]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/bnx2x/ecore_init_ops.h
bump version to 18.2.2-pve1
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / bnx2x / ecore_init_ops.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright (c) 2007-2013 Broadcom Corporation.
3 *
4 * Eric Davis <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano <zambrano@broadcom.com>
7 *
8 * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9 * Copyright (c) 2015-2018 Cavium Inc.
10 * All rights reserved.
11 * www.cavium.com
12 */
13
14 #ifndef ECORE_INIT_OPS_H
15 #define ECORE_INIT_OPS_H
16
17 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t *zbuf, int len);
18 static void ecore_write_dmae_phys_len(struct bnx2x_softc *sc,
19 ecore_dma_addr_t phys_addr, uint32_t addr,
20 uint32_t len);
21
22 static void ecore_init_str_wr(struct bnx2x_softc *sc, uint32_t addr,
23 const uint32_t *data, uint32_t len)
24 {
25 uint32_t i;
26
27 for (i = 0; i < len; i++)
28 REG_WR(sc, addr + i*4, data[i]);
29 }
30
31 static void ecore_write_big_buf(struct bnx2x_softc *sc, uint32_t addr,
32 uint32_t len, uint8_t wb __rte_unused)
33 {
34 if (DMAE_READY(sc))
35 ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
36
37 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
38 else
39 ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
40 }
41
42 static void ecore_init_fill(struct bnx2x_softc *sc, uint32_t addr, int fill,
43 uint32_t len, uint8_t wb)
44 {
45 uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
46 uint32_t buf_len32 = buf_len/4;
47 uint32_t i;
48
49 ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
50
51 for (i = 0; i < len; i += buf_len32) {
52 uint32_t cur_len = min(buf_len32, len - i);
53
54 ecore_write_big_buf(sc, addr + i * 4, cur_len, wb);
55 }
56 }
57
58 static void ecore_write_big_buf_wb(struct bnx2x_softc *sc, uint32_t addr, uint32_t len)
59 {
60 if (DMAE_READY(sc))
61 ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
62
63 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
64 else
65 ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
66 }
67
68 static void ecore_init_wr_64(struct bnx2x_softc *sc, uint32_t addr,
69 const uint32_t *data, uint32_t len64)
70 {
71 uint32_t buf_len32 = FW_BUF_SIZE/4;
72 uint32_t len = len64*2;
73 uint64_t data64 = 0;
74 uint32_t i;
75
76 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
77 data64 = HILO_U64((*(data + 1)), (*data));
78
79 len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
80 for (i = 0; i < len64; i++) {
81 uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
82
83 *pdata = data64;
84 }
85
86 for (i = 0; i < len; i += buf_len32) {
87 uint32_t cur_len = min(buf_len32, len - i);
88
89 ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
90 }
91 }
92
93 /*********************************************************
94 There are different blobs for each PRAM section.
95 In addition, each blob write operation is divided into a few operations
96 in order to decrease the amount of phys. contiguous buffer needed.
97 Thus, when we select a blob the address may be with some offset
98 from the beginning of PRAM section.
