]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
3 */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13
14 #include <rte_bbdev.h>
15 #include <rte_bbdev_pmd.h>
16
17 #include <phy_turbo.h>
18 #include <phy_crc.h>
19 #include <phy_rate_match.h>
20 #include <divide.h>
21
22 #define DRIVER_NAME baseband_turbo_sw
23
24 /* Turbo SW PMD logging ID */
25 static int bbdev_turbo_sw_logtype;
26
27 /* Helper macro for logging */
28 #define rte_bbdev_log(level, fmt, ...) \
29 rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
30 ##__VA_ARGS__)
31
32 #define rte_bbdev_log_debug(fmt, ...) \
33 rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
34 ##__VA_ARGS__)
35
36 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48)
37 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
38 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48)
39
40 /* private data structure */
41 struct bbdev_private {
42 unsigned int max_nb_queues; /**< Max number of queues */
43 };
44
45 /* Initialisation params structure that can be used by Turbo SW driver */
46 struct turbo_sw_params {
47 int socket_id; /*< Turbo SW device socket */
48 uint16_t queues_num; /*< Turbo SW device queues number */
49 };
50
51 /* Accecptable params for Turbo SW devices */
52 #define TURBO_SW_MAX_NB_QUEUES_ARG "max_nb_queues"
53 #define TURBO_SW_SOCKET_ID_ARG "socket_id"
54
55 static const char * const turbo_sw_valid_params[] = {
56 TURBO_SW_MAX_NB_QUEUES_ARG,
57 TURBO_SW_SOCKET_ID_ARG
58 };
59
60 /* queue */
61 struct turbo_sw_queue {
62 /* Ring for processed (encoded/decoded) operations which are ready to
63 * be dequeued.
64 */
65 struct rte_ring *processed_pkts;
66 /* Stores input for turbo encoder (used when CRC attachment is
67 * performed
68 */
69 uint8_t *enc_in;
70 /* Stores output from turbo encoder */
71 uint8_t *enc_out;
72 /* Alpha gamma buf for bblib_turbo_decoder() function */
73 int8_t *ag;
74 /* Temp buf for bblib_turbo_decoder() function */
75 uint16_t *code_block;
76 /* Input buf for bblib_rate_dematching_lte() function */
77 uint8_t *deint_input;
78 /* Output buf for bblib_rate_dematching_lte() function */
79 uint8_t *deint_output;
80 /* Output buf for bblib_turbodec_adapter_lte() function */
81 uint8_t *adapter_output;
82 /* Operation type of this queue */
83 enum rte_bbdev_op_type type;
84 } __rte_cache_aligned;
85
86 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
87 static inline int32_t
88 compute_idx(uint16_t k)
89 {
90 int32_t result = 0;
91
92 if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
93 return -1;
94
95 if (k > 2048) {
96 if ((k - 2048) % 64 != 0)
97 result = -1;
98
99 result = 124 + (k - 2048) / 64;
100 } else if (k <= 512) {
101 if ((k - 40) % 8 != 0)
102 result = -1;
103
104 result = (k - 40) / 8 + 1;
105 } else if (k <= 1024) {
106 if ((k - 512) % 16 != 0)
107 result = -1;
108
109 result = 60 + (k - 512) / 16;
110 } else { /* 1024 < k <= 2048 */
111 if ((k - 1024) % 32 != 0)
112 result = -1;
113
114 result = 92 + (k - 1024) / 32;
115 }
116
117 return result;
118 }
119
120 /* Read flag value 0/1 from bitmap */
121 static inline bool
122 check_bit(uint32_t bitmap, uint32_t bitmask)
123 {
124 return bitmap & bitmask;
125 }
126
127 /* Get device info */
128 static void
129 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
130 {
131 struct bbdev_private *internals = dev->data->dev_private;
132
133 static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
134 {
135 .type = RTE_BBDEV_OP_TURBO_DEC,
136 .cap.turbo_dec = {
137 .capability_flags =
138 RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
139 RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
140 RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
141 RTE_BBDEV_TURBO_CRC_TYPE_24B |
142 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
143 RTE_BBDEV_TURBO_EARLY_TERMINATION,
144 .max_llr_modulus = 16,
145 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
146 .num_buffers_hard_out =
147 RTE_BBDEV_MAX_CODE_BLOCKS,
148 .num_buffers_soft_out = 0,
149 }
150 },
151 {
152 .type = RTE_BBDEV_OP_TURBO_ENC,
153 .cap.turbo_enc = {
154 .capability_flags =
155 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
156 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
157 RTE_BBDEV_TURBO_RATE_MATCH |
158 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
159 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
160 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
161 }
162 },
163 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
164 };
165
166 static struct rte_bbdev_queue_conf default_queue_conf = {
167 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
168 };
169
170 static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
171
172 default_queue_conf.socket = dev->data->socket_id;
173
174 dev_info->driver_name = RTE_STR(DRIVER_NAME);
175 dev_info->max_num_queues = internals->max_nb_queues;
176 dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
