]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/failsafe/failsafe_ops.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / failsafe / failsafe_ops.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2017 6WIND S.A.
3 * Copyright 2017 Mellanox Technologies, Ltd
4 */
5
6 #include <stdbool.h>
7 #include <stdint.h>
8 #include <unistd.h>
9
10 #include <rte_debug.h>
11 #include <rte_atomic.h>
12 #include <rte_ethdev_driver.h>
13 #include <rte_malloc.h>
14 #include <rte_flow.h>
15 #include <rte_cycles.h>
16 #include <rte_ethdev.h>
17
18 #include "failsafe_private.h"
19
20 static struct rte_eth_dev_info default_infos = {
21 /* Max possible number of elements */
22 .max_rx_pktlen = UINT32_MAX,
23 .max_rx_queues = RTE_MAX_QUEUES_PER_PORT,
24 .max_tx_queues = RTE_MAX_QUEUES_PER_PORT,
25 .max_mac_addrs = FAILSAFE_MAX_ETHADDR,
26 .max_hash_mac_addrs = UINT32_MAX,
27 .max_vfs = UINT16_MAX,
28 .max_vmdq_pools = UINT16_MAX,
29 .rx_desc_lim = {
30 .nb_max = UINT16_MAX,
31 .nb_min = 0,
32 .nb_align = 1,
33 .nb_seg_max = UINT16_MAX,
34 .nb_mtu_seg_max = UINT16_MAX,
35 },
36 .tx_desc_lim = {
37 .nb_max = UINT16_MAX,
38 .nb_min = 0,
39 .nb_align = 1,
40 .nb_seg_max = UINT16_MAX,
41 .nb_mtu_seg_max = UINT16_MAX,
42 },
43 /*
44 * Set of capabilities that can be verified upon
45 * configuring a sub-device.
46 */
47 .rx_offload_capa =
48 DEV_RX_OFFLOAD_VLAN_STRIP |
49 DEV_RX_OFFLOAD_IPV4_CKSUM |
50 DEV_RX_OFFLOAD_UDP_CKSUM |
51 DEV_RX_OFFLOAD_TCP_CKSUM |
52 DEV_RX_OFFLOAD_TCP_LRO |
53 DEV_RX_OFFLOAD_QINQ_STRIP |
54 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
55 DEV_RX_OFFLOAD_MACSEC_STRIP |
56 DEV_RX_OFFLOAD_HEADER_SPLIT |
57 DEV_RX_OFFLOAD_VLAN_FILTER |
58 DEV_RX_OFFLOAD_VLAN_EXTEND |
59 DEV_RX_OFFLOAD_JUMBO_FRAME |
60 DEV_RX_OFFLOAD_CRC_STRIP |
61 DEV_RX_OFFLOAD_SCATTER |
62 DEV_RX_OFFLOAD_TIMESTAMP |
63 DEV_RX_OFFLOAD_SECURITY,
64 .rx_queue_offload_capa =
65 DEV_RX_OFFLOAD_VLAN_STRIP |
66 DEV_RX_OFFLOAD_IPV4_CKSUM |
67 DEV_RX_OFFLOAD_UDP_CKSUM |
68 DEV_RX_OFFLOAD_TCP_CKSUM |
69 DEV_RX_OFFLOAD_TCP_LRO |
70 DEV_RX_OFFLOAD_QINQ_STRIP |
71 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
72 DEV_RX_OFFLOAD_MACSEC_STRIP |
73 DEV_RX_OFFLOAD_HEADER_SPLIT |
74 DEV_RX_OFFLOAD_VLAN_FILTER |
75 DEV_RX_OFFLOAD_VLAN_EXTEND |
76 DEV_RX_OFFLOAD_JUMBO_FRAME |
77 DEV_RX_OFFLOAD_CRC_STRIP |
78 DEV_RX_OFFLOAD_SCATTER |
79 DEV_RX_OFFLOAD_TIMESTAMP |
80 DEV_RX_OFFLOAD_SECURITY,
81 .tx_offload_capa =
82 DEV_TX_OFFLOAD_MULTI_SEGS |
83 DEV_TX_OFFLOAD_IPV4_CKSUM |
84 DEV_TX_OFFLOAD_UDP_CKSUM |
85 DEV_TX_OFFLOAD_TCP_CKSUM |
86 DEV_TX_OFFLOAD_TCP_TSO,
87 .flow_type_rss_offloads =
88 ETH_RSS_IP |
89 ETH_RSS_UDP |
90 ETH_RSS_TCP,
91 };
92
93 static int
94 fs_dev_configure(struct rte_eth_dev *dev)
95 {
96 struct sub_device *sdev;
97 uint8_t i;
98 int ret;
99
100 fs_lock(dev, 0);
101 FOREACH_SUBDEV(sdev, i, dev) {
102 int rmv_interrupt = 0;
103 int lsc_interrupt = 0;
104 int lsc_enabled;
105
106 if (sdev->state != DEV_PROBED &&