99 The same holds for the INT_TABLE sections.
100 **********************************************************/
101 #define IF_IS_INT_TABLE_ADDR(base, addr) \
102 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
103
104 #define IF_IS_PRAM_ADDR(base, addr) \
105 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
106
107 static const uint8_t *ecore_sel_blob(struct bnx2x_softc *sc, uint32_t addr,
108 const uint8_t *data)
109 {
110 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
111 data = INIT_TSEM_INT_TABLE_DATA(sc);
112 else
113 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
114 data = INIT_CSEM_INT_TABLE_DATA(sc);
115 else
116 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
117 data = INIT_USEM_INT_TABLE_DATA(sc);
118 else
119 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
120 data = INIT_XSEM_INT_TABLE_DATA(sc);
121 else
122 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
123 data = INIT_TSEM_PRAM_DATA(sc);
124 else
125 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
126 data = INIT_CSEM_PRAM_DATA(sc);
127 else
128 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
129 data = INIT_USEM_PRAM_DATA(sc);
130 else
131 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
132 data = INIT_XSEM_PRAM_DATA(sc);
133
134 return data;
135 }
136
137 static void ecore_init_wr_wb(struct bnx2x_softc *sc, uint32_t addr,
138 const uint32_t *data, uint32_t len)
139 {
140 if (DMAE_READY(sc))
141 VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
142
143 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
144 else
145 ecore_init_str_wr(sc, addr, data, len);
146 }
147
148
149 static void ecore_wr_64(struct bnx2x_softc *sc, uint32_t reg, uint32_t val_lo,
150 uint32_t val_hi)
151 {
152 uint32_t wb_write[2];
153
154 wb_write[0] = val_lo;
155 wb_write[1] = val_hi;
156 REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
157 }
158
159 static void ecore_init_wr_zp(struct bnx2x_softc *sc, uint32_t addr, uint32_t len,
160 uint32_t blob_off)
161 {
162 const uint8_t *data = NULL;
163 int rc;
164 uint32_t i;
165
166 data = ecore_sel_blob(sc, addr, data) + blob_off*4;
167
168 rc = ecore_gunzip(sc, data, len);
169 if (rc)
170 return;
171
172 /* gunzip_outlen is in dwords */
173 len = GUNZIP_OUTLEN(sc);
174 for (i = 0; i < len; i++)
175 ((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
176 ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
177
178 ecore_write_big_buf_wb(sc, addr, len);
179 }
180
181 static void ecore_init_block(struct bnx2x_softc *sc, uint32_t block, uint32_t stage)
182 {
183 uint16_t op_start =
184 INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
185 STAGE_START)];
186 uint16_t op_end =
187 INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
188 STAGE_END)];
189 const union init_op *op;
190 uint32_t op_idx, op_type, addr, len;
191 const uint32_t *data, *data_base;
192
193 /* If empty block */
194 if (op_start == op_end)
195 return;
196
197 data_base = INIT_DATA(sc);
198
199 for (op_idx = op_start; op_idx < op_end; op_idx++) {
200
201 op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
202 /* Get generic data */
203 op_type = op->raw.op;
204 addr = op->raw.offset;
205 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
206 * OP_WR64 (we assume that op_arr_write and op_write have the
207 * same structure).
208 */
209 len = op->arr_wr.data_len;
210 data = data_base + op->arr_wr.data_off;
211
212 switch (op_type) {
213 case OP_RD:
214 REG_RD(sc, addr);
215 break;
216 case OP_WR:
217 REG_WR(sc, addr, op->write.val);
218 break;
219 case OP_SW:
220 ecore_init_str_wr(sc, addr, data, len);
221 break;
222 case OP_WB:
223 ecore_init_wr_wb(sc, addr, data, len);
224 break;
225 case OP_ZR:
226 ecore_init_fill(sc, addr, 0, op->zero.len, 0);
227 break;
228 case OP_WB_ZR:
229 ecore_init_fill(sc, addr, 0, op->zero.len, 1);
230 break;
231 case OP_ZP:
232 ecore_init_wr_zp(sc, addr, len,
233 op->arr_wr.data_off);
234 break;
235 case OP_WR_64:
236 ecore_init_wr_64(sc, addr, data, len);
237 break;
238 case OP_IF_MODE_AND:
239 /* if any of the flags doesn't match, skip the
240 * conditional block.
241 */
242 if ((INIT_MODE_FLAGS(sc) &
243 op->if_mode.mode_bit_map) !=
244 op->if_mode.mode_bit_map)
245 op_idx += op->if_mode.cmd_offset;
246 break;
247 case OP_IF_MODE_OR:
248 /* if all the flags don't match, skip the conditional
249 * block.
250 */
251 if ((INIT_MODE_FLAGS(sc) &
252 op->if_mode.mode_bit_map) == 0)
253 op_idx += op->if_mode.cmd_offset;
254 break;
255 default:
256 /* Should never get here! */
257
258 break;
259 }
260 }
261 }
262
263
264 /****************************************************************************
265 * PXP Arbiter
266 ****************************************************************************/
267 /*
268 * This code configures the PCI read/write arbiter
269 * which implements a weighted round robin
270 * between the virtual queues in the chip.
271 *
272 * The values were derived for each PCI max payload and max request size.
273 * since max payload and max request size are only known at run time,
274 * this is done as a separate init stage.