177 dev_info->hardware_accelerated = false;
178 dev_info->max_dl_queue_priority = 0;
179 dev_info->max_ul_queue_priority = 0;
180 dev_info->default_queue_conf = default_queue_conf;
181 dev_info->capabilities = bbdev_capabilities;
182 dev_info->cpu_flag_reqs = &cpu_flag;
183 dev_info->min_alignment = 64;
184
185 rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
186 }
187
188 /* Release queue */
189 static int
190 q_release(struct rte_bbdev *dev, uint16_t q_id)
191 {
192 struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
193
194 if (q != NULL) {
195 rte_ring_free(q->processed_pkts);
196 rte_free(q->enc_out);
197 rte_free(q->enc_in);
198 rte_free(q->ag);
199 rte_free(q->code_block);
200 rte_free(q->deint_input);
201 rte_free(q->deint_output);
202 rte_free(q->adapter_output);
203 rte_free(q);
204 dev->data->queues[q_id].queue_private = NULL;
205 }
206
207 rte_bbdev_log_debug("released device queue %u:%u",
208 dev->data->dev_id, q_id);
209 return 0;
210 }
211
212 /* Setup a queue */
213 static int
214 q_setup(struct rte_bbdev *dev, uint16_t q_id,
215 const struct rte_bbdev_queue_conf *queue_conf)
216 {
217 int ret;
218 struct turbo_sw_queue *q;
219 char name[RTE_RING_NAMESIZE];
220
221 /* Allocate the queue data structure. */
222 q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
223 RTE_CACHE_LINE_SIZE, queue_conf->socket);
224 if (q == NULL) {
225 rte_bbdev_log(ERR, "Failed to allocate queue memory");
226 return -ENOMEM;
227 }
228
229 /* Allocate memory for encoder output. */
230 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
231 dev->data->dev_id, q_id);
232 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
233 rte_bbdev_log(ERR,
234 "Creating queue name for device %u queue %u failed",
235 dev->data->dev_id, q_id);
236 return -ENAMETOOLONG;
237 }
238 q->enc_out = rte_zmalloc_socket(name,
239 ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
240 sizeof(*q->enc_out) * 3,
241 RTE_CACHE_LINE_SIZE, queue_conf->socket);
242 if (q->enc_out == NULL) {
243 rte_bbdev_log(ERR,
244 "Failed to allocate queue memory for %s", name);
245 goto free_q;
246 }
247
248 /* Allocate memory for rate matching output. */
249 ret = snprintf(name, RTE_RING_NAMESIZE,
250 RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
251 q_id);
252 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
253 rte_bbdev_log(ERR,
254 "Creating queue name for device %u queue %u failed",
255 dev->data->dev_id, q_id);
256 return -ENAMETOOLONG;
257 }
258 q->enc_in = rte_zmalloc_socket(name,
259 (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
260 RTE_CACHE_LINE_SIZE, queue_conf->socket);
261 if (q->enc_in == NULL) {
262 rte_bbdev_log(ERR,
263 "Failed to allocate queue memory for %s", name);
264 goto free_q;
265 }
266
267 /* Allocate memory for Aplha Gamma temp buffer. */
268 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
269 dev->data->dev_id, q_id);
270 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
271 rte_bbdev_log(ERR,
272 "Creating queue name for device %u queue %u failed",
273 dev->data->dev_id, q_id);
274 return -ENAMETOOLONG;
275 }
276 q->ag = rte_zmalloc_socket(name,
277 RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
278 RTE_CACHE_LINE_SIZE, queue_conf->socket);
279 if (q->ag == NULL) {
280 rte_bbdev_log(ERR,
281 "Failed to allocate queue memory for %s", name);
282 goto free_q;
283 }
284
285 /* Allocate memory for code block temp buffer. */
286 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
287 dev->data->dev_id, q_id);
288 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
289 rte_bbdev_log(ERR,
290 "Creating queue name for device %u queue %u failed",
291 dev->data->dev_id, q_id);
292 return -ENAMETOOLONG;
293 }
294 q->code_block = rte_zmalloc_socket(name,
295 RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block),
296 RTE_CACHE_LINE_SIZE, queue_conf->socket);
297 if (q->code_block == NULL) {
298 rte_bbdev_log(ERR,
299 "Failed to allocate queue memory for %s", name);
300 goto free_q;
301 }
302
303 /* Allocate memory for Deinterleaver input. */
304 ret = snprintf(name, RTE_RING_NAMESIZE,
305 RTE_STR(DRIVER_NAME)"_de_i%u:%u",
306 dev->data->dev_id, q_id);
307 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
308 rte_bbdev_log(ERR,
309 "Creating queue name for device %u queue %u failed",
310 dev->data->dev_id, q_id);
311 return -ENAMETOOLONG;
312 }
313 q->deint_input = rte_zmalloc_socket(name,
314 DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
315 RTE_CACHE_LINE_SIZE, queue_conf->socket);
316 if (q->deint_input == NULL) {
317 rte_bbdev_log(ERR,
318 "Failed to allocate queue memory for %s", name);
319 goto free_q;
320 }
321
322 /* Allocate memory for Deinterleaver output. */
323 ret = snprintf(name, RTE_RING_NAMESIZE,
324 RTE_STR(DRIVER_NAME)"_de_o%u:%u",
325 dev->data->dev_id, q_id);
326 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
327 rte_bbdev_log(ERR,