107 !(PRIV(dev)->alarm_lock == 0 && sdev->state == DEV_ACTIVE))
108 continue;
109
110 rmv_interrupt = ETH(sdev)->data->dev_flags &
111 RTE_ETH_DEV_INTR_RMV;
112 if (rmv_interrupt) {
113 DEBUG("Enabling RMV interrupts for sub_device %d", i);
114 dev->data->dev_conf.intr_conf.rmv = 1;
115 } else {
116 DEBUG("sub_device %d does not support RMV event", i);
117 }
118 lsc_enabled = dev->data->dev_conf.intr_conf.lsc;
119 lsc_interrupt = lsc_enabled &&
120 (ETH(sdev)->data->dev_flags &
121 RTE_ETH_DEV_INTR_LSC);
122 if (lsc_interrupt) {
123 DEBUG("Enabling LSC interrupts for sub_device %d", i);
124 dev->data->dev_conf.intr_conf.lsc = 1;
125 } else if (lsc_enabled && !lsc_interrupt) {
126 DEBUG("Disabling LSC interrupts for sub_device %d", i);
127 dev->data->dev_conf.intr_conf.lsc = 0;
128 }
129 DEBUG("Configuring sub-device %d", i);
130 ret = rte_eth_dev_configure(PORT_ID(sdev),
131 dev->data->nb_rx_queues,
132 dev->data->nb_tx_queues,
133 &dev->data->dev_conf);
134 if (ret) {
135 if (!fs_err(sdev, ret))
136 continue;
137 ERROR("Could not configure sub_device %d", i);
138 fs_unlock(dev, 0);
139 return ret;
140 }
141 if (rmv_interrupt && sdev->rmv_callback == 0) {
142 ret = rte_eth_dev_callback_register(PORT_ID(sdev),
143 RTE_ETH_EVENT_INTR_RMV,
144 failsafe_eth_rmv_event_callback,
145 sdev);
146 if (ret)
147 WARN("Failed to register RMV callback for sub_device %d",
148 SUB_ID(sdev));
149 else
150 sdev->rmv_callback = 1;
151 }
152 dev->data->dev_conf.intr_conf.rmv = 0;
153 if (lsc_interrupt && sdev->lsc_callback == 0) {
154 ret = rte_eth_dev_callback_register(PORT_ID(sdev),
155 RTE_ETH_EVENT_INTR_LSC,
156 failsafe_eth_lsc_event_callback,
157 dev);
158 if (ret)
159 WARN("Failed to register LSC callback for sub_device %d",
160 SUB_ID(sdev));
161 else
162 sdev->lsc_callback = 1;
163 }
164 dev->data->dev_conf.intr_conf.lsc = lsc_enabled;
165 sdev->state = DEV_ACTIVE;
166 }
167 if (PRIV(dev)->state < DEV_ACTIVE)
168 PRIV(dev)->state = DEV_ACTIVE;
169 fs_unlock(dev, 0);
170 return 0;
171 }
172
173 static int
174 fs_dev_start(struct rte_eth_dev *dev)
175 {
176 struct sub_device *sdev;
177 uint8_t i;
178 int ret;
179
180 fs_lock(dev, 0);
181 ret = failsafe_rx_intr_install(dev);
182 if (ret) {
183 fs_unlock(dev, 0);
184 return ret;
185 }
186 FOREACH_SUBDEV(sdev, i, dev) {
187 if (sdev->state != DEV_ACTIVE)
188 continue;
189 DEBUG("Starting sub_device %d", i);
190 ret = rte_eth_dev_start(PORT_ID(sdev));
191 if (ret) {
192 if (!fs_err(sdev, ret))
193 continue;
194 fs_unlock(dev, 0);
195 return ret;
196 }
197 ret = failsafe_rx_intr_install_subdevice(sdev);
198 if (ret) {
199 if (!fs_err(sdev, ret))
200 continue;
201 rte_eth_dev_stop(PORT_ID(sdev));
202 fs_unlock(dev, 0);
203 return ret;
204 }
205 sdev->state = DEV_STARTED;
206 }
207 if (PRIV(dev)->state < DEV_STARTED)
208 PRIV(dev)->state = DEV_STARTED;
209 fs_switch_dev(dev, NULL);
210 fs_unlock(dev, 0);
211 return 0;
212 }
213
214 static void
215 fs_dev_stop(struct rte_eth_dev *dev)
216 {
217 struct sub_device *sdev;
218 uint8_t i;
