]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/bnx2x/ecore_init.h
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / bnx2x / ecore_init.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright (c) 2007-2013 Broadcom Corporation.
3 *
4 * Eric Davis <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano <zambrano@broadcom.com>
7 *
8 * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9 * Copyright (c) 2015-2018 Cavium Inc.
10 * All rights reserved.
11 * www.cavium.com
12 */
13
14 #ifndef ECORE_INIT_H
15 #define ECORE_INIT_H
16
17 /* Init operation types and structures */
18 enum {
19 OP_RD = 0x1, /* read a single register */
20 OP_WR, /* write a single register */
21 OP_SW, /* copy a string to the device */
22 OP_ZR, /* clear memory */
23 OP_ZP, /* unzip then copy with DMAE */
24 OP_WR_64, /* write 64 bit pattern */
25 OP_WB, /* copy a string using DMAE */
26 OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */
27 OP_IF_MODE_OR, /* Skip the following ops if all init modes don't match */
28 OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
29 OP_MAX
30 };
31
32 enum {
33 STAGE_START,
34 STAGE_END,
35 };
36
37 /* Returns the index of start or end of a specific block stage in ops array*/
38 #define BLOCK_OPS_IDX(block, stage, end) \
39 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
40
41
42 /* structs for the various opcodes */
43 struct raw_op {
44 uint32_t op:8;
45 uint32_t offset:24;
46 uint32_t raw_data;
47 };
48
49 struct op_read {
50 uint32_t op:8;
51 uint32_t offset:24;
52 uint32_t val;
53 };
54
55 struct op_write {
56 uint32_t op:8;
57 uint32_t offset:24;
58 uint32_t val;
59 };
60
61 struct op_arr_write {
62 uint32_t op:8;
63 uint32_t offset:24;
64 #ifdef __BIG_ENDIAN
65 uint16_t data_len;
66 uint16_t data_off;
67 #else /* __LITTLE_ENDIAN */
68 uint16_t data_off;
69 uint16_t data_len;
70 #endif
71 };
72
73 struct op_zero {
74 uint32_t op:8;
75 uint32_t offset:24;
76 uint32_t len;
77 };
78
79 struct op_if_mode {
80 uint32_t op:8;
81 uint32_t cmd_offset:24;
82 uint32_t mode_bit_map;
83 };
84
85
86 union init_op {
87 struct op_read read;
88 struct op_write write;
89 struct op_arr_write arr_wr;
90 struct op_zero zero;
91 struct raw_op raw;
92 struct op_if_mode if_mode;
93 };
94
95
96 /* Init Phases */
97 enum {
98 PHASE_COMMON,
99 PHASE_PORT0,
100 PHASE_PORT1,
101 PHASE_PF0,
102 PHASE_PF1,
103 PHASE_PF2,
104 PHASE_PF3,
105 PHASE_PF4,
106 PHASE_PF5,
107 PHASE_PF6,
108 PHASE_PF7,
109 NUM_OF_INIT_PHASES
110 };
111
112 /* Init Modes */
113 enum {
114 MODE_ASIC = 0x00000001,
115 MODE_FPGA = 0x00000002,
116 MODE_EMUL = 0x00000004,
117 MODE_E2 = 0x00000008,
118 MODE_E3 = 0x00000010,
119 MODE_PORT2 = 0x00000020,
120 MODE_PORT4 = 0x00000040,
121 MODE_SF = 0x00000080,
122 MODE_MF = 0x00000100,
123 MODE_MF_SD = 0x00000200,
124 MODE_MF_SI = 0x00000400,
125 MODE_MF_AFEX = 0x00000800,
126 MODE_E3_A0 = 0x00001000,
127 MODE_E3_B0 = 0x00002000,
128 MODE_COS3 = 0x00004000,
129 MODE_COS6 = 0x00008000,
130 MODE_LITTLE_ENDIAN = 0x00010000,
131 MODE_BIG_ENDIAN = 0x00020000,
132 };
133
134 /* Init Blocks */
135 enum {
136 BLOCK_ATC,
137 BLOCK_BRB1,
138 BLOCK_CCM,
139 BLOCK_CDU,
140 BLOCK_CFC,
141 BLOCK_CSDM,
142 BLOCK_CSEM,
143 BLOCK_DBG,
144 BLOCK_DMAE,
145 BLOCK_DORQ,
146 BLOCK_HC,
147 BLOCK_IGU,
148 BLOCK_MISC,
149 BLOCK_NIG,
150 BLOCK_PBF,
151 BLOCK_PGLUE_B,
152 BLOCK_PRS,
153 BLOCK_PXP2,
154 BLOCK_PXP,
155 BLOCK_QM,
156 BLOCK_SRC,
157 BLOCK_TCM,
158 BLOCK_TM,
159 BLOCK_TSDM,
160 BLOCK_TSEM,
161 BLOCK_UCM,
162 BLOCK_UPB,
163 BLOCK_USDM,
164 BLOCK_USEM,
165 BLOCK_XCM,
166 BLOCK_XPB,
167 BLOCK_XSDM,
168 BLOCK_XSEM,
169 BLOCK_MISC_AEU,
170 NUM_OF_INIT_BLOCKS
171 };
172
173 #include "bnx2x.h"
174
175 /* Vnics per mode */
176 #define ECORE_PORT2_MODE_NUM_VNICS 4
177
178
179 /* QM queue numbers */
180 #define ECORE_ETH_Q 0
181 #define ECORE_TOE_Q 3
182 #define ECORE_TOE_ACK_Q 6
183 #define ECORE_ISCSI_Q 9
184 #define ECORE_ISCSI_ACK_Q 11
185 #define ECORE_FCOE_Q 10
186
187 /* Vnics per mode */