328 "Creating queue name for device %u queue %u failed",
329 dev->data->dev_id, q_id);
330 return -ENAMETOOLONG;
331 }
332 q->deint_output = rte_zmalloc_socket(NULL,
333 DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
334 RTE_CACHE_LINE_SIZE, queue_conf->socket);
335 if (q->deint_output == NULL) {
336 rte_bbdev_log(ERR,
337 "Failed to allocate queue memory for %s", name);
338 goto free_q;
339 }
340
341 /* Allocate memory for Adapter output. */
342 ret = snprintf(name, RTE_RING_NAMESIZE,
343 RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
344 dev->data->dev_id, q_id);
345 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
346 rte_bbdev_log(ERR,
347 "Creating queue name for device %u queue %u failed",
348 dev->data->dev_id, q_id);
349 return -ENAMETOOLONG;
350 }
351 q->adapter_output = rte_zmalloc_socket(NULL,
352 ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
353 RTE_CACHE_LINE_SIZE, queue_conf->socket);
354 if (q->adapter_output == NULL) {
355 rte_bbdev_log(ERR,
356 "Failed to allocate queue memory for %s", name);
357 goto free_q;
358 }
359
360 /* Create ring for packets awaiting to be dequeued. */
361 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
362 dev->data->dev_id, q_id);
363 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
364 rte_bbdev_log(ERR,
365 "Creating queue name for device %u queue %u failed",
366 dev->data->dev_id, q_id);
367 return -ENAMETOOLONG;
368 }
369 q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
370 queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
371 if (q->processed_pkts == NULL) {
372 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
373 goto free_q;
374 }
375
376 q->type = queue_conf->op_type;
377
378 dev->data->queues[q_id].queue_private = q;
379 rte_bbdev_log_debug("setup device queue %s", name);
380 return 0;
381
382 free_q:
383 rte_ring_free(q->processed_pkts);
384 rte_free(q->enc_out);
385 rte_free(q->enc_in);
386 rte_free(q->ag);
387 rte_free(q->code_block);
388 rte_free(q->deint_input);
389 rte_free(q->deint_output);
390 rte_free(q->adapter_output);
391 rte_free(q);
392 return -EFAULT;
393 }
394
395 static const struct rte_bbdev_ops pmd_ops = {
396 .info_get = info_get,
397 .queue_setup = q_setup,
398 .queue_release = q_release
399 };
400
401 /* Checks if the encoder input buffer is correct.
402 * Returns 0 if it's valid, -1 otherwise.
403 */
404 static inline int
405 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
406 const uint16_t in_length)
407 {
408 if (k_idx < 0) {
409 rte_bbdev_log(ERR, "K Index is invalid");
410 return -1;
411 }
412
413 if (in_length - (k >> 3) < 0) {
414 rte_bbdev_log(ERR,
415 "Mismatch between input length (%u bytes) and K (%u bits)",
416 in_length, k);
417 return -1;
418 }
419
420 if (k > RTE_BBDEV_MAX_CB_SIZE) {
421 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
422 k, RTE_BBDEV_MAX_CB_SIZE);
423 return -1;
424 }
425
426 return 0;
427 }
428
429 /* Checks if the decoder input buffer is correct.
430 * Returns 0 if it's valid, -1 otherwise.
431 */
432 static inline int
433 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
434 {
435 if (k_idx < 0) {
436 rte_bbdev_log(ERR, "K index is invalid");
437 return -1;
438 }
439
440 if (in_length - kw < 0) {
441 rte_bbdev_log(ERR,
442 "Mismatch between input length (%u) and kw (%u)",
443 in_length, kw);
444 return -1;
445 }
446
447 if (kw > RTE_BBDEV_MAX_KW) {
448 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
449 kw, RTE_BBDEV_MAX_KW);
450 return -1;
451 }
452
453 return 0;
454 }
455
456 static inline void
457 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
458 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
459 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
460 uint16_t in_offset, uint16_t out_offset, uint16_t total_left,
461 struct rte_bbdev_stats *q_stats)
462 {
463 int ret;
464 int16_t k_idx;
465 uint16_t m;
466 uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
467 uint64_t first_3_bytes = 0;
468 struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
469 struct bblib_crc_request crc_req;
470 struct bblib_crc_response crc_resp;
471 struct bblib_turbo_encoder_request turbo_req;
472 struct bblib_turbo_encoder_response turbo_resp;
473 struct bblib_rate_match_dl_request rm_req;
474 struct bblib_rate_match_dl_response rm_resp;
475 #ifdef RTE_BBDEV_OFFLOAD_COST
476 uint64_t start_time;
477 #else
478 RTE_SET_USED(q_stats);
479 #endif
480
481 k_idx = compute_idx(k);
482 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
483
484 /* CRC24A (for TB) */
485 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
486 (enc->code_block_mode == 1)) {
487 ret = is_enc_input_valid(k - 24, k_idx, total_left);
488 if (ret != 0) {
489 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
490 return;
491 }
492 crc_req.data = in;
493 crc_req.len = k - 24;
494 /* Check if there is a room for CRC bits if not use
495 * the temporary buffer.