275 */
276
277 #define NUM_WR_Q 13
278 #define NUM_RD_Q 29
279 #define MAX_RD_ORD 3
280 #define MAX_WR_ORD 2
281
282 /* configuration for one arbiter queue */
283 struct arb_line {
284 int l;
285 int add;
286 int ubound;
287 };
288
289 /* derived configuration for each read queue for each max request size */
290 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
291 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
292 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
293 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
294 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
295 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
296 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
297 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
298 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
299 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
300 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
301 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
302 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
303 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
304 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
305 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
306 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
307 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
308 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
309 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
310 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
311 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
312 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
313 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
314 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
315 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
316 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
317 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
318 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
319 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
320 };
321
322 /* derived configuration for each write queue for each max request size */
323 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
324 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
325 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
326 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
327 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
328 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
329 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
330 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
331 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
332 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
333 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
334 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
335 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
336 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
337 };
338
339 /* register addresses for read queues */
340 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
341 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
342 PXP2_REG_RQ_BW_RD_UBOUND0},
343 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
344 PXP2_REG_PSWRQ_BW_UB1},
345 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
346 PXP2_REG_PSWRQ_BW_UB2},
347 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
348 PXP2_REG_PSWRQ_BW_UB3},
349 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
350 PXP2_REG_RQ_BW_RD_UBOUND4},
351 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
352 PXP2_REG_RQ_BW_RD_UBOUND5},
353 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
354 PXP2_REG_PSWRQ_BW_UB6},
355 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
356 PXP2_REG_PSWRQ_BW_UB7},
357 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
358 PXP2_REG_PSWRQ_BW_UB8},
359 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
360 PXP2_REG_PSWRQ_BW_UB9},
361 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
362 PXP2_REG_PSWRQ_BW_UB10},
363 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
364 PXP2_REG_PSWRQ_BW_UB11},
365 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
366 PXP2_REG_RQ_BW_RD_UBOUND12},
367 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
368 PXP2_REG_RQ_BW_RD_UBOUND13},
369 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
370 PXP2_REG_RQ_BW_RD_UBOUND14},
371 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
372 PXP2_REG_RQ_BW_RD_UBOUND15},
373 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
374 PXP2_REG_RQ_BW_RD_UBOUND16},
375 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
376 PXP2_REG_RQ_BW_RD_UBOUND17},
377 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
378 PXP2_REG_RQ_BW_RD_UBOUND18},
379 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
380 PXP2_REG_RQ_BW_RD_UBOUND19},
381 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
382 PXP2_REG_RQ_BW_RD_UBOUND20},
383 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
384 PXP2_REG_RQ_BW_RD_UBOUND22},
385 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
386 PXP2_REG_RQ_BW_RD_UBOUND23},
387 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
388 PXP2_REG_RQ_BW_RD_UBOUND24},
389 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
390 PXP2_REG_RQ_BW_RD_UBOUND25},
391 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
392 PXP2_REG_RQ_BW_RD_UBOUND26},
393 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
394 PXP2_REG_RQ_BW_RD_UBOUND27},
395 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
396 PXP2_REG_PSWRQ_BW_UB28}
397 };
398
399 /* register addresses for write queues */
