]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
3 */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13
14 #include <rte_bbdev.h>
15 #include <rte_bbdev_pmd.h>
16
17 #include <phy_turbo.h>
18 #include <phy_crc.h>
19 #include <phy_rate_match.h>
20 #include <divide.h>
21
22 #define DRIVER_NAME baseband_turbo_sw
23
24 /* Turbo SW PMD logging ID */
25 static int bbdev_turbo_sw_logtype;
26
27 /* Helper macro for logging */
28 #define rte_bbdev_log(level, fmt, ...) \
29 rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
30 ##__VA_ARGS__)
31
32 #define rte_bbdev_log_debug(fmt, ...) \
33 rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
34 ##__VA_ARGS__)
35
36 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48)
37 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
38 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48)
39
40 /* private data structure */
41 struct bbdev_private {
42 unsigned int max_nb_queues; /**< Max number of queues */
43 };
44
45 /* Initialisation params structure that can be used by Turbo SW driver */
46 struct turbo_sw_params {
47 int socket_id; /*< Turbo SW device socket */
48 uint16_t queues_num; /*< Turbo SW device queues number */
49 };
50
51 /* Accecptable params for Turbo SW devices */
52 #define TURBO_SW_MAX_NB_QUEUES_ARG "max_nb_queues"
53 #define TURBO_SW_SOCKET_ID_ARG "socket_id"
54
55 static const char * const turbo_sw_valid_params[] = {
56 TURBO_SW_MAX_NB_QUEUES_ARG,
57 TURBO_SW_SOCKET_ID_ARG
58 };
59
60 /* queue */
61 struct turbo_sw_queue {
62 /* Ring for processed (encoded/decoded) operations which are ready to
63 * be dequeued.
64 */
65 struct rte_ring *processed_pkts;
66 /* Stores input for turbo encoder (used when CRC attachment is
67 * performed
68 */
69 uint8_t *enc_in;
70 /* Stores output from turbo encoder */
71 uint8_t *enc_out;
72 /* Alpha gamma buf for bblib_turbo_decoder() function */
73 int8_t *ag;
74 /* Temp buf for bblib_turbo_decoder() function */
75 uint16_t *code_block;
76 /* Input buf for bblib_rate_dematching_lte() function */
77 uint8_t *deint_input;
78 /* Output buf for bblib_rate_dematching_lte() function */
79 uint8_t *deint_output;
80 /* Output buf for bblib_turbodec_adapter_lte() function */
81 uint8_t *adapter_output;
82 /* Operation type of this queue */
83 enum rte_bbdev_op_type type;
84 } __rte_cache_aligned;
85
86 static inline char *
87 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
88 {
89 if (unlikely(len > rte_pktmbuf_tailroom(m)))
90 return NULL;
91
92 char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
93 m->data_len = (uint16_t)(m->data_len + len);
94 m_head->pkt_len = (m_head->pkt_len + len);
95 return tail;
96 }
97
98 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
99 static inline int32_t
100 compute_idx(uint16_t k)
101 {
102 int32_t result = 0;
103
104 if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
105 return -1;
106
107 if (k > 2048) {
108 if ((k - 2048) % 64 != 0)
109 result = -1;
110
111 result = 124 + (k - 2048) / 64;
112 } else if (k <= 512) {
113 if ((k - 40) % 8 != 0)
114 result = -1;
115
116 result = (k - 40) / 8 + 1;
117 } else if (k <= 1024) {
118 if ((k - 512) % 16 != 0)
119 result = -1;
120
121 result = 60 + (k - 512) / 16;
122 } else { /* 1024 < k <= 2048 */
123 if ((k - 1024) % 32 != 0)
124 result = -1;
125
126 result = 92 + (k - 1024) / 32;
127 }
128
129 return result;
130 }
131
132 /* Read flag value 0/1 from bitmap */
133 static inline bool
134 check_bit(uint32_t bitmap, uint32_t bitmask)
135 {
136 return bitmap & bitmask;
137 }
138
139 /* Get device info */
140 static void
141 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
142 {
143 struct bbdev_private *internals = dev->data->dev_private;
144
145 static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
146 {
147 .type = RTE_BBDEV_OP_TURBO_DEC,
148 .cap.turbo_dec = {
149 .capability_flags =
150 RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
151 RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
152 RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
153 RTE_BBDEV_TURBO_CRC_TYPE_24B |
154 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
155 RTE_BBDEV_TURBO_EARLY_TERMINATION,
156 .max_llr_modulus = 16,
157 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
158 .num_buffers_hard_out =
159 RTE_BBDEV_MAX_CODE_BLOCKS,
160 .num_buffers_soft_out = 0,
161 }
162 },
163 {
164 .type = RTE_BBDEV_OP_TURBO_ENC,
165 .cap.turbo_enc = {
166 .capability_flags =
167 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
168 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
169 RTE_BBDEV_TURBO_RATE_MATCH |
170 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
171 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
172 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
173 }
174 },
175 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
176 };
177
178 static struct rte_bbdev_queue_conf default_queue_conf = {
179 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
180 };
181
182 static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