496 */
497 if (rte_pktmbuf_append(m_in, 3) == NULL) {
498 rte_memcpy(q->enc_in, in, (k - 24) >> 3);
499 in = q->enc_in;
500 } else {
501 /* Store 3 first bytes of next CB as they will be
502 * overwritten by CRC bytes. If it is the last CB then
503 * there is no point to store 3 next bytes and this
504 * if..else branch will be omitted.
505 */
506 first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
507 }
508
509 crc_resp.data = in;
510 #ifdef RTE_BBDEV_OFFLOAD_COST
511 start_time = rte_rdtsc_precise();
512 #endif
513 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
514 #ifdef RTE_BBDEV_OFFLOAD_COST
515 q_stats->offload_time += rte_rdtsc_precise() - start_time;
516 #endif
517 } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
518 /* CRC24B */
519 ret = is_enc_input_valid(k - 24, k_idx, total_left);
520 if (ret != 0) {
521 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
522 return;
523 }
524 crc_req.data = in;
525 crc_req.len = k - 24;
526 /* Check if there is a room for CRC bits if this is the last
527 * CB in TB. If not use temporary buffer.
528 */
529 if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) {
530 rte_memcpy(q->enc_in, in, (k - 24) >> 3);
531 in = q->enc_in;
532 } else if (c - r > 1) {
533 /* Store 3 first bytes of next CB as they will be
534 * overwritten by CRC bytes. If it is the last CB then
535 * there is no point to store 3 next bytes and this
536 * if..else branch will be omitted.
537 */
538 first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
539 }
540
541 crc_resp.data = in;
542 #ifdef RTE_BBDEV_OFFLOAD_COST
543 start_time = rte_rdtsc_precise();
544 #endif
545 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
546 #ifdef RTE_BBDEV_OFFLOAD_COST
547 q_stats->offload_time += rte_rdtsc_precise() - start_time;
548 #endif
549 } else {
550 ret = is_enc_input_valid(k, k_idx, total_left);
551 if (ret != 0) {
552 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
553 return;
554 }
555 }
556
557 /* Turbo encoder */
558
559 /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
560 * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
561 * So dst_data's length should be 3*(k/8) + 3 bytes.
562 * In Rate-matching bypass case outputs pointers passed to encoder
563 * (out0, out1 and out2) can directly point to addresses of output from
564 * turbo_enc entity.
565 */
566 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
567 out0 = q->enc_out;
568 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
569 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
570 } else {
571 out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2);
572 if (out0 == NULL) {
573 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
574 rte_bbdev_log(ERR,
575 "Too little space in output mbuf");
576 return;
577 }
578 enc->output.length += (k >> 3) * 3 + 2;
579 /* rte_bbdev_op_data.offset can be different than the
580 * offset of the appended bytes
581 */
582 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
583 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
584 out_offset + (k >> 3) + 1);
585 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
586 out_offset + 2 * ((k >> 3) + 1));
587 }
588
589 turbo_req.case_id = k_idx;
590 turbo_req.input_win = in;
591 turbo_req.length = k >> 3;
592 turbo_resp.output_win_0 = out0;
593 turbo_resp.output_win_1 = out1;
594 turbo_resp.output_win_2 = out2;
595
596 #ifdef RTE_BBDEV_OFFLOAD_COST
597 start_time = rte_rdtsc_precise();
598 #endif
599
600 if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
601 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
602 rte_bbdev_log(ERR, "Turbo Encoder failed");
603 return;
604 }
605
606 #ifdef RTE_BBDEV_OFFLOAD_COST
607 q_stats->offload_time += rte_rdtsc_precise() - start_time;
608 #endif
609
610 /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
611 if (first_3_bytes != 0)
612 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
613
614 /* Rate-matching */
615 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
616 uint8_t mask_id;
617 /* Integer round up division by 8 */
618 uint16_t out_len = (e + 7) >> 3;
619 /* The mask array is indexed using E%8. E is an even number so
620 * there are only 4 possible values.
621 */
622 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
623
624 /* get output data starting address */
625 rm_out = (uint8_t *)rte_pktmbuf_append(m_out, out_len);
626 if (rm_out == NULL) {
627 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
628 rte_bbdev_log(ERR,
629 "Too little space in output mbuf");
630 return;
631 }
632 /* rte_bbdev_op_data.offset can be different than the offset
633 * of the appended bytes
634 */
635 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
636
637 /* index of current code block */
638 rm_req.r = r;
639 /* total number of code block */
640 rm_req.C = c;
641 /* For DL - 1, UL - 0 */
642 rm_req.direction = 1;
643 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
644 * and MDL_HARQ are used for Ncb calculation. As Ncb is already
645 * known we can adjust those parameters
646 */
647 rm_req.Nsoft = ncb * rm_req.C;
648 rm_req.KMIMO = 1;
649 rm_req.MDL_HARQ = 1;
650 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
651 * are used for E calculation. As E is already known we can
652 * adjust those parameters
653 */
654 rm_req.NL = e;
655 rm_req.Qm = 1;
656 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
657
658 rm_req.rvidx = enc->rv_index;
659 rm_req.Kidx = k_idx - 1;
660 rm_req.nLen = k + 4;
661 rm_req.tin0 = out0;
662 rm_req.tin1 = out1;
663 rm_req.tin2 = out2;
664 rm_resp.output = rm_out;
665 rm_resp.OutputLen = out_len;
666 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
667 rm_req.bypass_rvidx = 1;
668 else
669 rm_req.bypass_rvidx = 0;
670
671 #ifdef RTE_BBDEV_OFFLOAD_COST
672 start_time = rte_rdtsc_precise();
673 #endif
674
675 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
676 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
677 rte_bbdev_log(ERR, "Rate matching failed");
678 return;
679 }
680
681 /* SW fills an entire last byte even if E%8 != 0. Clear the
682 * superfluous data bits for consistency with HW device.