188 #define ECORE_PORT4_MODE_NUM_VNICS 2
189
190 /* COS offset for port1 in E3 B0 4port mode */
191 #define ECORE_E3B0_PORT1_COS_OFFSET 3
192
193 /* QM Register addresses */
194 #define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
195 (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
196 #define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
197 (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
198 #define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
199 (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
200
201 /* extracts the QM queue number for the specified port and vnic */
202 #define ECORE_PF_Q_NUM(q_num, port, vnic)\
203 ((((port) << 1) | (vnic)) * 16 + (q_num))
204
205
206 /* Maps the specified queue to the specified COS */
207 static inline void ecore_map_q_cos(struct bnx2x_softc *sc, uint32_t q_num, uint32_t new_cos)
208 {
209 /* find current COS mapping */
210 uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);
211
212 /* check if queue->COS mapping has changed */
213 if (curr_cos != new_cos) {
214 uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
215 uint32_t reg_addr, reg_bit_map, vnic;
216
217 /* update parameters for 4port mode */
218 if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
219 num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
220 if (SC_PORT(sc)) {
221 curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
222 new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
223 }
224 }
225
226 /* change queue mapping for each VNIC */
227 for (vnic = 0; vnic < num_vnics; vnic++) {
228 uint32_t pf_q_num =
229 ECORE_PF_Q_NUM(q_num, SC_PORT(sc), vnic);
230 uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);
231
232 /* overwrite queue->VOQ mapping */
233 REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
234
235 /* clear queue bit from current COS bit map */
236 reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
237 reg_bit_map = REG_RD(sc, reg_addr);
238 REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));
239
240 /* set queue bit in new COS bit map */
241 reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
242 reg_bit_map = REG_RD(sc, reg_addr);
243 REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);
244
245 /* set/clear queue bit in command-queue bit map
246 (E2/E3A0 only, valid COS values are 0/1) */
247 if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
248 reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
249 reg_bit_map = REG_RD(sc, reg_addr);
250 q_bit_map = 1 << (2 * (pf_q_num & 0xf));
251 reg_bit_map = new_cos ?
252 (reg_bit_map | q_bit_map) :
253 (reg_bit_map & (~q_bit_map));
254 REG_WR(sc, reg_addr, reg_bit_map);
255 }
256 }
257 }
258 }
259
260 /* Configures the QM according to the specified per-traffic-type COSes */
261 static inline void ecore_dcb_config_qm(struct bnx2x_softc *sc, enum cos_mode mode,
262 struct priority_cos *traffic_cos)
263 {
264 ecore_map_q_cos(sc, ECORE_FCOE_Q,
265 traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
266 ecore_map_q_cos(sc, ECORE_ISCSI_Q,
267 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
268 ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
269 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
270 if (mode != STATIC_COS) {
271 /* required only in OVERRIDE_COS mode */
272 ecore_map_q_cos(sc, ECORE_ETH_Q,
273 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
274 ecore_map_q_cos(sc, ECORE_TOE_Q,
275 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
276 ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
277 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
278 }
279 }
280
281
282 /*
283 * congestion management port init api description
284 * the api works as follows:
285 * the driver should pass the cmng_init_input struct, the port_init function
286 * will prepare the required internal ram structure which will be passed back
287 * to the driver (cmng_init) that will write it into the internal ram.