183
184 default_queue_conf.socket = dev->data->socket_id;
185
186 dev_info->driver_name = RTE_STR(DRIVER_NAME);
187 dev_info->max_num_queues = internals->max_nb_queues;
188 dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
189 dev_info->hardware_accelerated = false;
190 dev_info->max_dl_queue_priority = 0;
191 dev_info->max_ul_queue_priority = 0;
192 dev_info->default_queue_conf = default_queue_conf;
193 dev_info->capabilities = bbdev_capabilities;
194 dev_info->cpu_flag_reqs = &cpu_flag;
195 dev_info->min_alignment = 64;
196
197 rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
198 }
199
200 /* Release queue */
201 static int
202 q_release(struct rte_bbdev *dev, uint16_t q_id)
203 {
204 struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
205
206 if (q != NULL) {
207 rte_ring_free(q->processed_pkts);
208 rte_free(q->enc_out);
209 rte_free(q->enc_in);
210 rte_free(q->ag);
211 rte_free(q->code_block);
212 rte_free(q->deint_input);
213 rte_free(q->deint_output);
214 rte_free(q->adapter_output);
215 rte_free(q);
216 dev->data->queues[q_id].queue_private = NULL;
217 }
218
219 rte_bbdev_log_debug("released device queue %u:%u",
220 dev->data->dev_id, q_id);
221 return 0;
222 }
223
224 /* Setup a queue */
225 static int
226 q_setup(struct rte_bbdev *dev, uint16_t q_id,
227 const struct rte_bbdev_queue_conf *queue_conf)
228 {
229 int ret;
230 struct turbo_sw_queue *q;
231 char name[RTE_RING_NAMESIZE];
232
233 /* Allocate the queue data structure. */
234 q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
235 RTE_CACHE_LINE_SIZE, queue_conf->socket);
236 if (q == NULL) {
237 rte_bbdev_log(ERR, "Failed to allocate queue memory");
238 return -ENOMEM;
239 }
240
241 /* Allocate memory for encoder output. */
242 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
243 dev->data->dev_id, q_id);
244 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
245 rte_bbdev_log(ERR,
246 "Creating queue name for device %u queue %u failed",
247 dev->data->dev_id, q_id);
248 return -ENAMETOOLONG;
249 }
250 q->enc_out = rte_zmalloc_socket(name,
251 ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
252 sizeof(*q->enc_out) * 3,
253 RTE_CACHE_LINE_SIZE, queue_conf->socket);
254 if (q->enc_out == NULL) {
255 rte_bbdev_log(ERR,
256 "Failed to allocate queue memory for %s", name);
257 goto free_q;
258 }
259
260 /* Allocate memory for rate matching output. */
261 ret = snprintf(name, RTE_RING_NAMESIZE,
262 RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
263 q_id);
264 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
265 rte_bbdev_log(ERR,
266 "Creating queue name for device %u queue %u failed",
267 dev->data->dev_id, q_id);
268 return -ENAMETOOLONG;
269 }
270 q->enc_in = rte_zmalloc_socket(name,
271 (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
272 RTE_CACHE_LINE_SIZE, queue_conf->socket);
273 if (q->enc_in == NULL) {
274 rte_bbdev_log(ERR,
275 "Failed to allocate queue memory for %s", name);
276 goto free_q;
277 }
278
279 /* Allocate memory for Aplha Gamma temp buffer. */
280 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
281 dev->data->dev_id, q_id);
282 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
283 rte_bbdev_log(ERR,
284 "Creating queue name for device %u queue %u failed",
285 dev->data->dev_id, q_id);
286 return -ENAMETOOLONG;
287 }
288 q->ag = rte_zmalloc_socket(name,
289 RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
290 RTE_CACHE_LINE_SIZE, queue_conf->socket);
291 if (q->ag == NULL) {
292 rte_bbdev_log(ERR,
293 "Failed to allocate queue memory for %s", name);
294 goto free_q;
295 }
296
297 /* Allocate memory for code block temp buffer. */
298 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
299 dev->data->dev_id, q_id);
300 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
301 rte_bbdev_log(ERR,
302 "Creating queue name for device %u queue %u failed",
303 dev->data->dev_id, q_id);
304 return -ENAMETOOLONG;
305 }
306 q->code_block = rte_zmalloc_socket(name,
307 RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block),
308 RTE_CACHE_LINE_SIZE, queue_conf->socket);
309 if (q->code_block == NULL) {
310 rte_bbdev_log(ERR,
311 "Failed to allocate queue memory for %s", name);
312 goto free_q;
313 }
314
315 /* Allocate memory for Deinterleaver input. */
316 ret = snprintf(name, RTE_RING_NAMESIZE,
317 RTE_STR(DRIVER_NAME)"_de_i%u:%u",
318 dev->data->dev_id, q_id);
319 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
320 rte_bbdev_log(ERR,
321 "Creating queue name for device %u queue %u failed",
322 dev->data->dev_id, q_id);
323 return -ENAMETOOLONG;
324 }
325 q->deint_input = rte_zmalloc_socket(name,
326 DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
327 RTE_CACHE_LINE_SIZE, queue_conf->socket);
328 if (q->deint_input == NULL) {
329 rte_bbdev_log(ERR,
330 "Failed to allocate queue memory for %s", name);
331 goto free_q;
332 }
333
334 /* Allocate memory for Deinterleaver output. */
335 ret = snprintf(name, RTE_RING_NAMESIZE,
336 RTE_STR(DRIVER_NAME)"_de_o%u:%u",