683 */
684 mask_id = (e & 7) >> 1;
685 rm_out[out_len - 1] &= mask_out[mask_id];
686
687 #ifdef RTE_BBDEV_OFFLOAD_COST
688 q_stats->offload_time += rte_rdtsc_precise() - start_time;
689 #endif
690
691 enc->output.length += rm_resp.OutputLen;
692 } else {
693 /* Rate matching is bypassed */
694
695 /* Completing last byte of out0 (where 4 tail bits are stored)
696 * by moving first 4 bits from out1
697 */
698 tmp_out = (uint8_t *) --out1;
699 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
700 tmp_out++;
701 /* Shifting out1 data by 4 bits to the left */
702 for (m = 0; m < k >> 3; ++m) {
703 uint8_t *first = tmp_out;
704 uint8_t second = *(tmp_out + 1);
705 *first = (*first << 4) | ((second & 0xF0) >> 4);
706 tmp_out++;
707 }
708 /* Shifting out2 data by 8 bits to the left */
709 for (m = 0; m < (k >> 3) + 1; ++m) {
710 *tmp_out = *(tmp_out + 1);
711 tmp_out++;
712 }
713 *tmp_out = 0;
714 }
715 }
716
717 static inline void
718 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
719 struct rte_bbdev_stats *queue_stats)
720 {
721 uint8_t c, r, crc24_bits = 0;
722 uint16_t k, ncb;
723 uint32_t e;
724 struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
725 uint16_t in_offset = enc->input.offset;
726 uint16_t out_offset = enc->output.offset;
727 struct rte_mbuf *m_in = enc->input.data;
728 struct rte_mbuf *m_out = enc->output.data;
729 uint16_t total_left = enc->input.length;
730
731 /* Clear op status */
732 op->status = 0;
733
734 if (total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
735 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
736 total_left, RTE_BBDEV_MAX_TB_SIZE);
737 op->status = 1 << RTE_BBDEV_DATA_ERROR;
738 return;
739 }
740
741 if (m_in == NULL || m_out == NULL) {
742 rte_bbdev_log(ERR, "Invalid mbuf pointer");
743 op->status = 1 << RTE_BBDEV_DATA_ERROR;
744 return;
745 }
746
747 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
748 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
749 crc24_bits = 24;
750
751 if (enc->code_block_mode == 0) { /* For Transport Block mode */
752 c = enc->tb_params.c;
753 r = enc->tb_params.r;
754 } else {/* For Code Block mode */
755 c = 1;
756 r = 0;
757 }
758
759 while (total_left > 0 && r < c) {
760 if (enc->code_block_mode == 0) {
761 k = (r < enc->tb_params.c_neg) ?
762 enc->tb_params.k_neg : enc->tb_params.k_pos;
763 ncb = (r < enc->tb_params.c_neg) ?
764 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
765 e = (r < enc->tb_params.cab) ?
766 enc->tb_params.ea : enc->tb_params.eb;
767 } else {
768 k = enc->cb_params.k;
769 ncb = enc->cb_params.ncb;
770 e = enc->cb_params.e;
771 }
772
773 process_enc_cb(q, op, r, c, k, ncb, e, m_in,
774 m_out, in_offset, out_offset, total_left,
775 queue_stats);
776 /* Update total_left */
777 total_left -= (k - crc24_bits) >> 3;
778 /* Update offsets for next CBs (if exist) */
779 in_offset += (k - crc24_bits) >> 3;
780 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
781 out_offset += e >> 3;
782 else
783 out_offset += (k >> 3) * 3 + 2;
784 r++;
785 }
786
787 /* check if all input data was processed */
788 if (total_left != 0) {
789 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
790 rte_bbdev_log(ERR,
791 "Mismatch between mbuf length and included CBs sizes");
792 }
793 }
794
795 static inline uint16_t
796 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
797 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
798 {
799 uint16_t i;
800 #ifdef RTE_BBDEV_OFFLOAD_COST
801 queue_stats->offload_time = 0;
802 #endif
803
804 for (i = 0; i < nb_ops; ++i)
805 enqueue_enc_one_op(q, ops[i], queue_stats);
806
807 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
808 NULL);
809 }
810
811 /* Remove the padding bytes from a cyclic buffer.
812 * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
813 * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
814 * The output buffer is a data stream wk with pruned padding bytes. It's length
815 * is 3*D bytes and the order of non-padding bytes is preserved.