400 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
401 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
402 PXP2_REG_PSWRQ_BW_UB1},
403 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
404 PXP2_REG_PSWRQ_BW_UB2},
405 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
406 PXP2_REG_PSWRQ_BW_UB3},
407 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
408 PXP2_REG_PSWRQ_BW_UB6},
409 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
410 PXP2_REG_PSWRQ_BW_UB7},
411 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
412 PXP2_REG_PSWRQ_BW_UB8},
413 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
414 PXP2_REG_PSWRQ_BW_UB9},
415 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
416 PXP2_REG_PSWRQ_BW_UB10},
417 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
418 PXP2_REG_PSWRQ_BW_UB11},
419 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
420 PXP2_REG_PSWRQ_BW_UB28},
421 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
422 PXP2_REG_RQ_BW_WR_UBOUND29},
423 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
424 PXP2_REG_RQ_BW_WR_UBOUND30}
425 };
426
427 static void ecore_init_pxp_arb(struct bnx2x_softc *sc, int r_order,
428 int w_order)
429 {
430 uint32_t val, i;
431
432 if (r_order > MAX_RD_ORD) {
433 ECORE_MSG(sc, "read order of %d order adjusted to %d",
434 r_order, MAX_RD_ORD);
435 r_order = MAX_RD_ORD;
436 }
437 if (w_order > MAX_WR_ORD) {
438 ECORE_MSG(sc, "write order of %d order adjusted to %d",
439 w_order, MAX_WR_ORD);
440 w_order = MAX_WR_ORD;
441 }
442 if (CHIP_REV_IS_FPGA(sc)) {
443 ECORE_MSG(sc, "write order adjusted to 1 for FPGA");
444 w_order = 0;
445 }
446 ECORE_MSG(sc, "read order %d write order %d", r_order, w_order);
447
448 for (i = 0; i < NUM_RD_Q-1; i++) {
449 REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
450 REG_WR(sc, read_arb_addr[i].add,
451 read_arb_data[i][r_order].add);
452 REG_WR(sc, read_arb_addr[i].ubound,
453 read_arb_data[i][r_order].ubound);
454 }
455
456 for (i = 0; i < NUM_WR_Q-1; i++) {
457 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
458 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
459
460 REG_WR(sc, write_arb_addr[i].l,
461 write_arb_data[i][w_order].l);
462
463 REG_WR(sc, write_arb_addr[i].add,
464 write_arb_data[i][w_order].add);
465
466 REG_WR(sc, write_arb_addr[i].ubound,
467 write_arb_data[i][w_order].ubound);
468 } else {
469
470 val = REG_RD(sc, write_arb_addr[i].l);
471 REG_WR(sc, write_arb_addr[i].l,
472 val | (write_arb_data[i][w_order].l << 10));
473
474 val = REG_RD(sc, write_arb_addr[i].add);
475 REG_WR(sc, write_arb_addr[i].add,
476 val | (write_arb_data[i][w_order].add << 10));
477
478 val = REG_RD(sc, write_arb_addr[i].ubound);
479 REG_WR(sc, write_arb_addr[i].ubound,
480 val | (write_arb_data[i][w_order].ubound << 7));
481 }
482 }
483
484 val = write_arb_data[NUM_WR_Q-1][w_order].add;
485 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
486 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
487 REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
488
489 val = read_arb_data[NUM_RD_Q-1][r_order].add;
490 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
491 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
492 REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
493
494 REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
495 REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
496 REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
497 REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
498
499 if ((CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) && (r_order == MAX_RD_ORD))
500 REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
501
502 if (CHIP_IS_E3(sc))
503 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
504 else if (CHIP_IS_E2(sc))
505 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
506 else
507 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
508
509 if (!CHIP_IS_E1(sc)) {
510 /* MPS w_order optimal TH presently TH
511 * 128 0 0 2
512 * 256 1 1 3
513 * >=512 2 2 3
514 */
515 /* DMAE is special */
516 if (!CHIP_IS_E1H(sc)) {
517 /* E2 can use optimal TH */
518 val = w_order;
519 REG_WR(sc, PXP2_REG_WR_DMAE_MPS, val);
520 } else {
521 val = ((w_order == 0) ? 2 : 3);
522 REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2);
523 }
524
525 REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
526 REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
527 REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
528 REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
529 REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
530 REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
531 REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
532 REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
533 REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
534 REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
535 }
536
537 /* Validate number of tags suppoted by device */
538 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
539 val = REG_RD(sc, PCIE_REG_PCIER_TL_HDR_FC_ST);
540 val &= 0xFF;
541 if (val <= 0x20)
542 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
543 }
544
545 /****************************************************************************
546 * ILT management
547 ****************************************************************************/
548 /*
549 * This codes hides the low level HW interaction for ILT management and
550 * configuration. The API consists of a shadow ILT table which is set by the
551 * driver and a set of routines to use it to configure the HW.