337 dev->data->dev_id, q_id);
338 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
339 rte_bbdev_log(ERR,
340 "Creating queue name for device %u queue %u failed",
341 dev->data->dev_id, q_id);
342 return -ENAMETOOLONG;
343 }
344 q->deint_output = rte_zmalloc_socket(NULL,
345 DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
346 RTE_CACHE_LINE_SIZE, queue_conf->socket);
347 if (q->deint_output == NULL) {
348 rte_bbdev_log(ERR,
349 "Failed to allocate queue memory for %s", name);
350 goto free_q;
351 }
352
353 /* Allocate memory for Adapter output. */
354 ret = snprintf(name, RTE_RING_NAMESIZE,
355 RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
356 dev->data->dev_id, q_id);
357 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
358 rte_bbdev_log(ERR,
359 "Creating queue name for device %u queue %u failed",
360 dev->data->dev_id, q_id);
361 return -ENAMETOOLONG;
362 }
363 q->adapter_output = rte_zmalloc_socket(NULL,
364 ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
365 RTE_CACHE_LINE_SIZE, queue_conf->socket);
366 if (q->adapter_output == NULL) {
367 rte_bbdev_log(ERR,
368 "Failed to allocate queue memory for %s", name);
369 goto free_q;
370 }
371
372 /* Create ring for packets awaiting to be dequeued. */
373 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
374 dev->data->dev_id, q_id);
375 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
376 rte_bbdev_log(ERR,
377 "Creating queue name for device %u queue %u failed",
378 dev->data->dev_id, q_id);
379 return -ENAMETOOLONG;
380 }
381 q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
382 queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
383 if (q->processed_pkts == NULL) {
384 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
385 goto free_q;
386 }
387
388 q->type = queue_conf->op_type;
389
390 dev->data->queues[q_id].queue_private = q;
391 rte_bbdev_log_debug("setup device queue %s", name);
392 return 0;
393
394 free_q:
395 rte_ring_free(q->processed_pkts);
396 rte_free(q->enc_out);
397 rte_free(q->enc_in);
398 rte_free(q->ag);
399 rte_free(q->code_block);
400 rte_free(q->deint_input);
401 rte_free(q->deint_output);
402 rte_free(q->adapter_output);
403 rte_free(q);
404 return -EFAULT;
405 }
406
407 static const struct rte_bbdev_ops pmd_ops = {
408 .info_get = info_get,
409 .queue_setup = q_setup,
410 .queue_release = q_release
411 };
412
413 /* Checks if the encoder input buffer is correct.
414 * Returns 0 if it's valid, -1 otherwise.
415 */
416 static inline int
417 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
418 const uint16_t in_length)
419 {
420 if (k_idx < 0) {
421 rte_bbdev_log(ERR, "K Index is invalid");
422 return -1;
423 }
424
425 if (in_length - (k >> 3) < 0) {
426 rte_bbdev_log(ERR,
427 "Mismatch between input length (%u bytes) and K (%u bits)",
428 in_length, k);
429 return -1;
430 }
431
432 if (k > RTE_BBDEV_MAX_CB_SIZE) {
433 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
434 k, RTE_BBDEV_MAX_CB_SIZE);
435 return -1;
436 }
437
438 return 0;
439 }
440
441 /* Checks if the decoder input buffer is correct.
442 * Returns 0 if it's valid, -1 otherwise.
443 */
444 static inline int
445 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
446 {
447 if (k_idx < 0) {
448 rte_bbdev_log(ERR, "K index is invalid");
449 return -1;
450 }
451
452 if (in_length < kw) {
453 rte_bbdev_log(ERR,
454 "Mismatch between input length (%u) and kw (%u)",
455 in_length, kw);
456 return -1;
457 }
458
459 if (kw > RTE_BBDEV_MAX_KW) {
460 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
461 kw, RTE_BBDEV_MAX_KW);
462 return -1;
463 }
464
465 return 0;
466 }
467
468 static inline void
469 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
470 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
471 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
472 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
473 uint16_t in_length, struct rte_bbdev_stats *q_stats)
474 {
475 int ret;
476 int16_t k_idx;
477 uint16_t m;
478 uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
479 uint64_t first_3_bytes = 0;
480 struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
481 struct bblib_crc_request crc_req;
482 struct bblib_crc_response crc_resp;
483 struct bblib_turbo_encoder_request turbo_req;
484 struct bblib_turbo_encoder_response turbo_resp;
485 struct bblib_rate_match_dl_request rm_req;
486 struct bblib_rate_match_dl_response rm_resp;
487 #ifdef RTE_BBDEV_OFFLOAD_COST
488 uint64_t start_time;
489 #else
490 RTE_SET_USED(q_stats);
491 #endif
492
493 k_idx = compute_idx(k);
494 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
495
496 /* CRC24A (for TB) */
497 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
498 (enc->code_block_mode == 1)) {
499 ret = is_enc_input_valid(k - 24, k_idx, in_length);
500 if (ret != 0) {
501 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
502 return;
503 }
504 crc_req.data = in;
505 crc_req.len = k - 24;
506 /* Check if there is a room for CRC bits if not use
507 * the temporary buffer.