816 */
817 static inline void
818 remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
819 uint16_t ncb)
820 {
821 uint32_t in_idx, out_idx, c_idx;
822 const uint32_t d = k + 4;
823 const uint32_t kw = (ncb / 3);
824 const uint32_t nd = kw - d;
825 const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK;
826 /* Inter-column permutation pattern */
827 const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28,
828 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13,
829 29, 3, 19, 11, 27, 7, 23, 15, 31};
830 in_idx = 0;
831 out_idx = 0;
832
833 /* The padding bytes are at the first Nd positions in the first row. */
834 for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
835 if (P[c_idx] < nd) {
836 rte_memcpy(&out[out_idx], &in[in_idx + 1],
837 r_subblock - 1);
838 out_idx += r_subblock - 1;
839 } else {
840 rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
841 out_idx += r_subblock;
842 }
843 }
844
845 /* First and second parity bits sub-blocks are interlaced. */
846 for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
847 in_idx += 2 * r_subblock, ++c_idx) {
848 uint32_t second_block_c_idx = P[c_idx];
849 uint32_t third_block_c_idx = P[c_idx] + 1;
850
851 if (second_block_c_idx < nd && third_block_c_idx < nd) {
852 rte_memcpy(&out[out_idx], &in[in_idx + 2],
853 2 * r_subblock - 2);
854 out_idx += 2 * r_subblock - 2;
855 } else if (second_block_c_idx >= nd &&
856 third_block_c_idx >= nd) {
857 rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
858 out_idx += 2 * r_subblock;
859 } else if (second_block_c_idx < nd) {
860 out[out_idx++] = in[in_idx];
861 rte_memcpy(&out[out_idx], &in[in_idx + 2],
862 2 * r_subblock - 2);
863 out_idx += 2 * r_subblock - 2;
864 } else {
865 rte_memcpy(&out[out_idx], &in[in_idx + 1],
866 2 * r_subblock - 1);
867 out_idx += 2 * r_subblock - 1;
868 }
869 }
870
871 /* Last interlaced row is different - its last byte is the only padding
872 * byte. We can have from 4 up to 28 padding bytes (Nd) per sub-block.
873 * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
874 * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
875 * (moving to another column). 2nd parity sub-block uses the same
876 * inter-column permutation pattern as the systematic and 1st parity
877 * sub-blocks but it adds '1' to the resulting index and calculates the
878 * modulus of the result and Kw. Last column is mapped to itself (id 31)
879 * so the first byte taken from the 2nd parity sub-block will be the
880 * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
881 * last byte will be the first byte from the sub-block:
882 * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't be smaller
883 * than 4 so we know that bytes with ids 0, 1, 2 and 3 must be the
884 * padding bytes. The bytes from the 1st parity sub-block are the bytes
885 * from the 31st column - Nd can't be greater than 28 so we are sure
886 * that there are no padding bytes in 31st column.
887 */
888 rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
889 }
890
891 static inline void
892 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
893 uint16_t ncb)
894 {
895 uint16_t d = k + 4;
896 uint16_t kpi = ncb / 3;
897 uint16_t nd = kpi - d;
898
899 rte_memcpy(&out[nd], in, d);
900 rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
901 rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
902 }
903
904 static inline void
905 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
906 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
907 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
908 bool check_crc_24b, uint16_t crc24_overlap, uint16_t total_left)
909 {
910 int ret;
911 int32_t k_idx;
912 int32_t iter_cnt;
913 uint8_t *in, *out, *adapter_input;
914 int32_t ncb, ncb_without_null;
915 struct bblib_turbo_adapter_ul_response adapter_resp;
916 struct bblib_turbo_adapter_ul_request adapter_req;
917 struct bblib_turbo_decoder_request turbo_req;
918 struct bblib_turbo_decoder_response turbo_resp;
919 struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
920
921 k_idx = compute_idx(k);
922
923 ret = is_dec_input_valid(k_idx, kw, total_left);
924 if (ret != 0) {
925 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
926 return;
927 }
928
929 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
930 ncb = kw;
931 ncb_without_null = (k + 4) * 3;
932
933 if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
934 struct bblib_deinterleave_ul_request deint_req;
935 struct bblib_deinterleave_ul_response deint_resp;
936
937 /* SW decoder accepts only a circular buffer without NULL bytes
938 * so the input needs to be converted.
