]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/e1000/base/e1000_i210.c
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / e1000 / base / e1000_i210.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2001 - 2015 Intel Corporation
3 */
4
5 #include "e1000_api.h"
6
7
8 STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
9 STATIC void e1000_release_nvm_i210(struct e1000_hw *hw);
10 STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
11 STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
12 u16 *data);
13 STATIC s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
14 STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
15
16 /**
17 * e1000_acquire_nvm_i210 - Request for access to EEPROM
18 * @hw: pointer to the HW structure
19 *
20 * Acquire the necessary semaphores for exclusive access to the EEPROM.
21 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
22 * Return successful if access grant bit set, else clear the request for
23 * EEPROM access and return -E1000_ERR_NVM (-1).
24 **/
25 STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
26 {
27 s32 ret_val;
28
29 DEBUGFUNC("e1000_acquire_nvm_i210");
30
31 ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
32
33 return ret_val;
34 }
35
36 /**
37 * e1000_release_nvm_i210 - Release exclusive access to EEPROM
38 * @hw: pointer to the HW structure
39 *
40 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
41 * then release the semaphores acquired.
42 **/
43 STATIC void e1000_release_nvm_i210(struct e1000_hw *hw)
44 {
45 DEBUGFUNC("e1000_release_nvm_i210");
46
47 e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
48 }
49
50 /**
51 * e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
52 * @hw: pointer to the HW structure
53 * @mask: specifies which semaphore to acquire
54 *
55 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
56 * will also specify which port we're acquiring the lock for.
57 **/
58 s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
59 {
60 u32 swfw_sync;
61 u32 swmask = mask;
62 u32 fwmask = mask << 16;
63 s32 ret_val = E1000_SUCCESS;
64 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
65
66 DEBUGFUNC("e1000_acquire_swfw_sync_i210");
67
68 while (i < timeout) {
69 if (e1000_get_hw_semaphore_i210(hw)) {
70 ret_val = -E1000_ERR_SWFW_SYNC;
71 goto out;
72 }
73
74 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
75 if (!(swfw_sync & (fwmask | swmask)))
76 break;
77
78 /*
79 * Firmware currently using resource (fwmask)
80 * or other software thread using resource (swmask)
81 */
82 e1000_put_hw_semaphore_generic(hw);
83 msec_delay_irq(5);
84 i++;
85 }
86
87 if (i == timeout) {
88 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
89 ret_val = -E1000_ERR_SWFW_SYNC;
90 goto out;
91 }
92
93 swfw_sync |= swmask;
94 E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
95
96 e1000_put_hw_semaphore_generic(hw);
97
98 out:
99 return ret_val;
100 }
101
102 /**
103 * e1000_release_swfw_sync_i210 - Release SW/FW semaphore
104 * @hw: pointer to the HW structure
105 * @mask: specifies which semaphore to acquire
106 *
107 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
108 * will also specify which port we're releasing the lock for.
109 **/
110 void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
111 {
112 u32 swfw_sync;
113
114 DEBUGFUNC("e1000_release_swfw_sync_i210");
115
116 while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
117 ; /* Empty */
118
119 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
120 swfw_sync &= ~mask;
121 E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
122
123 e1000_put_hw_semaphore_generic(hw);
124 }
125
126 /**
127 * e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
128 * @hw: pointer to the HW structure
129 *
130 * Acquire the HW semaphore to access the PHY or NVM
131 **/
132 STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
133 {
134 u32 swsm;
135 s32 timeout = hw->nvm.word_size + 1;
136 s32 i = 0;
137
138 DEBUGFUNC("e1000_get_hw_semaphore_i210");
139
140 /* Get the SW semaphore */
141 while (i < timeout) {
142 swsm = E1000_READ_REG(hw, E1000_SWSM);
143 if (!(swsm & E1000_SWSM_SMBI))
144 break;
145
146 usec_delay(50);
147 i++;
148 }
149
150 if (i == timeout) {
151 /* In rare circumstances, the SW semaphore may already be held
152 * unintentionally. Clear the semaphore once before giving up.