508 */
509 if (mbuf_append(m_in, m_in, 3) == NULL) {
510 rte_memcpy(q->enc_in, in, (k - 24) >> 3);
511 in = q->enc_in;
512 } else {
513 /* Store 3 first bytes of next CB as they will be
514 * overwritten by CRC bytes. If it is the last CB then
515 * there is no point to store 3 next bytes and this
516 * if..else branch will be omitted.
517 */
518 first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
519 }
520
521 crc_resp.data = in;
522 #ifdef RTE_BBDEV_OFFLOAD_COST
523 start_time = rte_rdtsc_precise();
524 #endif
525 /* CRC24A generation */
526 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
527 #ifdef RTE_BBDEV_OFFLOAD_COST
528 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
529 #endif
530 } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
531 /* CRC24B */
532 ret = is_enc_input_valid(k - 24, k_idx, in_length);
533 if (ret != 0) {
534 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
535 return;
536 }
537 crc_req.data = in;
538 crc_req.len = k - 24;
539 /* Check if there is a room for CRC bits if this is the last
540 * CB in TB. If not use temporary buffer.
541 */
542 if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) {
543 rte_memcpy(q->enc_in, in, (k - 24) >> 3);
544 in = q->enc_in;
545 } else if (c - r > 1) {
546 /* Store 3 first bytes of next CB as they will be
547 * overwritten by CRC bytes. If it is the last CB then
548 * there is no point to store 3 next bytes and this
549 * if..else branch will be omitted.
550 */
551 first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
552 }
553
554 crc_resp.data = in;
555 #ifdef RTE_BBDEV_OFFLOAD_COST
556 start_time = rte_rdtsc_precise();
557 #endif
558 /* CRC24B generation */
559 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
560 #ifdef RTE_BBDEV_OFFLOAD_COST
561 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
562 #endif
563 } else {
564 ret = is_enc_input_valid(k, k_idx, in_length);
565 if (ret != 0) {
566 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
567 return;
568 }
569 }
570
571 /* Turbo encoder */
572
573 /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
574 * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
575 * So dst_data's length should be 3*(k/8) + 3 bytes.
576 * In Rate-matching bypass case outputs pointers passed to encoder
577 * (out0, out1 and out2) can directly point to addresses of output from
578 * turbo_enc entity.
579 */
580 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
581 out0 = q->enc_out;
582 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
583 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
584 } else {
585 out0 = (uint8_t *)mbuf_append(m_out_head, m_out,
586 (k >> 3) * 3 + 2);
587 if (out0 == NULL) {
588 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
589 rte_bbdev_log(ERR,
590 "Too little space in output mbuf");
591 return;
592 }
593 enc->output.length += (k >> 3) * 3 + 2;
594 /* rte_bbdev_op_data.offset can be different than the
595 * offset of the appended bytes
596 */
597 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
598 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
599 out_offset + (k >> 3) + 1);
600 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
601 out_offset + 2 * ((k >> 3) + 1));
602 }
603
604 turbo_req.case_id = k_idx;
605 turbo_req.input_win = in;
606 turbo_req.length = k >> 3;
607 turbo_resp.output_win_0 = out0;
608 turbo_resp.output_win_1 = out1;
609 turbo_resp.output_win_2 = out2;
610
611 #ifdef RTE_BBDEV_OFFLOAD_COST
612 start_time = rte_rdtsc_precise();
613 #endif
614 /* Turbo encoding */
615 if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
616 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
617 rte_bbdev_log(ERR, "Turbo Encoder failed");
618 return;
619 }
620 #ifdef RTE_BBDEV_OFFLOAD_COST
621 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
622 #endif
623
624 /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
625 if (first_3_bytes != 0)
626 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
627
628 /* Rate-matching */
629 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
630 uint8_t mask_id;
631 /* Integer round up division by 8 */
632 uint16_t out_len = (e + 7) >> 3;
633 /* The mask array is indexed using E%8. E is an even number so
634 * there are only 4 possible values.