939 */
940 remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
941
942 deint_req.pharqbuffer = q->deint_input;
943 deint_req.ncb = ncb_without_null;
944 deint_resp.pinteleavebuffer = q->deint_output;
945 bblib_deinterleave_ul(&deint_req, &deint_resp);
946 } else
947 move_padding_bytes(in, q->deint_output, k, ncb);
948
949 adapter_input = q->deint_output;
950
951 if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
952 adapter_req.isinverted = 1;
953 else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
954 adapter_req.isinverted = 0;
955 else {
956 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
957 rte_bbdev_log(ERR, "LLR format wasn't specified");
958 return;
959 }
960
961 adapter_req.ncb = ncb_without_null;
962 adapter_req.pinteleavebuffer = adapter_input;
963 adapter_resp.pharqout = q->adapter_output;
964 bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
965
966 out = (uint8_t *)rte_pktmbuf_append(m_out, ((k - crc24_overlap) >> 3));
967 if (out == NULL) {
968 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
969 rte_bbdev_log(ERR, "Too little space in output mbuf");
970 return;
971 }
972 /* rte_bbdev_op_data.offset can be different than the offset of the
973 * appended bytes
974 */
975 out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
976 if (check_crc_24b)
977 turbo_req.c = c + 1;
978 else
979 turbo_req.c = c;
980 turbo_req.input = (int8_t *)q->adapter_output;
981 turbo_req.k = k;
982 turbo_req.k_idx = k_idx;
983 turbo_req.max_iter_num = dec->iter_max;
984 turbo_req.early_term_disable = !check_bit(dec->op_flags,
985 RTE_BBDEV_TURBO_EARLY_TERMINATION);
986 turbo_resp.ag_buf = q->ag;
987 turbo_resp.cb_buf = q->code_block;
988 turbo_resp.output = out;
989 iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
990 dec->hard_output.length += (k >> 3);
991
992 if (iter_cnt > 0) {
993 /* Temporary solution for returned iter_count from SDK */
994 iter_cnt = (iter_cnt - 1) / 2;
995 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
996 } else {
997 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
998 rte_bbdev_log(ERR, "Turbo Decoder failed");
999 return;
1000 }
1001 }
1002
1003 static inline void
1004 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
1005 {
1006 uint8_t c, r = 0;
1007 uint16_t kw, k = 0;
1008 uint16_t crc24_overlap = 0;
1009 struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1010 struct rte_mbuf *m_in = dec->input.data;
1011 struct rte_mbuf *m_out = dec->hard_output.data;
1012 uint16_t in_offset = dec->input.offset;
1013 uint16_t total_left = dec->input.length;
1014 uint16_t out_offset = dec->hard_output.offset;
1015
1016 /* Clear op status */
1017 op->status = 0;
1018
1019 if (m_in == NULL || m_out == NULL) {
1020 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1021 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1022 return;
1023 }
1024
1025 if (dec->code_block_mode == 0) { /* For Transport Block mode */
1026 c = dec->tb_params.c;
1027 } else { /* For Code Block mode */
1028 k = dec->cb_params.k;
1029 c = 1;
1030 }
1031
1032 if ((c > 1) && !check_bit(dec->op_flags,
1033 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1034 crc24_overlap = 24;
1035
1036 while (total_left > 0) {
1037 if (dec->code_block_mode == 0)
1038 k = (r < dec->tb_params.c_neg) ?
1039 dec->tb_params.k_neg : dec->tb_params.k_pos;
1040
1041 /* Calculates circular buffer size (Kw).
1042 * According to 3gpp 36.212 section 5.1.4.2
1043 * Kw = 3 * Kpi,
1044 * where:
1045 * Kpi = nCol * nRow
1046 * where nCol is 32 and nRow can be calculated from:
1047 * D =< nCol * nRow
1048 * where D is the size of each output from turbo encoder block
1049 * (k + 4).
1050 */
1051 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
1052
1053 process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
1054 out_offset, check_bit(dec->op_flags,
1055 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1056 total_left);
1057 /* To keep CRC24 attached to end of Code block, use
1058 * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1059 * removed by default once verified.
1060 */
1061
1062 /* Update total_left */
1063 total_left -= kw;
1064 /* Update offsets for next CBs (if exist) */
1065 in_offset += kw;
1066 out_offset += ((k - crc24_overlap) >> 3);
1067 r++;
1068 }
1069 if (total_left != 0) {
1070 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1071 rte_bbdev_log(ERR,
1072 "Mismatch between mbuf length and included Circular buffer sizes");
1073 }
1074 }
1075
1076 static inline uint16_t
1077 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1078 uint16_t nb_ops)
1079 {
1080 uint16_t i;
1081
1082 for (i = 0; i < nb_ops; ++i)
1083 enqueue_dec_one_op(q, ops[i]);
1084
1085 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1086 NULL);
1087 }
1088
1089 /* Enqueue burst */
1090 static uint16_t
1091 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1092 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1093 {
1094 void *queue = q_data->queue_private;
1095 struct turbo_sw_queue *q = queue;
1096 uint16_t nb_enqueued = 0;
1097
1098 nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1099
1100 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1101 q_data->queue_stats.enqueued_count += nb_enqueued;
1102
1103 return nb_enqueued;
1104 }
1105
1106 /* Enqueue burst */
1107 static uint16_t
1108 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1109 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1110 {
1111 void *queue = q_data->queue_private;
1112 struct turbo_sw_queue *q = queue;