153 */
154 if (hw->dev_spec._82575.clear_semaphore_once) {
155 hw->dev_spec._82575.clear_semaphore_once = false;
156 e1000_put_hw_semaphore_generic(hw);
157 for (i = 0; i < timeout; i++) {
158 swsm = E1000_READ_REG(hw, E1000_SWSM);
159 if (!(swsm & E1000_SWSM_SMBI))
160 break;
161
162 usec_delay(50);
163 }
164 }
165
166 /* If we do not have the semaphore here, we have to give up. */
167 if (i == timeout) {
168 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
169 return -E1000_ERR_NVM;
170 }
171 }
172
173 /* Get the FW semaphore. */
174 for (i = 0; i < timeout; i++) {
175 swsm = E1000_READ_REG(hw, E1000_SWSM);
176 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
177
178 /* Semaphore acquired if bit latched */
179 if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
180 break;
181
182 usec_delay(50);
183 }
184
185 if (i == timeout) {
186 /* Release semaphores */
187 e1000_put_hw_semaphore_generic(hw);
188 DEBUGOUT("Driver can't access the NVM\n");
189 return -E1000_ERR_NVM;
190 }
191
192 return E1000_SUCCESS;
193 }
194
195 /**
196 * e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
197 * @hw: pointer to the HW structure
198 * @offset: offset of word in the Shadow Ram to read
199 * @words: number of words to read
200 * @data: word read from the Shadow Ram
201 *
202 * Reads a 16 bit word from the Shadow Ram using the EERD register.
203 * Uses necessary synchronization semaphores.
204 **/
205 s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
206 u16 *data)
207 {
208 s32 status = E1000_SUCCESS;
209 u16 i, count;
210
211 DEBUGFUNC("e1000_read_nvm_srrd_i210");
212
213 /* We cannot hold synchronization semaphores for too long,
214 * because of forceful takeover procedure. However it is more efficient
215 * to read in bursts than synchronizing access for each word. */
216 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
217 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
218 E1000_EERD_EEWR_MAX_COUNT : (words - i);
219 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
220 status = e1000_read_nvm_eerd(hw, offset, count,
221 data + i);
222 hw->nvm.ops.release(hw);
223 } else {
224 status = E1000_ERR_SWFW_SYNC;
225 }
226
227 if (status != E1000_SUCCESS)
228 break;
229 }
230
231 return status;
232 }
233
234 /**
235 * e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
236 * @hw: pointer to the HW structure
237 * @offset: offset within the Shadow RAM to be written to
238 * @words: number of words to write
239 * @data: 16 bit word(s) to be written to the Shadow RAM
240 *
241 * Writes data to Shadow RAM at offset using EEWR register.
242 *
243 * If e1000_update_nvm_checksum is not called after this function , the
244 * data will not be committed to FLASH and also Shadow RAM will most likely
245 * contain an invalid checksum.
246 *
247 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
248 * partially written.
249 **/
250 s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
251 u16 *data)
252 {
253 s32 status = E1000_SUCCESS;
254 u16 i, count;
255
256 DEBUGFUNC("e1000_write_nvm_srwr_i210");
257
258 /* We cannot hold synchronization semaphores for too long,
259 * because of forceful takeover procedure. However it is more efficient
260 * to write in bursts than synchronizing access for each word. */
261 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
262 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
263 E1000_EERD_EEWR_MAX_COUNT : (words - i);
264 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
265 status = e1000_write_nvm_srwr(hw, offset, count,
266 data + i);
267 hw->nvm.ops.release(hw);
268 } else {
269 status = E1000_ERR_SWFW_SYNC;
270 }
271
272 if (status != E1000_SUCCESS)
273 break;
274 }
275
276 return status;
277 }
278
279 /**
280 * e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
281 * @hw: pointer to the HW structure
282 * @offset: offset within the Shadow Ram to be written to
283 * @words: number of words to write
284 * @data: 16 bit word(s) to be written to the Shadow Ram
285 *
286 * Writes data to Shadow Ram at offset using EEWR register.
287 *
288 * If e1000_update_nvm_checksum is not called after this function , the
289 * Shadow Ram will most likely contain an invalid checksum.