219
220 fs_lock(dev, 0);
221 PRIV(dev)->state = DEV_STARTED - 1;
222 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_STARTED) {
223 rte_eth_dev_stop(PORT_ID(sdev));
224 failsafe_rx_intr_uninstall_subdevice(sdev);
225 sdev->state = DEV_STARTED - 1;
226 }
227 failsafe_rx_intr_uninstall(dev);
228 fs_unlock(dev, 0);
229 }
230
231 static int
232 fs_dev_set_link_up(struct rte_eth_dev *dev)
233 {
234 struct sub_device *sdev;
235 uint8_t i;
236 int ret;
237
238 fs_lock(dev, 0);
239 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
240 DEBUG("Calling rte_eth_dev_set_link_up on sub_device %d", i);
241 ret = rte_eth_dev_set_link_up(PORT_ID(sdev));
242 if ((ret = fs_err(sdev, ret))) {
243 ERROR("Operation rte_eth_dev_set_link_up failed for sub_device %d"
244 " with error %d", i, ret);
245 fs_unlock(dev, 0);
246 return ret;
247 }
248 }
249 fs_unlock(dev, 0);
250 return 0;
251 }
252
253 static int
254 fs_dev_set_link_down(struct rte_eth_dev *dev)
255 {
256 struct sub_device *sdev;
257 uint8_t i;
258 int ret;
259
260 fs_lock(dev, 0);
261 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
262 DEBUG("Calling rte_eth_dev_set_link_down on sub_device %d", i);
263 ret = rte_eth_dev_set_link_down(PORT_ID(sdev));
264 if ((ret = fs_err(sdev, ret))) {
265 ERROR("Operation rte_eth_dev_set_link_down failed for sub_device %d"
266 " with error %d", i, ret);
267 fs_unlock(dev, 0);
268 return ret;
269 }
270 }
271 fs_unlock(dev, 0);
272 return 0;
273 }
274
275 static void fs_dev_free_queues(struct rte_eth_dev *dev);
276 static void
277 fs_dev_close(struct rte_eth_dev *dev)
278 {
279 struct sub_device *sdev;
280 uint8_t i;
281
282 fs_lock(dev, 0);
283 failsafe_hotplug_alarm_cancel(dev);
284 if (PRIV(dev)->state == DEV_STARTED)
285 dev->dev_ops->dev_stop(dev);
286 PRIV(dev)->state = DEV_ACTIVE - 1;
287 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
288 DEBUG("Closing sub_device %d", i);
289 failsafe_eth_dev_unregister_callbacks(sdev);
290 rte_eth_dev_close(PORT_ID(sdev));
291 sdev->state = DEV_ACTIVE - 1;
292 }
293 fs_dev_free_queues(dev);
294 fs_unlock(dev, 0);
295 }
296
297 static void
298 fs_rx_queue_release(void *queue)
299 {
300 struct rte_eth_dev *dev;
301 struct sub_device *sdev;
302 uint8_t i;
303 struct rxq *rxq;
304
305 if (queue == NULL)
306 return;
307 rxq = queue;
308 dev = rxq->priv->dev;
309 fs_lock(dev, 0);
310 if (rxq->event_fd > 0)
311 close(rxq->event_fd);
312 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
313 SUBOPS(sdev, rx_queue_release)
314 (ETH(sdev)->data->rx_queues[rxq->qid]);
315 dev->data->rx_queues[rxq->qid] = NULL;
316 rte_free(rxq);
317 fs_unlock(dev, 0);
318 }
319
320 static int
321 fs_rx_queue_setup(struct rte_eth_dev *dev,
322 uint16_t rx_queue_id,
323 uint16_t nb_rx_desc,
324 unsigned int socket_id,
325 const struct rte_eth_rxconf *rx_conf,
326 struct rte_mempool *mb_pool)
327 {
328 /*
329 * FIXME: Add a proper interface in rte_eal_interrupts for
330 * allocating eventfd as an interrupt vector.