288 *
289 * IMPORTANT REMARKS:
290 * 1. the cmng_init struct does not represent the contiguous internal ram
291 * structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
292 * offset in order to write the port sub struct and the
293 * PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
294 * words - don't use memcpy!).
295 * 2. although the cmng_init struct is filled for the maximal vnic number
296 * possible, the driver should only write the valid vnics into the internal
297 * ram according to the appropriate port mode.
298 */
299 #define BITS_TO_BYTES(x) ((x)/8)
300
301 /* CMNG constants, as derived from system spec calculations */
302
303 /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
304 #define DEF_MIN_RATE 100
305
306 /* resolution of the rate shaping timer - 400 usec */
307 #define RS_PERIODIC_TIMEOUT_USEC 400
308
309 /*
310 * number of bytes in single QM arbitration cycle -
311 * coefficient for calculating the fairness timer
312 */
313 #define QM_ARB_BYTES 160000
314
315 /* resolution of Min algorithm 1:100 */
316 #define MIN_RES 100
317
318 /*
319 * how many bytes above threshold for
320 * the minimal credit of Min algorithm
321 */
322 #define MIN_ABOVE_THRESH 32768
323
324 /*
325 * Fairness algorithm integration time coefficient -
326 * for calculating the actual Tfair
327 */
328 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
329
330 /* Memory of fairness algorithm - 2 cycles */
331 #define FAIR_MEM 2
332 #define SAFC_TIMEOUT_USEC 52
333
334 #define SDM_TICKS 4
335
336
337 static inline void ecore_init_max(const struct cmng_init_input *input_data,
338 uint32_t r_param, struct cmng_init *ram_data)
339 {
340 uint32_t vnic;
341 struct cmng_vnic *vdata = &ram_data->vnic;
342 struct cmng_struct_per_port *pdata = &ram_data->port;
343 /*
344 * rate shaping per-port variables
345 * 100 micro seconds in SDM ticks = 25
346 * since each tick is 4 microSeconds
347 */
348
349 pdata->rs_vars.rs_periodic_timeout =
350 RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
351
352 /* this is the threshold below which no timer arming will occur.
353 * 1.25 coefficient is for the threshold to be a little bigger
354 * then the real time to compensate for timer in-accuracy
355 */
356 pdata->rs_vars.rs_threshold =
357 (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
358
359 /* rate shaping per-vnic variables */
360 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
361 /* global vnic counter */
362 vdata->vnic_max_rate[vnic].vn_counter.rate =
363 input_data->vnic_max_rate[vnic];
364 /*
365 * maximal Mbps for this vnic
366 * the quota in each timer period - number of bytes
367 * transmitted in this period
368 */
369 vdata->vnic_max_rate[vnic].vn_counter.quota =
370 RS_PERIODIC_TIMEOUT_USEC *
371 (uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
372 }
373
374 }
375
376 static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
377 struct rate_shaping_vars_per_vn *ram_data)
378 {
379 /* global vnic counter */
380 ram_data->vn_counter.rate = vnic_max_rate;
381
382 /*
383 * maximal Mbps for this vnic
384 * the quota in each timer period - number of bytes
385 * transmitted in this period
386 */
387 ram_data->vn_counter.quota =
388 RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
389 }
390
391 static inline void ecore_init_min(const struct cmng_init_input *input_data,
392 uint32_t r_param, struct cmng_init *ram_data)
393 {
394 uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
395 struct cmng_vnic *vdata = &ram_data->vnic;
396 struct cmng_struct_per_port *pdata = &ram_data->port;
397
398 /* this is the resolution of the fairness timer */
399 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
400
401 /*
402 * fairness per-port variables
403 * for 10G it is 1000usec. for 1G it is 10000usec.