290 **/
291 STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
292 u16 *data)
293 {
294 struct e1000_nvm_info *nvm = &hw->nvm;
295 u32 i, k, eewr = 0;
296 u32 attempts = 100000;
297 s32 ret_val = E1000_SUCCESS;
298
299 DEBUGFUNC("e1000_write_nvm_srwr");
300
301 /*
302 * A check for invalid values: offset too large, too many words,
303 * too many words for the offset, and not enough words.
304 */
305 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
306 (words == 0)) {
307 DEBUGOUT("nvm parameter(s) out of bounds\n");
308 ret_val = -E1000_ERR_NVM;
309 goto out;
310 }
311
312 for (i = 0; i < words; i++) {
313 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
314 (data[i] << E1000_NVM_RW_REG_DATA) |
315 E1000_NVM_RW_REG_START;
316
317 E1000_WRITE_REG(hw, E1000_SRWR, eewr);
318
319 for (k = 0; k < attempts; k++) {
320 if (E1000_NVM_RW_REG_DONE &
321 E1000_READ_REG(hw, E1000_SRWR)) {
322 ret_val = E1000_SUCCESS;
323 break;
324 }
325 usec_delay(5);
326 }
327
328 if (ret_val != E1000_SUCCESS) {
329 DEBUGOUT("Shadow RAM write EEWR timed out\n");
330 break;
331 }
332 }
333
334 out:
335 return ret_val;
336 }
337
338 /** e1000_read_invm_word_i210 - Reads OTP
339 * @hw: pointer to the HW structure
340 * @address: the word address (aka eeprom offset) to read
341 * @data: pointer to the data read
342 *
343 * Reads 16-bit words from the OTP. Return error when the word is not
344 * stored in OTP.
345 **/
346 STATIC s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
347 {
348 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
349 u32 invm_dword;
350 u16 i;
351 u8 record_type, word_address;
352
353 DEBUGFUNC("e1000_read_invm_word_i210");
354
355 for (i = 0; i < E1000_INVM_SIZE; i++) {
356 invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
357 /* Get record type */
358 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
359 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
360 break;
361 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
362 i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
363 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
364 i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
365 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
366 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
367 if (word_address == address) {
368 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
369 DEBUGOUT2("Read INVM Word 0x%02x = %x",
370 address, *data);
371 status = E1000_SUCCESS;
372 break;
373 }
374 }
375 }
376 if (status != E1000_SUCCESS)
377 DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
378 return status;
379 }
380
381 /** e1000_read_invm_i210 - Read invm wrapper function for I210/I211
382 * @hw: pointer to the HW structure
383 * @address: the word address (aka eeprom offset) to read
384 * @data: pointer to the data read
385 *
386 * Wrapper function to return data formerly found in the NVM.
387 **/
388 STATIC s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset,
389 u16 E1000_UNUSEDARG words, u16 *data)
390 {
391 s32 ret_val = E1000_SUCCESS;
392 UNREFERENCED_1PARAMETER(words);
393
394 DEBUGFUNC("e1000_read_invm_i210");
395
396 /* Only the MAC addr is required to be present in the iNVM */
397 switch (offset) {
398 case NVM_MAC_ADDR:
399 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]);
400 ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1,
401 &data[1]);
402 ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2,
403 &data[2]);
404 if (ret_val != E1000_SUCCESS)
405 DEBUGOUT("MAC Addr not found in iNVM\n");
406 break;
407 case NVM_INIT_CTRL_2:
408 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
409 if (ret_val != E1000_SUCCESS) {
410 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
411 ret_val = E1000_SUCCESS;
412 }
413 break;
414 case NVM_INIT_CTRL_4:
415 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
416 if (ret_val != E1000_SUCCESS) {
417 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
418 ret_val = E1000_SUCCESS;
419 }
420 break;
421 case NVM_LED_1_CFG:
422 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
423 if (ret_val != E1000_SUCCESS) {
424 *data = NVM_LED_1_CFG_DEFAULT_I211;
425 ret_val = E1000_SUCCESS;
426 }
427 break;
428 case NVM_LED_0_2_CFG:
429 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
430 if (ret_val != E1000_SUCCESS) {
431 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
432 ret_val = E1000_SUCCESS;
433 }
434 break;
435 case NVM_ID_LED_SETTINGS:
436 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
437 if (ret_val != E1000_SUCCESS) {
438 *data = ID_LED_RESERVED_FFFF;
439 ret_val = E1000_SUCCESS;
440 }
441 break;
442 case NVM_SUB_DEV_ID:
443 *data = hw->subsystem_device_id;
444 break;
445 case NVM_SUB_VEN_ID:
446 *data = hw->subsystem_vendor_id;
447 break;
448 case NVM_DEV_ID:
449 *data = hw->device_id;
450 break;
451 case NVM_VEN_ID:
452 *data = hw->vendor_id;
453 break;
454 default:
455 DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
456 *data = NVM_RESERVED_WORD;
457 break;
458 }
459 return ret_val;
460 }
461
462 /**
463 * e1000_read_invm_version - Reads iNVM version and image type
464 * @hw: pointer to the HW structure
465 * @invm_ver: version structure for the version read
466 *
467 * Reads iNVM version and image type.