331 * For the time being, fake as if we are using MSIX interrupts,
332 * this will cause rte_intr_efd_enable to allocate an eventfd for us.
333 */
334 struct rte_intr_handle intr_handle = {
335 .type = RTE_INTR_HANDLE_VFIO_MSIX,
336 .efds = { -1, },
337 };
338 struct sub_device *sdev;
339 struct rxq *rxq;
340 uint8_t i;
341 int ret;
342
343 fs_lock(dev, 0);
344 rxq = dev->data->rx_queues[rx_queue_id];
345 if (rxq != NULL) {
346 fs_rx_queue_release(rxq);
347 dev->data->rx_queues[rx_queue_id] = NULL;
348 }
349 rxq = rte_zmalloc(NULL,
350 sizeof(*rxq) +
351 sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
352 RTE_CACHE_LINE_SIZE);
353 if (rxq == NULL) {
354 fs_unlock(dev, 0);
355 return -ENOMEM;
356 }
357 FOREACH_SUBDEV(sdev, i, dev)
358 rte_atomic64_init(&rxq->refcnt[i]);
359 rxq->qid = rx_queue_id;
360 rxq->socket_id = socket_id;
361 rxq->info.mp = mb_pool;
362 rxq->info.conf = *rx_conf;
363 rxq->info.nb_desc = nb_rx_desc;
364 rxq->priv = PRIV(dev);
365 rxq->sdev = PRIV(dev)->subs;
366 ret = rte_intr_efd_enable(&intr_handle, 1);
367 if (ret < 0) {
368 fs_unlock(dev, 0);
369 return ret;
370 }
371 rxq->event_fd = intr_handle.efds[0];
372 dev->data->rx_queues[rx_queue_id] = rxq;
373 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
374 ret = rte_eth_rx_queue_setup(PORT_ID(sdev),
375 rx_queue_id,
376 nb_rx_desc, socket_id,
377 rx_conf, mb_pool);
378 if ((ret = fs_err(sdev, ret))) {
379 ERROR("RX queue setup failed for sub_device %d", i);
380 goto free_rxq;
381 }
382 }
383 fs_unlock(dev, 0);
384 return 0;
385 free_rxq:
386 fs_rx_queue_release(rxq);
387 fs_unlock(dev, 0);
388 return ret;
389 }
390
391 static int
392 fs_rx_intr_enable(struct rte_eth_dev *dev, uint16_t idx)
393 {
394 struct rxq *rxq;
395 struct sub_device *sdev;
396 uint8_t i;
397 int ret;
398 int rc = 0;
399
400 fs_lock(dev, 0);
401 if (idx >= dev->data->nb_rx_queues) {
402 rc = -EINVAL;
403 goto unlock;
404 }
405 rxq = dev->data->rx_queues[idx];
406 if (rxq == NULL || rxq->event_fd <= 0) {
407 rc = -EINVAL;
408 goto unlock;
409 }
410 /* Fail if proxy service is nor running. */
411 if (PRIV(dev)->rxp.sstate != SS_RUNNING) {
412 ERROR("failsafe interrupt services are not running");
413 rc = -EAGAIN;
414 goto unlock;
415 }
416 rxq->enable_events = 1;
417 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
418 ret = rte_eth_dev_rx_intr_enable(PORT_ID(sdev), idx);
419 ret = fs_err(sdev, ret);
420 if (ret)
421 rc = ret;
422 }
423 unlock:
424 fs_unlock(dev, 0);
425 if (rc)
426 rte_errno = -rc;
427 return rc;
428 }
429
430 static int
431 fs_rx_intr_disable(struct rte_eth_dev *dev, uint16_t idx)
432 {
433 struct rxq *rxq;
434 struct sub_device *sdev;
435 uint64_t u64;
436 uint8_t i;
437 int rc = 0;
438 int ret;
439
440 fs_lock(dev, 0);
441 if (idx >= dev->data->nb_rx_queues) {
442 rc = -EINVAL;
443 goto unlock;
444 }
445 rxq = dev->data->rx_queues[idx];
446 if (rxq == NULL || rxq->event_fd <= 0) {
447 rc = -EINVAL;
448 goto unlock;
449 }
450 rxq->enable_events = 0;
451 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