404 */
405 tFair = T_FAIR_COEF / input_data->port_rate;
406
407 /* this is the threshold below which we won't arm the timer anymore */
408 pdata->fair_vars.fair_threshold = QM_ARB_BYTES +
409 input_data->fairness_thr;
410
411 /*New limitation - minimal packet size to cause timeout to be armed */
412 pdata->fair_vars.size_thr = input_data->size_thr;
413
414 /*
415 * we multiply by 1e3/8 to get bytes/msec. We don't want the credits
416 * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
417 */
418 pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
419
420 /* since each tick is 4 microSeconds */
421 pdata->fair_vars.fairness_timeout =
422 fair_periodic_timeout_usec / SDM_TICKS;
423
424 /* calculate sum of weights */
425 vnicWeightSum = 0;
426
427 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
428 vnicWeightSum += input_data->vnic_min_rate[vnic];
429
430 /* global vnic counter */
431 if (vnicWeightSum > 0) {
432 /* fairness per-vnic variables */
433 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
434 /*
435 * this is the credit for each period of the fairness
436 * algorithm - number of bytes in T_FAIR (this vnic
437 * share of the port rate)
438 */
439 vdata->vnic_min_rate[vnic].vn_credit_delta =
440 ((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
441 (T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
442 if (vdata->vnic_min_rate[vnic].vn_credit_delta <
443 pdata->fair_vars.fair_threshold +
444 MIN_ABOVE_THRESH) {
445 vdata->vnic_min_rate[vnic].vn_credit_delta =
446 pdata->fair_vars.fair_threshold +
447 MIN_ABOVE_THRESH;
448 }
449 }
450 }
451 }
452
453 static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
454 uint32_t r_param __rte_unused,
455 struct cmng_init *ram_data)
456 {
457 uint32_t vnic, cos;
458 uint32_t cosWeightSum = 0;
459 struct cmng_vnic *vdata = &ram_data->vnic;
460 struct cmng_struct_per_port *pdata = &ram_data->port;
461
462 for (cos = 0; cos < MAX_COS_NUMBER; cos++)
463 cosWeightSum += input_data->cos_min_rate[cos];
464
465 if (cosWeightSum > 0) {
466
467 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
468 /*
469 * Since cos and vnic shouldn't work together the rate
470 * to divide between the coses is the port rate.
471 */
472 uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
473 for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
474 /*
475 * this is the credit for each period of
476 * the fairness algorithm - number of bytes
477 * in T_FAIR (this cos share of the vnic rate)
478 */
479 ccd[cos] =
480 ((uint32_t)input_data->cos_min_rate[cos] * 100 *
481 (T_FAIR_COEF / (8 * 100 * cosWeightSum)));
482 if (ccd[cos] < pdata->fair_vars.fair_threshold
483 + MIN_ABOVE_THRESH) {
484 ccd[cos] =
485 pdata->fair_vars.fair_threshold +
486 MIN_ABOVE_THRESH;
487 }
488 }
489 }
490 }
491 }
492
493 static inline void
494 ecore_init_safc(const struct cmng_init_input *input_data __rte_unused,
495 struct cmng_init *ram_data)
496 {
497 /* in microSeconds */
498 ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
499 }
500
501 /* Congestion management port init */
502 static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
503 struct cmng_init *ram_data)
504 {
505 uint32_t r_param;
506 ECORE_MEMSET(ram_data, 0, sizeof(struct cmng_init));
507
508 ram_data->port.flags = input_data->flags;
509
510 /*
511 * number of bytes transmitted in a rate of 10Gbps
512 * in one usec = 1.25KB.