635 */
636 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
637
638 /* get output data starting address */
639 rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
640 if (rm_out == NULL) {
641 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
642 rte_bbdev_log(ERR,
643 "Too little space in output mbuf");
644 return;
645 }
646 /* rte_bbdev_op_data.offset can be different than the offset
647 * of the appended bytes
648 */
649 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
650
651 /* index of current code block */
652 rm_req.r = r;
653 /* total number of code block */
654 rm_req.C = c;
655 /* For DL - 1, UL - 0 */
656 rm_req.direction = 1;
657 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
658 * and MDL_HARQ are used for Ncb calculation. As Ncb is already
659 * known we can adjust those parameters
660 */
661 rm_req.Nsoft = ncb * rm_req.C;
662 rm_req.KMIMO = 1;
663 rm_req.MDL_HARQ = 1;
664 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
665 * are used for E calculation. As E is already known we can
666 * adjust those parameters
667 */
668 rm_req.NL = e;
669 rm_req.Qm = 1;
670 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
671
672 rm_req.rvidx = enc->rv_index;
673 rm_req.Kidx = k_idx - 1;
674 rm_req.nLen = k + 4;
675 rm_req.tin0 = out0;
676 rm_req.tin1 = out1;
677 rm_req.tin2 = out2;
678 rm_resp.output = rm_out;
679 rm_resp.OutputLen = out_len;
680 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
681 rm_req.bypass_rvidx = 1;
682 else
683 rm_req.bypass_rvidx = 0;
684
685 #ifdef RTE_BBDEV_OFFLOAD_COST
686 start_time = rte_rdtsc_precise();
687 #endif
688 /* Rate-Matching */
689 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
690 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
691 rte_bbdev_log(ERR, "Rate matching failed");
692 return;
693 }
694 #ifdef RTE_BBDEV_OFFLOAD_COST
695 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
696 #endif
697
698 /* SW fills an entire last byte even if E%8 != 0. Clear the
699 * superfluous data bits for consistency with HW device.
700 */
701 mask_id = (e & 7) >> 1;
702 rm_out[out_len - 1] &= mask_out[mask_id];
703 enc->output.length += rm_resp.OutputLen;
704 } else {
705 /* Rate matching is bypassed */
706
707 /* Completing last byte of out0 (where 4 tail bits are stored)
708 * by moving first 4 bits from out1
709 */
710 tmp_out = (uint8_t *) --out1;
711 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
712 tmp_out++;
713 /* Shifting out1 data by 4 bits to the left */
714 for (m = 0; m < k >> 3; ++m) {
715 uint8_t *first = tmp_out;
716 uint8_t second = *(tmp_out + 1);
717 *first = (*first << 4) | ((second & 0xF0) >> 4);
718 tmp_out++;
719 }
720 /* Shifting out2 data by 8 bits to the left */
721 for (m = 0; m < (k >> 3) + 1; ++m) {
722 *tmp_out = *(tmp_out + 1);
723 tmp_out++;
724 }
725 *tmp_out = 0;
726 }
727 }
728
729 static inline void
730 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
731 struct rte_bbdev_stats *queue_stats)
732 {
733 uint8_t c, r, crc24_bits = 0;
734 uint16_t k, ncb;
735 uint32_t e;
736 struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
737 uint16_t in_offset = enc->input.offset;
738 uint16_t out_offset = enc->output.offset;
739 struct rte_mbuf *m_in = enc->input.data;
740 struct rte_mbuf *m_out = enc->output.data;
741 struct rte_mbuf *m_out_head = enc->output.data;
742 uint32_t in_length, mbuf_total_left = enc->input.length;
743 uint16_t seg_total_left;
744
745 /* Clear op status */
746 op->status = 0;
747
748 if (mbuf_total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
749 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
750 mbuf_total_left, RTE_BBDEV_MAX_TB_SIZE);
751 op->status = 1 << RTE_BBDEV_DATA_ERROR;
752 return;
753 }
754
755 if (m_in == NULL || m_out == NULL) {
756 rte_bbdev_log(ERR, "Invalid mbuf pointer");
757 op->status = 1 << RTE_BBDEV_DATA_ERROR;
758 return;
759 }
760
761 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
762 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
763 crc24_bits = 24;
764
765 if (enc->code_block_mode == 0) { /* For Transport Block mode */
766 c = enc->tb_params.c;
767 r = enc->tb_params.r;
768 } else {/* For Code Block mode */
769 c = 1;
770 r = 0;
771 }
772
773 while (mbuf_total_left > 0 && r < c) {
774
775 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
776
777 if (enc->code_block_mode == 0) {
778 k = (r < enc->tb_params.c_neg) ?
779 enc->tb_params.k_neg : enc->tb_params.k_pos;
780 ncb = (r < enc->tb_params.c_neg) ?
781 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
782 e = (r < enc->tb_params.cab) ?