1113 uint16_t nb_enqueued = 0;
1114
1115 nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);
1116
1117 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1118 q_data->queue_stats.enqueued_count += nb_enqueued;
1119
1120 return nb_enqueued;
1121 }
1122
1123 /* Dequeue decode burst */
1124 static uint16_t
1125 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1126 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1127 {
1128 struct turbo_sw_queue *q = q_data->queue_private;
1129 uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1130 (void **)ops, nb_ops, NULL);
1131 q_data->queue_stats.dequeued_count += nb_dequeued;
1132
1133 return nb_dequeued;
1134 }
1135
1136 /* Dequeue encode burst */
1137 static uint16_t
1138 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1139 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1140 {
1141 struct turbo_sw_queue *q = q_data->queue_private;
1142 uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1143 (void **)ops, nb_ops, NULL);
1144 q_data->queue_stats.dequeued_count += nb_dequeued;
1145
1146 return nb_dequeued;
1147 }
1148
1149 /* Parse 16bit integer from string argument */
1150 static inline int
1151 parse_u16_arg(const char *key, const char *value, void *extra_args)
1152 {
1153 uint16_t *u16 = extra_args;
1154 unsigned int long result;
1155
1156 if ((value == NULL) || (extra_args == NULL))
1157 return -EINVAL;
1158 errno = 0;
1159 result = strtoul(value, NULL, 0);
1160 if ((result >= (1 << 16)) || (errno != 0)) {
1161 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1162 return -ERANGE;
1163 }
1164 *u16 = (uint16_t)result;
1165 return 0;
1166 }
1167
1168 /* Parse parameters used to create device */
1169 static int
1170 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1171 {
1172 struct rte_kvargs *kvlist = NULL;
1173 int ret = 0;
1174
1175 if (params == NULL)
1176 return -EINVAL;
1177 if (input_args) {
1178 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1179 if (kvlist == NULL)
1180 return -EFAULT;
1181
1182 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1183 &parse_u16_arg, &params->queues_num);
1184 if (ret < 0)
1185 goto exit;
1186
1187 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1188 &parse_u16_arg, &params->socket_id);
1189 if (ret < 0)
1190 goto exit;
1191
1192 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1193 rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1194 RTE_MAX_NUMA_NODES);
1195 goto exit;
1196 }
1197 }
1198
1199 exit:
1200 if (kvlist)
1201 rte_kvargs_free(kvlist);
1202 return ret;
1203 }
1204
1205 /* Create device */
1206 static int
1207 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1208 struct turbo_sw_params *init_params)
1209 {
1210 struct rte_bbdev *bbdev;
1211 const char *name = rte_vdev_device_name(vdev);
1212
1213 bbdev = rte_bbdev_allocate(name);
1214 if (bbdev == NULL)
1215 return -ENODEV;
1216
1217 bbdev->data->dev_private = rte_zmalloc_socket(name,
1218 sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1219 init_params->socket_id);
1220 if (bbdev->data->dev_private == NULL) {
1221 rte_bbdev_release(bbdev);
1222 return -ENOMEM;
1223 }
1224
1225 bbdev->dev_ops = &pmd_ops;
1226 bbdev->device = &vdev->device;
1227 bbdev->data->socket_id = init_params->socket_id;
1228 bbdev->intr_handle = NULL;
1229
1230 /* register rx/tx burst functions for data path */
1231 bbdev->dequeue_enc_ops = dequeue_enc_ops;
1232 bbdev->dequeue_dec_ops = dequeue_dec_ops;
1233 bbdev->enqueue_enc_ops = enqueue_enc_ops;
1234 bbdev->enqueue_dec_ops = enqueue_dec_ops;
1235 ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1236 init_params->queues_num;
1237
1238 return 0;
1239 }
1240
1241 /* Initialise device */
1242 static int
1243 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1244 {
1245 struct turbo_sw_params init_params = {
1246 rte_socket_id(),
1247 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1248 };
1249 const char *name;
1250 const char *input_args;
1251
1252 if (vdev == NULL)
1253 return -EINVAL;
1254
1255 name = rte_vdev_device_name(vdev);
1256 if (name == NULL)
1257 return -EINVAL;
1258 input_args = rte_vdev_device_args(vdev);
1259 parse_turbo_sw_params(&init_params, input_args);
1260
1261 rte_bbdev_log_debug(
1262 "Initialising %s on NUMA node %d with max queues: %d\n",
1263 name, init_params.socket_id, init_params.queues_num);
1264
1265 return turbo_sw_bbdev_create(vdev, &init_params);
1266 }
1267
1268 /* Uninitialise device */
1269 static int
1270 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1271 {
1272 struct rte_bbdev *bbdev;
1273 const char *name;
1274
1275 if (vdev == NULL)
1276 return -EINVAL;
1277
1278 name = rte_vdev_device_name(vdev);
1279 if (name == NULL)
1280 return -EINVAL;
1281
1282 bbdev = rte_bbdev_get_named_dev(name);
1283 if (bbdev == NULL)
1284 return -EINVAL;
1285
1286 rte_free(bbdev->data->dev_private);
1287
1288 return rte_bbdev_release(bbdev);
1289 }
1290
1291 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1292 .probe = turbo_sw_bbdev_probe,
1293 .remove = turbo_sw_bbdev_remove
1294 };
1295
1296 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1297 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1298 TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1299 TURBO_SW_SOCKET_ID_ARG"=<int>");
1300 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
1301
1302 RTE_INIT(turbo_sw_bbdev_init_log)
1303 {
1304 bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1305 if (bbdev_turbo_sw_logtype >= 0)
1306 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1307 }