468 **/
469 s32 e1000_read_invm_version(struct e1000_hw *hw,
470 struct e1000_fw_version *invm_ver)
471 {
472 u32 *record = NULL;
473 u32 *next_record = NULL;
474 u32 i = 0;
475 u32 invm_dword = 0;
476 u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
477 E1000_INVM_RECORD_SIZE_IN_BYTES);
478 u32 buffer[E1000_INVM_SIZE];
479 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
480 u16 version = 0;
481
482 DEBUGFUNC("e1000_read_invm_version");
483
484 /* Read iNVM memory */
485 for (i = 0; i < E1000_INVM_SIZE; i++) {
486 invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
487 buffer[i] = invm_dword;
488 }
489
490 /* Read version number */
491 for (i = 1; i < invm_blocks; i++) {
492 record = &buffer[invm_blocks - i];
493 next_record = &buffer[invm_blocks - i + 1];
494
495 /* Check if we have first version location used */
496 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
497 version = 0;
498 status = E1000_SUCCESS;
499 break;
500 }
501 /* Check if we have second version location used */
502 else if ((i == 1) &&
503 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
504 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
505 status = E1000_SUCCESS;
506 break;
507 }
508 /*
509 * Check if we have odd version location
510 * used and it is the last one used
511 */
512 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
513 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
514 (i != 1))) {
515 version = (*next_record & E1000_INVM_VER_FIELD_TWO)
516 >> 13;
517 status = E1000_SUCCESS;
518 break;
519 }
520 /*
521 * Check if we have even version location
522 * used and it is the last one used
523 */
524 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
525 ((*record & 0x3) == 0)) {
526 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
527 status = E1000_SUCCESS;
528 break;
529 }
530 }
531
532 if (status == E1000_SUCCESS) {
533 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
534 >> E1000_INVM_MAJOR_SHIFT;
535 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
536 }
537 /* Read Image Type */
538 for (i = 1; i < invm_blocks; i++) {
539 record = &buffer[invm_blocks - i];
540 next_record = &buffer[invm_blocks - i + 1];
541
542 /* Check if we have image type in first location used */
543 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
544 invm_ver->invm_img_type = 0;
545 status = E1000_SUCCESS;
546 break;
547 }
548 /* Check if we have image type in first location used */
549 else if ((((*record & 0x3) == 0) &&
550 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
551 ((((*record & 0x3) != 0) && (i != 1)))) {
552 invm_ver->invm_img_type =
553 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
554 status = E1000_SUCCESS;
555 break;
556 }
557 }
558 return status;
559 }
560
561 /**
562 * e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
563 * @hw: pointer to the HW structure
564 *
565 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
566 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
567 **/
568 s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
569 {
570 s32 status = E1000_SUCCESS;
571 s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
572
573 DEBUGFUNC("e1000_validate_nvm_checksum_i210");
574
575 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
576
577 /*
578 * Replace the read function with semaphore grabbing with
579 * the one that skips this for a while.
580 * We have semaphore taken already here.