552 *
553 */
554
555 /* ILT HW init operations */
556
557 /* ILT memory management operations */
558 #define ILT_MEMOP_ALLOC 0
559 #define ILT_MEMOP_FREE 1
560
561 /* the phys address is shifted right 12 bits and has an added
562 * 1=valid bit added to the 53rd bit
563 * then since this is a wide register(TM)
564 * we split it into two 32 bit writes
565 */
566 #define ILT_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
567 #define ILT_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
568 #define ILT_RANGE(f, l) (((l) << 10) | f)
569
570 static int ecore_ilt_line_mem_op(struct bnx2x_softc *sc __rte_unused,
571 struct ilt_line *line, uint32_t size,
572 uint8_t memop)
573 {
574 if (memop == ILT_MEMOP_FREE) {
575 ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
576 return 0;
577 }
578 ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size);
579 if (!line->page)
580 return -1;
581 line->size = size;
582 return 0;
583 }
584
585
586 static int ecore_ilt_client_mem_op(struct bnx2x_softc *sc, int cli_num,
587 uint8_t memop)
588 {
589 int i, rc;
590 struct ecore_ilt *ilt = SC_ILT(sc);
591 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
592
593 if (!ilt || !ilt->lines)
594 return -1;
595
596 if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
597 return 0;
598
599 for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
600 rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
601 ilt_cli->page_size, memop);
602 }
603 return rc;
604 }
605
606 static int ecore_ilt_mem_op(struct bnx2x_softc *sc, uint8_t memop)
607 {
608 int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
609 if (!rc)
610 rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
611 if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
612 rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
613
614 return rc;
615 }
616
617 static void ecore_ilt_line_wr(struct bnx2x_softc *sc, int abs_idx,
618 ecore_dma_addr_t page_mapping)
619 {
620 uint32_t reg;
621
622 if (CHIP_IS_E1(sc))
623 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx * 8;
624 else
625 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx * 8;
626
627 ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
628 }
629
630 static void ecore_ilt_line_init_op(struct bnx2x_softc *sc,
631 struct ecore_ilt *ilt, int idx, uint8_t initop)
632 {
633 ecore_dma_addr_t null_mapping;
634 int abs_idx = ilt->start_line + idx;
635
636
637 switch (initop) {
638 case INITOP_INIT:
639 /* set in the init-value array */
640 case INITOP_SET:
641 ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
642 break;
643 case INITOP_CLEAR:
644 null_mapping = 0;
645 ecore_ilt_line_wr(sc, abs_idx, null_mapping);
646 break;
647 }
648 }
649
650 static void ecore_ilt_boundary_init_op(struct bnx2x_softc *sc,
651 struct ilt_client_info *ilt_cli,
652 uint32_t ilt_start,
653 uint8_t initop __rte_unused)
654 {
655 uint32_t start_reg = 0;
656 uint32_t end_reg = 0;
657
658 /* The boundary is either SET or INIT,
659 CLEAR => SET and for now SET ~~ INIT */
660
661 /* find the appropriate regs */
662 if (CHIP_IS_E1(sc)) {
663 switch (ilt_cli->client_num) {
664 case ILT_CLIENT_CDU:
665 start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
666 break;
667 case ILT_CLIENT_QM:
668 start_reg = PXP2_REG_PSWRQ_QM0_L2P;
669 break;
670 case ILT_CLIENT_SRC:
671 start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
672 break;
673 case ILT_CLIENT_TM:
674 start_reg = PXP2_REG_PSWRQ_TM0_L2P;
675 break;
676 }
677 REG_WR(sc, start_reg + SC_FUNC(sc) * 4,
678 ILT_RANGE((ilt_start + ilt_cli->start),
679 (ilt_start + ilt_cli->end)));
680 } else {
681 switch (ilt_cli->client_num) {
682 case ILT_CLIENT_CDU:
683 start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
684 end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
685 break;
686 case ILT_CLIENT_QM:
687 start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
688 end_reg = PXP2_REG_RQ_QM_LAST_ILT;
689 break;
690 case ILT_CLIENT_SRC:
691 start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
692 end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
693 break;
694 case ILT_CLIENT_TM:
695 start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
696 end_reg = PXP2_REG_RQ_TM_LAST_ILT;
697 break;
698 }
699 REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