783 enc->tb_params.ea : enc->tb_params.eb;
784 } else {
785 k = enc->cb_params.k;
786 ncb = enc->cb_params.ncb;
787 e = enc->cb_params.e;
788 }
789
790 process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head,
791 m_out, in_offset, out_offset, seg_total_left,
792 queue_stats);
793 /* Update total_left */
794 in_length = ((k - crc24_bits) >> 3);
795 mbuf_total_left -= in_length;
796 /* Update offsets for next CBs (if exist) */
797 in_offset += (k - crc24_bits) >> 3;
798 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
799 out_offset += e >> 3;
800 else
801 out_offset += (k >> 3) * 3 + 2;
802
803 /* Update offsets */
804 if (seg_total_left == in_length) {
805 /* Go to the next mbuf */
806 m_in = m_in->next;
807 m_out = m_out->next;
808 in_offset = 0;
809 out_offset = 0;
810 }
811 r++;
812 }
813
814 /* check if all input data was processed */
815 if (mbuf_total_left != 0) {
816 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
817 rte_bbdev_log(ERR,
818 "Mismatch between mbuf length and included CBs sizes");
819 }
820 }
821
822 static inline uint16_t
823 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
824 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
825 {
826 uint16_t i;
827 #ifdef RTE_BBDEV_OFFLOAD_COST
828 queue_stats->acc_offload_cycles = 0;
829 #endif
830
831 for (i = 0; i < nb_ops; ++i)
832 enqueue_enc_one_op(q, ops[i], queue_stats);
833
834 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
835 NULL);
836 }
837
838 static inline void
839 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
840 uint16_t ncb)
841 {
842 uint16_t d = k + 4;
843 uint16_t kpi = ncb / 3;
844 uint16_t nd = kpi - d;
845
846 rte_memcpy(&out[nd], in, d);
847 rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
848 rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
849 }
850
851 static inline void
852 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
853 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
854 struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
855 uint16_t in_offset, uint16_t out_offset, bool check_crc_24b,
856 uint16_t crc24_overlap, uint16_t in_length,
857 struct rte_bbdev_stats *q_stats)
858 {
859 int ret;
860 int32_t k_idx;
861 int32_t iter_cnt;
862 uint8_t *in, *out, *adapter_input;
863 int32_t ncb, ncb_without_null;
864 struct bblib_turbo_adapter_ul_response adapter_resp;
865 struct bblib_turbo_adapter_ul_request adapter_req;
866 struct bblib_turbo_decoder_request turbo_req;
867 struct bblib_turbo_decoder_response turbo_resp;
868 struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
869 #ifdef RTE_BBDEV_OFFLOAD_COST
870 uint64_t start_time;
871 #else
872 RTE_SET_USED(q_stats);
873 #endif
874
875 k_idx = compute_idx(k);
876
877 ret = is_dec_input_valid(k_idx, kw, in_length);
878 if (ret != 0) {
879 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
880 return;
881 }
882
883 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
884 ncb = kw;
885 ncb_without_null = (k + 4) * 3;
886
887 if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
888 struct bblib_deinterleave_ul_request deint_req;
889 struct bblib_deinterleave_ul_response deint_resp;
890
891 deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
892 deint_req.pharqbuffer = in;
893 deint_req.ncb = ncb;
894 deint_resp.pinteleavebuffer = q->deint_output;
895
896 #ifdef RTE_BBDEV_OFFLOAD_COST
897 start_time = rte_rdtsc_precise();
898 #endif
899 bblib_deinterleave_ul(&deint_req, &deint_resp);
900 #ifdef RTE_BBDEV_OFFLOAD_COST
901 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
902 #endif
903 } else
904 move_padding_bytes(in, q->deint_output, k, ncb);
905
906 adapter_input = q->deint_output;
907
908 if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
909 adapter_req.isinverted = 1;
910 else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
911 adapter_req.isinverted = 0;
912 else {
913 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
914 rte_bbdev_log(ERR, "LLR format wasn't specified");
915 return;
916 }
917
918 adapter_req.ncb = ncb_without_null;
919 adapter_req.pinteleavebuffer = adapter_input;
920 adapter_resp.pharqout = q->adapter_output;
921
922 #ifdef RTE_BBDEV_OFFLOAD_COST
923 start_time = rte_rdtsc_precise();
924 #endif
925 /* Turbo decode adaptation */
926 bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
927 #ifdef RTE_BBDEV_OFFLOAD_COST
928 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
929 #endif
930
931 out = (uint8_t *)mbuf_append(m_out_head, m_out,
932 ((k - crc24_overlap) >> 3));
933 if (out == NULL) {
934 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
935 rte_bbdev_log(ERR, "Too little space in output mbuf");
936 return;
937 }
938 /* rte_bbdev_op_data.offset can be different than the offset of the
939 * appended bytes
940 */
941 out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
942 if (check_crc_24b)
943 turbo_req.c = c + 1;
944 else
945 turbo_req.c = c;
946 turbo_req.input = (int8_t *)q->adapter_output;
947 turbo_req.k = k;
948 turbo_req.k_idx = k_idx;
949 turbo_req.max_iter_num = dec->iter_max;
950 turbo_req.early_term_disable = !check_bit(dec->op_flags,