581 */
582 read_op_ptr = hw->nvm.ops.read;
583 hw->nvm.ops.read = e1000_read_nvm_eerd;
584
585 status = e1000_validate_nvm_checksum_generic(hw);
586
587 /* Revert original read operation. */
588 hw->nvm.ops.read = read_op_ptr;
589
590 hw->nvm.ops.release(hw);
591 } else {
592 status = E1000_ERR_SWFW_SYNC;
593 }
594
595 return status;
596 }
597
598
599 /**
600 * e1000_update_nvm_checksum_i210 - Update EEPROM checksum
601 * @hw: pointer to the HW structure
602 *
603 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
604 * up to the checksum. Then calculates the EEPROM checksum and writes the
605 * value to the EEPROM. Next commit EEPROM data onto the Flash.
606 **/
607 s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
608 {
609 s32 ret_val;
610 u16 checksum = 0;
611 u16 i, nvm_data;
612
613 DEBUGFUNC("e1000_update_nvm_checksum_i210");
614
615 /*
616 * Read the first word from the EEPROM. If this times out or fails, do
617 * not continue or we could be in for a very long wait while every
618 * EEPROM read fails
619 */
620 ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
621 if (ret_val != E1000_SUCCESS) {
622 DEBUGOUT("EEPROM read failed\n");
623 goto out;
624 }
625
626 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
627 /*
628 * Do not use hw->nvm.ops.write, hw->nvm.ops.read
629 * because we do not want to take the synchronization
630 * semaphores twice here.
631 */
632
633 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
634 ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
635 if (ret_val) {
636 hw->nvm.ops.release(hw);
637 DEBUGOUT("NVM Read Error while updating checksum.\n");
638 goto out;
639 }
640 checksum += nvm_data;
641 }
642 checksum = (u16) NVM_SUM - checksum;
643 ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
644 &checksum);
645 if (ret_val != E1000_SUCCESS) {
646 hw->nvm.ops.release(hw);
647 DEBUGOUT("NVM Write Error while updating checksum.\n");
648 goto out;
649 }
650
651 hw->nvm.ops.release(hw);
652
653 ret_val = e1000_update_flash_i210(hw);
654 } else {
655 ret_val = E1000_ERR_SWFW_SYNC;
656 }
657 out:
658 return ret_val;
659 }
660
661 /**
662 * e1000_get_flash_presence_i210 - Check if flash device is detected.
663 * @hw: pointer to the HW structure
664 *
665 **/
666 bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
667 {
668 u32 eec = 0;
669 bool ret_val = false;
670
671 DEBUGFUNC("e1000_get_flash_presence_i210");
672
673 eec = E1000_READ_REG(hw, E1000_EECD);
674
675 if (eec & E1000_EECD_FLASH_DETECTED_I210)
676 ret_val = true;
677
678 return ret_val;
679 }
680
681 /**
682 * e1000_update_flash_i210 - Commit EEPROM to the flash
683 * @hw: pointer to the HW structure
684 *
685 **/
686 s32 e1000_update_flash_i210(struct e1000_hw *hw)
687 {
688 s32 ret_val;
689 u32 flup;
690
691 DEBUGFUNC("e1000_update_flash_i210");
692
693 ret_val = e1000_pool_flash_update_done_i210(hw);
694 if (ret_val == -E1000_ERR_NVM) {
695 DEBUGOUT("Flash update time out\n");
696 goto out;
697 }
698
699 flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
700 E1000_WRITE_REG(hw, E1000_EECD, flup);
701
702 ret_val = e1000_pool_flash_update_done_i210(hw);
703 if (ret_val == E1000_SUCCESS)
704 DEBUGOUT("Flash update complete\n");
705 else
706 DEBUGOUT("Flash update time out\n");
707
708 out:
709 return ret_val;
710 }
711
712 /**
713 * e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
714 * @hw: pointer to the HW structure
715 *
716 **/
717 s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
718 {
719 s32 ret_val = -E1000_ERR_NVM;
720 u32 i, reg;
721
722 DEBUGFUNC("e1000_pool_flash_update_done_i210");
723
724 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
725 reg = E1000_READ_REG(hw, E1000_EECD);
726 if (reg & E1000_EECD_FLUDONE_I210) {
727 ret_val = E1000_SUCCESS;
728 break;
729 }
730 usec_delay(5);
731 }
732
733 return ret_val;
734 }
735
736 /**
737 * e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
738 * @hw: pointer to the HW structure
739 *
740 * Initialize the i210/i211 NVM parameters and function pointers.
