_src_cached) ? src_uoffset : get_rand_offset(src_uoffset);
141 }
142 }
143
144 /*
145 * WORKAROUND: For some reason the first test doing an uncached write
146 * takes a very long time (~25 times longer than is expected). So we do
147 * it once without timing.
148 */
149 static void
150 do_uncached_write(uint8_t *dst, int is_dst_cached,
151 const uint8_t *src, int is_src_cached, size_t size)
152 {
153 unsigned i, j;
154 size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE];
155
156 for (i = 0; i < (TEST_ITERATIONS / TEST_BATCH_SIZE); i++) {
157 fill_addr_arrays(dst_addrs, is_dst_cached, 0,
158 src_addrs, is_src_cached, 0);
159 for (j = 0; j < TEST_BATCH_SIZE; j++) {
160 rte_memcpy(dst+dst_addrs[j], src+src_addrs[j], size);
161 }
162 }
163 }
164
165 /*
166 * Run a single memcpy performance test. This is a macro to ensure that if
167 * the "size" parameter is a constant it won't be converted to a variable.
168 */
169 #define SINGLE_PERF_TEST(dst, is_dst_cached, dst_uoffset, \
170 src, is_src_cached, src_uoffset, size) \
171 do { \
172 unsigned int iter, t; \
173 size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE]; \
174 uint64_t start_time, total_time = 0; \
175 uint64_t total_time2 = 0; \
176 for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
177 fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \
178 src_addrs, is_src_cached, src_uoffset); \
179 start_time = rte_rdtsc(); \
180 for (t = 0; t < TEST_BATCH_SIZE; t++) \
181 rte_memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
182 total_time += rte_rdtsc() - start_time; \
183 } \
184 for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
185 fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \
186 src_addrs, is_src_cached, src_uoffset); \
187 start_time = rte_rdtsc(); \
188 for (t = 0; t < TEST_BATCH_SIZE; t++) \
189 memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
190 total_time2 += rte_rdtsc() - start_time; \
191 } \
192 printf("%3.0f -", (double)total_time / TEST_ITERATIONS); \
193 printf("%3.0f", (double)total_time2 / TEST_ITERATIONS); \
194 printf("(%6.2f%%) ", ((double)total_time - total_time2)*100/total_time2); \
195 } while (0)
196
197 /* Run aligned memcpy tests for each cached/uncached permutation */
198 #define ALL_PERF_TESTS_FOR_SIZE(n) \
199 do { \
200 if (__builtin_constant_p(n)) \
201 printf("\nC%6u", (unsigned)n); \
202 else \
203 printf("\n%7u", (unsigned)n); \
204 SINGLE_PERF_TEST(small_buf_write, 1, 0, small_buf_read, 1, 0, n); \
205 SINGLE_PERF_TEST(large_buf_write, 0, 0, small_buf_read, 1, 0, n); \
206 SINGLE_PERF_TEST(small_buf_write, 1, 0, large_buf_read, 0, 0, n); \
207 SINGLE_PERF_TEST(large_buf_write, 0, 0, large_buf_read, 0, 0, n); \
208 } while (0)
209
210 /* Run unaligned memcpy tests for each cached/uncached permutation */
211 #define ALL_PERF_TESTS_FOR_SIZE_UNALIGNED(n) \
212 do { \
213 if (__builtin_constant_p(n)) \
214 printf("\nC%6u", (unsigned)n); \
215 else \
216 printf("\n%7u", (unsigned)n); \
217 SINGLE_PERF_TEST(small_buf_write, 1, 1, small_buf_read, 1, 5, n); \
218 SINGLE_PERF_TEST(large_buf_write, 0, 1, small_buf_read, 1, 5, n); \
219 SINGLE_PERF_TEST(small_buf_write, 1, 1, large_buf_read, 0, 5, n); \
220 SINGLE_PERF_TEST(large_buf_write, 0, 1, large_buf_read, 0, 5, n); \
221 } while (0)
222
223 /* Run memcpy tests for constant length */
224 #define ALL_PERF_TEST_FOR_CONSTANT \
225 do { \
226 TEST_CONSTANT(6U); TEST_CONSTANT(64U); TEST_CONSTANT(128U); \
227 TEST_CONSTANT(192U); TEST_CONSTANT(256U); TEST_CONSTANT(512U); \
228 TEST_CONSTANT(768U); TEST_CONSTANT(1024U); TEST_CONSTANT(1536U); \
229 } while (0)
230
231 /* Run all memcpy tests for aligned constant cases */
232 static inline void
233 perf_test_constant_aligned(void)
234 {
235 #define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE
236 ALL_PERF_TEST_FOR_CONSTANT;
237 #undef TEST_CONSTANT
238 }
239
240 /* Run all memcpy tests for unaligned constant cases */
241 static inline void
242 perf_test_constant_unaligned(void)