951 RTE_BBDEV_TURBO_EARLY_TERMINATION);
952 turbo_resp.ag_buf = q->ag;
953 turbo_resp.cb_buf = q->code_block;
954 turbo_resp.output = out;
955
956 #ifdef RTE_BBDEV_OFFLOAD_COST
957 start_time = rte_rdtsc_precise();
958 #endif
959 /* Turbo decode */
960 iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
961 #ifdef RTE_BBDEV_OFFLOAD_COST
962 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
963 #endif
964 dec->hard_output.length += (k >> 3);
965
966 if (iter_cnt > 0) {
967 /* Temporary solution for returned iter_count from SDK */
968 iter_cnt = (iter_cnt - 1) >> 1;
969 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
970 } else {
971 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
972 rte_bbdev_log(ERR, "Turbo Decoder failed");
973 return;
974 }
975 }
976
977 static inline void
978 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
979 struct rte_bbdev_stats *queue_stats)
980 {
981 uint8_t c, r = 0;
982 uint16_t kw, k = 0;
983 uint16_t crc24_overlap = 0;
984 struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
985 struct rte_mbuf *m_in = dec->input.data;
986 struct rte_mbuf *m_out = dec->hard_output.data;
987 struct rte_mbuf *m_out_head = dec->hard_output.data;
988 uint16_t in_offset = dec->input.offset;
989 uint16_t out_offset = dec->hard_output.offset;
990 uint32_t mbuf_total_left = dec->input.length;
991 uint16_t seg_total_left;
992
993 /* Clear op status */
994 op->status = 0;
995
996 if (m_in == NULL || m_out == NULL) {
997 rte_bbdev_log(ERR, "Invalid mbuf pointer");
998 op->status = 1 << RTE_BBDEV_DATA_ERROR;
999 return;
1000 }
1001
1002 if (dec->code_block_mode == 0) { /* For Transport Block mode */
1003 c = dec->tb_params.c;
1004 } else { /* For Code Block mode */
1005 k = dec->cb_params.k;
1006 c = 1;
1007 }
1008
1009 if ((c > 1) && !check_bit(dec->op_flags,
1010 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1011 crc24_overlap = 24;
1012
1013 while (mbuf_total_left > 0) {
1014 if (dec->code_block_mode == 0)
1015 k = (r < dec->tb_params.c_neg) ?
1016 dec->tb_params.k_neg : dec->tb_params.k_pos;
1017
1018 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1019
1020 /* Calculates circular buffer size (Kw).
1021 * According to 3gpp 36.212 section 5.1.4.2
1022 * Kw = 3 * Kpi,
1023 * where:
1024 * Kpi = nCol * nRow
1025 * where nCol is 32 and nRow can be calculated from:
1026 * D =< nCol * nRow
1027 * where D is the size of each output from turbo encoder block
1028 * (k + 4).
1029 */
1030 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
1031
1032 process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out,
1033 in_offset, out_offset, check_bit(dec->op_flags,
1034 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1035 seg_total_left, queue_stats);
1036 /* To keep CRC24 attached to end of Code block, use
1037 * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1038 * removed by default once verified.
1039 */
1040
1041 mbuf_total_left -= kw;
1042
1043 /* Update offsets */
1044 if (seg_total_left == kw) {
1045 /* Go to the next mbuf */
1046 m_in = m_in->next;
1047 m_out = m_out->next;
1048 in_offset = 0;
1049 out_offset = 0;
1050 } else {
1051 /* Update offsets for next CBs (if exist) */
1052 in_offset += kw;
1053 out_offset += ((k - crc24_overlap) >> 3);
1054 }
1055 r++;
1056 }
1057 if (mbuf_total_left != 0) {
1058 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1059 rte_bbdev_log(ERR,
1060 "Mismatch between mbuf length and included Circular buffer sizes");
1061 }
1062 }
1063
1064 static inline uint16_t
1065 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1066 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1067 {
1068 uint16_t i;
1069 #ifdef RTE_BBDEV_OFFLOAD_COST
1070 queue_stats->acc_offload_cycles = 0;
1071 #endif
1072
1073 for (i = 0; i < nb_ops; ++i)
1074 enqueue_dec_one_op(q, ops[i], queue_stats);
1075
1076 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1077 NULL);
1078 }
1079
1080 /* Enqueue burst */
1081 static uint16_t
1082 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1083 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1084 {
1085 void *queue = q_data->queue_private;
1086 struct turbo_sw_queue *q = queue;
1087 uint16_t nb_enqueued = 0;
1088
1089 nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1090
1091 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1092 q_data->queue_stats.enqueued_count += nb_enqueued;
1093
1094 return nb_enqueued;
1095 }
1096
1097 /* Enqueue burst */
1098 static uint16_t
1099 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1100 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1101 {
1102 void *queue = q_data->queue_private;
1103 struct turbo_sw_queue *q = queue;
1104 uint16_t nb_enqueued = 0;
1105
1106 nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1107
1108 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1109 q_data->queue_stats.enqueued_count += nb_enqueued;
1110
1111 return nb_enqueued;
1112 }
1113
1114 /* Dequeue decode burst */
1115 static uint16_t
1116 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1117 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1118 {