741 **/
742 STATIC s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
743 {
744 s32 ret_val;
745 struct e1000_nvm_info *nvm = &hw->nvm;
746
747 DEBUGFUNC("e1000_init_nvm_params_i210");
748
749 ret_val = e1000_init_nvm_params_82575(hw);
750 nvm->ops.acquire = e1000_acquire_nvm_i210;
751 nvm->ops.release = e1000_release_nvm_i210;
752 nvm->ops.valid_led_default = e1000_valid_led_default_i210;
753 if (e1000_get_flash_presence_i210(hw)) {
754 hw->nvm.type = e1000_nvm_flash_hw;
755 nvm->ops.read = e1000_read_nvm_srrd_i210;
756 nvm->ops.write = e1000_write_nvm_srwr_i210;
757 nvm->ops.validate = e1000_validate_nvm_checksum_i210;
758 nvm->ops.update = e1000_update_nvm_checksum_i210;
759 } else {
760 hw->nvm.type = e1000_nvm_invm;
761 nvm->ops.read = e1000_read_invm_i210;
762 nvm->ops.write = e1000_null_write_nvm;
763 nvm->ops.validate = e1000_null_ops_generic;
764 nvm->ops.update = e1000_null_ops_generic;
765 }
766 return ret_val;
767 }
768
769 /**
770 * e1000_init_function_pointers_i210 - Init func ptrs.
771 * @hw: pointer to the HW structure
772 *
773 * Called to initialize all function pointers and parameters.
774 **/
775 void e1000_init_function_pointers_i210(struct e1000_hw *hw)
776 {
777 e1000_init_function_pointers_82575(hw);
778 hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
779
780 return;
781 }
782
783 /**
784 * e1000_valid_led_default_i210 - Verify a valid default LED config
785 * @hw: pointer to the HW structure
786 * @data: pointer to the NVM (EEPROM)
787 *
788 * Read the EEPROM for the current default LED configuration. If the
789 * LED configuration is not valid, set to a valid LED configuration.
790 **/
791 STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
792 {
793 s32 ret_val;
794
795 DEBUGFUNC("e1000_valid_led_default_i210");
796
797 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
798 if (ret_val) {
799 DEBUGOUT("NVM Read Error\n");
800 goto out;
801 }
802
803 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
804 switch (hw->phy.media_type) {
805 case e1000_media_type_internal_serdes:
806 *data = ID_LED_DEFAULT_I210_SERDES;
807 break;
808 case e1000_media_type_copper:
809 default:
810 *data = ID_LED_DEFAULT_I210;
811 break;
812 }
813 }
814 out:
815 return ret_val;
816 }
817
818 /**
819 * __e1000_access_xmdio_reg - Read/write XMDIO register
820 * @hw: pointer to the HW structure
821 * @address: XMDIO address to program
822 * @dev_addr: device address to program
823 * @data: pointer to value to read/write from/to the XMDIO address
824 * @read: boolean flag to indicate read or write
825 **/
826 STATIC s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address,
827 u8 dev_addr, u16 *data, bool read)
828 {
829 s32 ret_val;
830
831 DEBUGFUNC("__e1000_access_xmdio_reg");
832
833 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
834 if (ret_val)
835 return ret_val;
836
837 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
838 if (ret_val)
839 return ret_val;
840
841 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
842 dev_addr);
843 if (ret_val)
844 return ret_val;
845
846 if (read)
847 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
848 else
849 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
850 if (ret_val)
851 return ret_val;
852
853 /* Recalibrate the device back to 0 */
854 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
855 if (ret_val)
856 return ret_val;
857
858 return ret_val;
859 }
860
861 /**
862 * e1000_read_xmdio_reg - Read XMDIO register
863 * @hw: pointer to the HW structure
864 * @addr: XMDIO address to program
865 * @dev_addr: device address to program
866 * @data: value to be read from the EMI address
867 **/
868 s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
869 {
870 DEBUGFUNC("e1000_read_xmdio_reg");
871
872 return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, true);
873 }
874
875 /**
876 * e1000_write_xmdio_reg - Write XMDIO register
877 * @hw: pointer to the HW structure
878 * @addr: XMDIO address to program
879 * @dev_addr: device address to program
880 * @data: value to be written to the XMDIO address
881 **/
882 s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
883 {
884 DEBUGFUNC("e1000_read_xmdio_reg");
885
886 return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, false);
887 }
888
889 /**
890 * e1000_pll_workaround_i210
891 * @hw: pointer to the HW structure
892 *
893 * Works around an errata in the PLL circuit where it occasionally
894 * provides the wrong clock frequency after power up.