243 {
244 #define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE_UNALIGNED
245 ALL_PERF_TEST_FOR_CONSTANT;
246 #undef TEST_CONSTANT
247 }
248
249 /* Run all memcpy tests for aligned variable cases */
250 static inline void
251 perf_test_variable_aligned(void)
252 {
253 unsigned n = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
254 unsigned i;
255 for (i = 0; i < n; i++) {
256 ALL_PERF_TESTS_FOR_SIZE((size_t)buf_sizes[i]);
257 }
258 }
259
260 /* Run all memcpy tests for unaligned variable cases */
261 static inline void
262 perf_test_variable_unaligned(void)
263 {
264 unsigned n = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
265 unsigned i;
266 for (i = 0; i < n; i++) {
267 ALL_PERF_TESTS_FOR_SIZE_UNALIGNED((size_t)buf_sizes[i]);
268 }
269 }
270
271 /* Run all memcpy tests */
272 static int
273 perf_test(void)
274 {
275 int ret;
276 struct timeval tv_begin, tv_end;
277 double time_aligned, time_unaligned;
278 double time_aligned_const, time_unaligned_const;
279
280 ret = init_buffers();
281 if (ret != 0)
282 return ret;
283
284 #if TEST_VALUE_RANGE != 0
285 /* Set up buf_sizes array, if required */
286 unsigned i;
287 for (i = 0; i < TEST_VALUE_RANGE; i++)
288 buf_sizes[i] = i;
289 #endif
290
291 /* See function comment */
292 do_uncached_write(large_buf_write, 0, small_buf_read, 1, SMALL_BUFFER_SIZE);
293
294 printf("\n** rte_memcpy() - memcpy perf. tests (C = compile-time constant) **\n"
295 "======= ================= ================= ================= =================\n"
296 " Size Cache to cache Cache to mem Mem to cache Mem to mem\n"
297 "(bytes) (ticks) (ticks) (ticks) (ticks)\n"
298 "------- ----------------- ----------------- ----------------- -----------------");
299
300 printf("\n================================= %2dB aligned =================================",
301 ALIGNMENT_UNIT);
302 /* Do aligned tests where size is a variable */
303 gettimeofday(&tv_begin, NULL);
304 perf_test_variable_aligned();
305 gettimeofday(&tv_end, NULL);
306 time_aligned = (double)(tv_end.tv_sec - tv_begin.tv_sec)
307 + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
308 printf("\n------- ----------------- ----------------- ----------------- -----------------");
309 /* Do aligned tests where size is a compile-time constant */
310 gettimeofday(&tv_begin, NULL);
311 perf_test_constant_aligned();
312 gettimeofday(&tv_end, NULL);
313 time_aligned_const = (double)(tv_end.tv_sec - tv_begin.tv_sec)
314 + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
315 printf("\n================================== Unaligned ==================================");
316 /* Do unaligned tests where size is a variable */
317 gettimeofday(&tv_begin, NULL);
318 perf_test_variable_unaligned();
319 gettimeofday(&tv_end, NULL);
320 time_unaligned = (double)(tv_end.tv_sec - tv_begin.tv_sec)
321 + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
322 printf("\n------- ----------------- ----------------- ----------------- -----------------");
323 /* Do unaligned tests where size is a compile-time constant */
324 gettimeofday(&tv_begin, NULL);
325 perf_test_constant_unaligned();
326 gettimeofday(&tv_end, NULL);
327 time_unaligned_const = (double)(tv_end.tv_sec - tv_begin.tv_sec)
328 + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
329 printf("\n======= ================= ================= ================= =================\n\n");
330
331 printf("Test Execution Time (seconds):\n");
332 printf("Aligned variable copy size = %8.3f\n", time_aligned);
333 printf("Aligned constant copy size = %8.3f\n", time_aligned_const);
334 printf("Unaligned variable copy size = %8.3f\n", time_unaligned);
335 printf("Unaligned constant copy size = %8.3f\n", time_unaligned_const);
336 free_buffers();
337
338 return 0;
339 }
340
341 static int
342 test_memcpy_perf(void)
343 {
344 int ret;
345
346 ret = perf_test();
347 if (ret != 0)
348 return -1;
349 return 0;
350 }
351
352 REGISTER_TEST_COMMAND(memcpy_perf_autotest, test_memcpy_perf);