513 */
514 r_param = BITS_TO_BYTES(input_data->port_rate);
515 ecore_init_max(input_data, r_param, ram_data);
516 ecore_init_min(input_data, r_param, ram_data);
517 ecore_init_fw_wrr(input_data, r_param, ram_data);
518 ecore_init_safc(input_data, ram_data);
519 }
520
521
522
523
524 /* Returns the index of start or end of a specific block stage in ops array*/
525 #define BLOCK_OPS_IDX(block, stage, end) \
526 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
527
528
529 #define INITOP_SET 0 /* set the HW directly */
530 #define INITOP_CLEAR 1 /* clear the HW directly */
531 #define INITOP_INIT 2 /* set the init-value array */
532
533 /****************************************************************************
534 * ILT management
535 ****************************************************************************/
536 struct ilt_line {
537 ecore_dma_addr_t page_mapping;
538 void *page;
539 uint32_t size;
540 };
541
542 struct ilt_client_info {
543 uint32_t page_size;
544 uint16_t start;
545 uint16_t end;
546 uint16_t client_num;
547 uint16_t flags;
548 #define ILT_CLIENT_SKIP_INIT 0x1
549 #define ILT_CLIENT_SKIP_MEM 0x2
550 };
551
552 struct ecore_ilt {
553 uint32_t start_line;
554 struct ilt_line *lines;
555 struct ilt_client_info clients[4];
556 #define ILT_CLIENT_CDU 0
557 #define ILT_CLIENT_QM 1
558 #define ILT_CLIENT_SRC 2
559 #define ILT_CLIENT_TM 3
560 };
561
562 /****************************************************************************
563 * SRC configuration
564 ****************************************************************************/
565 struct src_ent {
566 uint8_t opaque[56];
567 uint64_t next;
568 };
569
570 /****************************************************************************
571 * Parity configuration
572 ****************************************************************************/
573 #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
574 { \
575 block##_REG_##block##_PRTY_MASK, \
576 block##_REG_##block##_PRTY_STS_CLR, \
577 en_mask, {m1, m1h, m2, m3}, #block \
578 }
579
580 #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
581 { \
582 block##_REG_##block##_PRTY_MASK_0, \
583 block##_REG_##block##_PRTY_STS_CLR_0, \
584 en_mask, {m1, m1h, m2, m3}, #block "_0" \
585 }
586
587 #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
588 { \
589 block##_REG_##block##_PRTY_MASK_1, \
590 block##_REG_##block##_PRTY_STS_CLR_1, \
591 en_mask, {m1, m1h, m2, m3}, #block "_1" \
592 }
593
594 static const struct {
595 uint32_t mask_addr;
596 uint32_t sts_clr_addr;
597 uint32_t en_mask; /* Mask to enable parity attentions */
598 struct {
599 uint32_t e1; /* 57710 */
600 uint32_t e1h; /* 57711 */
601 uint32_t e2; /* 57712 */
602 uint32_t e3; /* 578xx */
603 } reg_mask; /* Register mask (all valid bits) */
604 char name[8]; /* Block's longest name is 7 characters long
605 * (name + suffix)
606 */
607 } ecore_blocks_parity_data[] = {
608 /* bit 19 masked */
609 /* REG_WR(sc, PXP_REG_PXP_PRTY_MASK, 0x80000); */
610 /* bit 5,18,20-31 */
611 /* REG_WR(sc, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
612 /* bit 5 */
613 /* REG_WR(sc, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
614 /* REG_WR(sc, HC_REG_HC_PRTY_MASK, 0x0); */
615 /* REG_WR(sc, MISC_REG_MISC_PRTY_MASK, 0x0); */
616
617 /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
618 * want to handle "system kill" flow at the moment.
619 */
620 BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
621 0x7ffffff),
622 BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
623 0xffffffff),
624 BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
625 BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
626 BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
627 BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
628 BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff),
629 BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
630 BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
631 BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
632 BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
633 BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
634 BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
635 {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
636 GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
637 {0xf, 0xf, 0xf, 0xf}, "UPB"},
638 {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
639 GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
640 {0xf, 0xf, 0xf, 0xf}, "XPB"},
641 BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
642 BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
643 BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
644 BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
645 BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
646 BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
647 BLOCK_PRTY_INFO(PRS, (1 << 6), 0xff, 0xff, 0xff, 0xff),
648 BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
649 BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
650 BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
651 BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
652 BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
653 BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
654 BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
655 BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
656 BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
657 BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
658 BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
659 0xffffffff),
660 BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
661 BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
662 0xffffffff),
663 BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
664 BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
665 0xffffffff),
666 BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
667 BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
668 0xffffffff),
669 BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
670 };
671
672
673 /* [28] MCP Latched rom_parity
674 * [29] MCP Latched ump_rx_parity
675 * [30] MCP Latched ump_tx_parity
676 * [31] MCP Latched scpad_parity
677 */
678 #define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS \
679 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
680 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
681 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
682
683 #define MISC_AEU_ENABLE_MCP_PRTY_BITS \
684 (MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
685 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
686
687 /* Below registers control the MCP parity attention output. When
688 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
689 * enabled, when cleared - disabled.