452 ret = rte_eth_dev_rx_intr_disable(PORT_ID(sdev), idx);
453 ret = fs_err(sdev, ret);
454 if (ret)
455 rc = ret;
456 }
457 /* Clear pending events */
458 while (read(rxq->event_fd, &u64, sizeof(uint64_t)) > 0)
459 ;
460 unlock:
461 fs_unlock(dev, 0);
462 if (rc)
463 rte_errno = -rc;
464 return rc;
465 }
466
467 static void
468 fs_tx_queue_release(void *queue)
469 {
470 struct rte_eth_dev *dev;
471 struct sub_device *sdev;
472 uint8_t i;
473 struct txq *txq;
474
475 if (queue == NULL)
476 return;
477 txq = queue;
478 dev = txq->priv->dev;
479 fs_lock(dev, 0);
480 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
481 SUBOPS(sdev, tx_queue_release)
482 (ETH(sdev)->data->tx_queues[txq->qid]);
483 dev->data->tx_queues[txq->qid] = NULL;
484 rte_free(txq);
485 fs_unlock(dev, 0);
486 }
487
488 static int
489 fs_tx_queue_setup(struct rte_eth_dev *dev,
490 uint16_t tx_queue_id,
491 uint16_t nb_tx_desc,
492 unsigned int socket_id,
493 const struct rte_eth_txconf *tx_conf)
494 {
495 struct sub_device *sdev;
496 struct txq *txq;
497 uint8_t i;
498 int ret;
499
500 fs_lock(dev, 0);
501 txq = dev->data->tx_queues[tx_queue_id];
502 if (txq != NULL) {
503 fs_tx_queue_release(txq);
504 dev->data->tx_queues[tx_queue_id] = NULL;
505 }
506 txq = rte_zmalloc("ethdev TX queue",
507 sizeof(*txq) +
508 sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
509 RTE_CACHE_LINE_SIZE);
510 if (txq == NULL) {
511 fs_unlock(dev, 0);
512 return -ENOMEM;
513 }
514 FOREACH_SUBDEV(sdev, i, dev)
515 rte_atomic64_init(&txq->refcnt[i]);
516 txq->qid = tx_queue_id;
517 txq->socket_id = socket_id;
518 txq->info.conf = *tx_conf;
519 txq->info.nb_desc = nb_tx_desc;
520 txq->priv = PRIV(dev);
521 dev->data->tx_queues[tx_queue_id] = txq;
522 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
523 ret = rte_eth_tx_queue_setup(PORT_ID(sdev),
524 tx_queue_id,
525 nb_tx_desc, socket_id,
526 tx_conf);
527 if ((ret = fs_err(sdev, ret))) {
528 ERROR("TX queue setup failed for sub_device %d", i);
529 goto free_txq;
530 }
531 }
532 fs_unlock(dev, 0);
533 return 0;
534 free_txq:
535 fs_tx_queue_release(txq);
536 fs_unlock(dev, 0);
537 return ret;
538 }
539
540 static void
541 fs_dev_free_queues(struct rte_eth_dev *dev)
542 {
543 uint16_t i;
544
545 for (i = 0; i < dev->data->nb_rx_queues; i++) {
546 fs_rx_queue_release(dev->data->rx_queues[i]);
547 dev->data->rx_queues[i] = NULL;
548 }
549 dev->data->nb_rx_queues = 0;
550 for (i = 0; i < dev->data->nb_tx_queues; i++) {
551 fs_tx_queue_release(dev->data->tx_queues[i]);
552 dev->data->tx_queues[i] = NULL;
553 }
554 dev->data->nb_tx_queues = 0;
555 }
556
557 static void
558 fs_promiscuous_enable(struct rte_eth_dev *dev)
559 {
560 struct sub_device *sdev;
561 uint8_t i;
562
563 fs_lock(dev, 0);
564 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
565 rte_eth_promiscuous_enable(PORT_ID(sdev));
566 fs_unlock(dev, 0);
567 }
568
569 static void
570 fs_promiscuous_disable(struct rte_eth_dev *dev)
571 {
572 struct sub_device *sdev;
573 uint8_t i;
574