895 **/
896 STATIC s32 e1000_pll_workaround_i210(struct e1000_hw *hw)
897 {
898 s32 ret_val;
899 u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
900 u16 nvm_word, phy_word, pci_word, tmp_nvm;
901 int i;
902
903 /* Get and set needed register values */
904 wuc = E1000_READ_REG(hw, E1000_WUC);
905 mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
906 reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
907 E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val);
908
909 /* Get data from NVM, or set default */
910 ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
911 &nvm_word);
912 if (ret_val != E1000_SUCCESS)
913 nvm_word = E1000_INVM_DEFAULT_AL;
914 tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
915 phy_word = E1000_PHY_PLL_UNCONF;
916 for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
917 /* check current state directly from internal PHY */
918 e1000_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE |
919 E1000_PHY_PLL_FREQ_REG), &phy_word);
920 if ((phy_word & E1000_PHY_PLL_UNCONF)
921 != E1000_PHY_PLL_UNCONF) {
922 ret_val = E1000_SUCCESS;
923 break;
924 } else {
925 ret_val = -E1000_ERR_PHY;
926 }
927 /* directly reset the internal PHY */
928 ctrl = E1000_READ_REG(hw, E1000_CTRL);
929 E1000_WRITE_REG(hw, E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
930
931 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
932 ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
933 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
934
935 E1000_WRITE_REG(hw, E1000_WUC, 0);
936 reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
937 E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val);
938
939 e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
940 pci_word |= E1000_PCI_PMCSR_D3;
941 e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
942 msec_delay(1);
943 pci_word &= ~E1000_PCI_PMCSR_D3;
944 e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
945 reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
946 E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val);
947
948 /* restore WUC register */
949 E1000_WRITE_REG(hw, E1000_WUC, wuc);
950 }
951 /* restore MDICNFG setting */
952 E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
953 return ret_val;
954 }
955
956 /**
957 * e1000_get_cfg_done_i210 - Read config done bit
958 * @hw: pointer to the HW structure
959 *
960 * Read the management control register for the config done bit for
961 * completion status. NOTE: silicon which is EEPROM-less will fail trying
962 * to read the config done bit, so an error is *ONLY* logged and returns
963 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
964 * would not be able to be reset or change link.
965 **/
966 STATIC s32 e1000_get_cfg_done_i210(struct e1000_hw *hw)
967 {
968 s32 timeout = PHY_CFG_TIMEOUT;
969 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
970
971 DEBUGFUNC("e1000_get_cfg_done_i210");
972
973 while (timeout) {
974 if (E1000_READ_REG(hw, E1000_EEMNGCTL_I210) & mask)
975 break;
976 msec_delay(1);
977 timeout--;
978 }
979 if (!timeout)
980 DEBUGOUT("MNG configuration cycle has not completed.\n");
981
982 return E1000_SUCCESS;
983 }
984
985 /**
986 * e1000_init_hw_i210 - Init hw for I210/I211
987 * @hw: pointer to the HW structure
988 *
989 * Called to initialize hw for i210 hw family.
990 **/
991 s32 e1000_init_hw_i210(struct e1000_hw *hw)
992 {
993 s32 ret_val;
994
995 DEBUGFUNC("e1000_init_hw_i210");
996 if ((hw->mac.type >= e1000_i210) &&
997 !(e1000_get_flash_presence_i210(hw))) {
998 ret_val = e1000_pll_workaround_i210(hw);
999 if (ret_val != E1000_SUCCESS)
1000 return ret_val;
1001 }
1002 hw->phy.ops.get_cfg_done = e1000_get_cfg_done_i210;
1003 ret_val = e1000_init_hw_82575(hw);
1004 return ret_val;
1005 }