690 */
691 static const struct {
692 uint32_t addr;
693 uint32_t bits;
694 } mcp_attn_ctl_regs[] = {
695 { MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
696 MISC_AEU_ENABLE_MCP_PRTY_BITS },
697 { MISC_REG_AEU_ENABLE4_NIG_0,
698 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
699 { MISC_REG_AEU_ENABLE4_PXP_0,
700 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
701 { MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
702 MISC_AEU_ENABLE_MCP_PRTY_BITS },
703 { MISC_REG_AEU_ENABLE4_NIG_1,
704 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
705 { MISC_REG_AEU_ENABLE4_PXP_1,
706 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
707 };
708
709 static inline void ecore_set_mcp_parity(struct bnx2x_softc *sc, uint8_t enable)
710 {
711 unsigned int i;
712 uint32_t reg_val;
713
714 for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
715 reg_val = REG_RD(sc, mcp_attn_ctl_regs[i].addr);
716
717 if (enable)
718 reg_val |= mcp_attn_ctl_regs[i].bits;
719 else
720 reg_val &= ~mcp_attn_ctl_regs[i].bits;
721
722 REG_WR(sc, mcp_attn_ctl_regs[i].addr, reg_val);
723 }
724 }
725
726 static inline uint32_t ecore_parity_reg_mask(struct bnx2x_softc *sc, int idx)
727 {
728 if (CHIP_IS_E1(sc))
729 return ecore_blocks_parity_data[idx].reg_mask.e1;
730 else if (CHIP_IS_E1H(sc))
731 return ecore_blocks_parity_data[idx].reg_mask.e1h;
732 else if (CHIP_IS_E2(sc))
733 return ecore_blocks_parity_data[idx].reg_mask.e2;
734 else /* CHIP_IS_E3 */
735 return ecore_blocks_parity_data[idx].reg_mask.e3;
736 }
737
738 static inline void ecore_disable_blocks_parity(struct bnx2x_softc *sc)
739 {
740 unsigned int i;
741
742 for (i = 0; i < ARRAY_SIZE(ecore_blocks_parity_data); i++) {
743 uint32_t dis_mask = ecore_parity_reg_mask(sc, i);
744
745 if (dis_mask) {
746 REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
747 dis_mask);
748 ECORE_MSG(sc, "Setting parity mask "
749 "for %s to\t\t0x%x",
750 ecore_blocks_parity_data[i].name, dis_mask);
751 }
752 }
753
754 /* Disable MCP parity attentions */
755 ecore_set_mcp_parity(sc, false);
756 }
757
758 /**
759 * Clear the parity error status registers.
760 */
761 static inline void ecore_clear_blocks_parity(struct bnx2x_softc *sc)
762 {
763 unsigned int i;
764 uint32_t reg_val, mcp_aeu_bits =
765 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
766 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
767 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
768 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
769
770 /* Clear SEM_FAST parities */
771 REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
772 REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
773 REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
774 REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
775
776 for (i = 0; i < ARRAY_SIZE(ecore_blocks_parity_data); i++) {
777 uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
778
779 if (reg_mask) {
780 reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
781 sts_clr_addr);
782 if (reg_val & reg_mask)
783 ECORE_MSG(sc, "Parity errors in %s: 0x%x",
784 ecore_blocks_parity_data[i].name,
785 reg_val & reg_mask);
786 }
787 }
788
789 /* Check if there were parity attentions in MCP */
790 reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
791 if (reg_val & mcp_aeu_bits)
792 ECORE_MSG(sc, "Parity error in MCP: 0x%x",
793 reg_val & mcp_aeu_bits);
794
795 /* Clear parity attentions in MCP:
796 * [7] clears Latched rom_parity
797 * [8] clears Latched ump_rx_parity
798 * [9] clears Latched ump_tx_parity
799 * [10] clears Latched scpad_parity (both ports)
800 */
801 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
802 }
803
804 static inline void ecore_enable_blocks_parity(struct bnx2x_softc *sc)
805 {
806 unsigned int i;
807
808 for (i = 0; i < ARRAY_SIZE(ecore_blocks_parity_data); i++) {
809 uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
810
811 if (reg_mask)
812 REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
813 ecore_blocks_parity_data[i].en_mask & reg_mask);
814 }
815
816 /* Enable MCP parity attentions */
817 ecore_set_mcp_parity(sc, true);
818 }
819
820
821 #endif /* ECORE_INIT_H */