700 REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
701 }
702 }
703
704 static void ecore_ilt_client_init_op_ilt(struct bnx2x_softc *sc,
705 struct ecore_ilt *ilt,
706 struct ilt_client_info *ilt_cli,
707 uint8_t initop)
708 {
709 int i;
710
711 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
712 return;
713
714 for (i = ilt_cli->start; i <= ilt_cli->end; i++)
715 ecore_ilt_line_init_op(sc, ilt, i, initop);
716
717 /* init/clear the ILT boundries */
718 ecore_ilt_boundary_init_op(sc, ilt_cli, ilt->start_line, initop);
719 }
720
721 static void ecore_ilt_client_init_op(struct bnx2x_softc *sc,
722 struct ilt_client_info *ilt_cli, uint8_t initop)
723 {
724 struct ecore_ilt *ilt = SC_ILT(sc);
725
726 ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
727 }
728
729 static void ecore_ilt_client_id_init_op(struct bnx2x_softc *sc,
730 int cli_num, uint8_t initop)
731 {
732 struct ecore_ilt *ilt = SC_ILT(sc);
733 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
734
735 ecore_ilt_client_init_op(sc, ilt_cli, initop);
736 }
737
738 static void ecore_ilt_init_op(struct bnx2x_softc *sc, uint8_t initop)
739 {
740 ecore_ilt_client_id_init_op(sc, ILT_CLIENT_CDU, initop);
741 ecore_ilt_client_id_init_op(sc, ILT_CLIENT_QM, initop);
742 if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
743 ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
744 }
745
746 static void ecore_ilt_init_client_psz(struct bnx2x_softc *sc, int cli_num,
747 uint32_t psz_reg, uint8_t initop)
748 {
749 struct ecore_ilt *ilt = SC_ILT(sc);
750 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
751
752 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
753 return;
754
755 switch (initop) {
756 case INITOP_INIT:
757 /* set in the init-value array */
758 case INITOP_SET:
759 REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
760 break;
761 case INITOP_CLEAR:
762 break;
763 }
764 }
765
766 /*
767 * called during init common stage, ilt clients should be initialized
768 * prioir to calling this function
769 */
770 static void ecore_ilt_init_page_size(struct bnx2x_softc *sc, uint8_t initop)
771 {
772 ecore_ilt_init_client_psz(sc, ILT_CLIENT_CDU,
773 PXP2_REG_RQ_CDU_P_SIZE, initop);
774 ecore_ilt_init_client_psz(sc, ILT_CLIENT_QM,
775 PXP2_REG_RQ_QM_P_SIZE, initop);
776 ecore_ilt_init_client_psz(sc, ILT_CLIENT_SRC,
777 PXP2_REG_RQ_SRC_P_SIZE, initop);
778 ecore_ilt_init_client_psz(sc, ILT_CLIENT_TM,
779 PXP2_REG_RQ_TM_P_SIZE, initop);
780 }
781
782 /****************************************************************************
783 * QM initializations
784 ****************************************************************************/
785 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
786 #define QM_INIT_MIN_CID_COUNT 31
787 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
788
789 /* called during init port stage */
790 static void ecore_qm_init_cid_count(struct bnx2x_softc *sc, int qm_cid_count,
791 uint8_t initop)
792 {
793 int port = SC_PORT(sc);
794
795 if (QM_INIT(qm_cid_count)) {
796 switch (initop) {
797 case INITOP_INIT:
798 /* set in the init-value array */
799 case INITOP_SET:
800 REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
801 qm_cid_count/16 - 1);
802 break;
803 case INITOP_CLEAR:
804 break;
805 }
806 }
807 }
808
809 static void ecore_qm_set_ptr_table(struct bnx2x_softc *sc, int qm_cid_count,
810 uint32_t base_reg, uint32_t reg)
811 {
812 int i;
813 uint32_t wb_data[2] = {0, 0};
814 for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
815 REG_WR(sc, base_reg + i*4,
816 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
817 ecore_init_wr_wb(sc, reg + i*8,
818 wb_data, 2);
819 }
820 }
821
822 /* called during init common stage */
823 static void ecore_qm_init_ptr_table(struct bnx2x_softc *sc, int qm_cid_count,
824 uint8_t initop)
825 {
826 if (!QM_INIT(qm_cid_count))
827 return;
828
829 switch (initop) {
830 case INITOP_INIT:
831 /* set in the init-value array */
832 case INITOP_SET:
833 ecore_qm_set_ptr_table(sc, qm_cid_count,
834 QM_REG_BASEADDR, QM_REG_PTRTBL);
835 if (CHIP_IS_E1H(sc))
836 ecore_qm_set_ptr_table(sc, qm_cid_count,
837 QM_REG_BASEADDR_EXT_A,
838 QM_REG_PTRTBL_EXT_A);
839 break;
840 case INITOP_CLEAR:
841 break;
842 }
843 }
844
845 #endif /* ECORE_INIT_OPS_H */