1119 struct turbo_sw_queue *q = q_data->queue_private;
1120 uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1121 (void **)ops, nb_ops, NULL);
1122 q_data->queue_stats.dequeued_count += nb_dequeued;
1123
1124 return nb_dequeued;
1125 }
1126
1127 /* Dequeue encode burst */
1128 static uint16_t
1129 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1130 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1131 {
1132 struct turbo_sw_queue *q = q_data->queue_private;
1133 uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1134 (void **)ops, nb_ops, NULL);
1135 q_data->queue_stats.dequeued_count += nb_dequeued;
1136
1137 return nb_dequeued;
1138 }
1139
1140 /* Parse 16bit integer from string argument */
1141 static inline int
1142 parse_u16_arg(const char *key, const char *value, void *extra_args)
1143 {
1144 uint16_t *u16 = extra_args;
1145 unsigned int long result;
1146
1147 if ((value == NULL) || (extra_args == NULL))
1148 return -EINVAL;
1149 errno = 0;
1150 result = strtoul(value, NULL, 0);
1151 if ((result >= (1 << 16)) || (errno != 0)) {
1152 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1153 return -ERANGE;
1154 }
1155 *u16 = (uint16_t)result;
1156 return 0;
1157 }
1158
1159 /* Parse parameters used to create device */
1160 static int
1161 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1162 {
1163 struct rte_kvargs *kvlist = NULL;
1164 int ret = 0;
1165
1166 if (params == NULL)
1167 return -EINVAL;
1168 if (input_args) {
1169 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1170 if (kvlist == NULL)
1171 return -EFAULT;
1172
1173 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1174 &parse_u16_arg, &params->queues_num);
1175 if (ret < 0)
1176 goto exit;
1177
1178 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1179 &parse_u16_arg, &params->socket_id);
1180 if (ret < 0)
1181 goto exit;
1182
1183 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1184 rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1185 RTE_MAX_NUMA_NODES);
1186 goto exit;
1187 }
1188 }
1189
1190 exit:
1191 if (kvlist)
1192 rte_kvargs_free(kvlist);
1193 return ret;
1194 }
1195
1196 /* Create device */
1197 static int
1198 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1199 struct turbo_sw_params *init_params)
1200 {
1201 struct rte_bbdev *bbdev;
1202 const char *name = rte_vdev_device_name(vdev);
1203
1204 bbdev = rte_bbdev_allocate(name);
1205 if (bbdev == NULL)
1206 return -ENODEV;
1207
1208 bbdev->data->dev_private = rte_zmalloc_socket(name,
1209 sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1210 init_params->socket_id);
1211 if (bbdev->data->dev_private == NULL) {
1212 rte_bbdev_release(bbdev);
1213 return -ENOMEM;
1214 }
1215
1216 bbdev->dev_ops = &pmd_ops;
1217 bbdev->device = &vdev->device;
1218 bbdev->data->socket_id = init_params->socket_id;
1219 bbdev->intr_handle = NULL;
1220
1221 /* register rx/tx burst functions for data path */
1222 bbdev->dequeue_enc_ops = dequeue_enc_ops;
1223 bbdev->dequeue_dec_ops = dequeue_dec_ops;
1224 bbdev->enqueue_enc_ops = enqueue_enc_ops;
1225 bbdev->enqueue_dec_ops = enqueue_dec_ops;
1226 ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1227 init_params->queues_num;
1228
1229 return 0;
1230 }
1231
1232 /* Initialise device */
1233 static int
1234 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1235 {
1236 struct turbo_sw_params init_params = {
1237 rte_socket_id(),
1238 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1239 };
1240 const char *name;
1241 const char *input_args;
1242
1243 if (vdev == NULL)
1244 return -EINVAL;
1245
1246 name = rte_vdev_device_name(vdev);
1247 if (name == NULL)
1248 return -EINVAL;
1249 input_args = rte_vdev_device_args(vdev);
1250 parse_turbo_sw_params(&init_params, input_args);
1251
1252 rte_bbdev_log_debug(
1253 "Initialising %s on NUMA node %d with max queues: %d\n",
1254 name, init_params.socket_id, init_params.queues_num);
1255
1256 return turbo_sw_bbdev_create(vdev, &init_params);
1257 }
1258
1259 /* Uninitialise device */
1260 static int
1261 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1262 {
1263 struct rte_bbdev *bbdev;
1264 const char *name;
1265
1266 if (vdev == NULL)
1267 return -EINVAL;
1268
1269 name = rte_vdev_device_name(vdev);
1270 if (name == NULL)
1271 return -EINVAL;
1272
1273 bbdev = rte_bbdev_get_named_dev(name);
1274 if (bbdev == NULL)
1275 return -EINVAL;
1276
1277 rte_free(bbdev->data->dev_private);
1278
1279 return rte_bbdev_release(bbdev);
1280 }
1281
1282 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1283 .probe = turbo_sw_bbdev_probe,
1284 .remove = turbo_sw_bbdev_remove
1285 };
1286
1287 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1288 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1289 TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1290 TURBO_SW_SOCKET_ID_ARG"=<int>");
1291 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
1292
1293 RTE_INIT(turbo_sw_bbdev_init_log)
1294 {
1295 bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1296 if (bbdev_turbo_sw_logtype >= 0)
1297 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1298 }