575 fs_lock(dev, 0);
576 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
577 rte_eth_promiscuous_disable(PORT_ID(sdev));
578 fs_unlock(dev, 0);
579 }
580
581 static void
582 fs_allmulticast_enable(struct rte_eth_dev *dev)
583 {
584 struct sub_device *sdev;
585 uint8_t i;
586
587 fs_lock(dev, 0);
588 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
589 rte_eth_allmulticast_enable(PORT_ID(sdev));
590 fs_unlock(dev, 0);
591 }
592
593 static void
594 fs_allmulticast_disable(struct rte_eth_dev *dev)
595 {
596 struct sub_device *sdev;
597 uint8_t i;
598
599 fs_lock(dev, 0);
600 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
601 rte_eth_allmulticast_disable(PORT_ID(sdev));
602 fs_unlock(dev, 0);
603 }
604
605 static int
606 fs_link_update(struct rte_eth_dev *dev,
607 int wait_to_complete)
608 {
609 struct sub_device *sdev;
610 uint8_t i;
611 int ret;
612
613 fs_lock(dev, 0);
614 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
615 DEBUG("Calling link_update on sub_device %d", i);
616 ret = (SUBOPS(sdev, link_update))(ETH(sdev), wait_to_complete);
617 if (ret && ret != -1 && sdev->remove == 0 &&
618 rte_eth_dev_is_removed(PORT_ID(sdev)) == 0) {
619 ERROR("Link update failed for sub_device %d with error %d",
620 i, ret);
621 fs_unlock(dev, 0);
622 return ret;
623 }
624 }
625 if (TX_SUBDEV(dev)) {
626 struct rte_eth_link *l1;
627 struct rte_eth_link *l2;
628
629 l1 = &dev->data->dev_link;
630 l2 = &ETH(TX_SUBDEV(dev))->data->dev_link;
631 if (memcmp(l1, l2, sizeof(*l1))) {
632 *l1 = *l2;
633 fs_unlock(dev, 0);
634 return 0;
635 }
636 }
637 fs_unlock(dev, 0);
638 return -1;
639 }
640
641 static int
642 fs_stats_get(struct rte_eth_dev *dev,
643 struct rte_eth_stats *stats)
644 {
645 struct rte_eth_stats backup;
646 struct sub_device *sdev;
647 uint8_t i;
648 int ret;
649
650 fs_lock(dev, 0);
651 rte_memcpy(stats, &PRIV(dev)->stats_accumulator, sizeof(*stats));
652 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
653 struct rte_eth_stats *snapshot = &sdev->stats_snapshot.stats;
654 uint64_t *timestamp = &sdev->stats_snapshot.timestamp;
655
656 rte_memcpy(&backup, snapshot, sizeof(backup));
657 ret = rte_eth_stats_get(PORT_ID(sdev), snapshot);
658 if (ret) {
659 if (!fs_err(sdev, ret)) {
660 rte_memcpy(snapshot, &backup, sizeof(backup));
661 goto inc;
662 }
663 ERROR("Operation rte_eth_stats_get failed for sub_device %d with error %d",
664 i, ret);
665 *timestamp = 0;
666 fs_unlock(dev, 0);
667 return ret;
668 }
669 *timestamp = rte_rdtsc();
670 inc:
671 failsafe_stats_increment(stats, snapshot);
672 }
673 fs_unlock(dev, 0);
674 return 0;
675 }
676
677 static void
678 fs_stats_reset(struct rte_eth_dev *dev)
679 {
680 struct sub_device *sdev;
681 uint8_t i;
682
683 fs_lock(dev, 0);
684 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
685 rte_eth_stats_reset(PORT_ID(sdev));
686 memset(&sdev->stats_snapshot, 0, sizeof(struct rte_eth_stats));
687 }
688 memset(&PRIV(dev)->stats_accumulator, 0, sizeof(struct rte_eth_stats));
689 fs_unlock(dev, 0);
690 }
691
692 /**
693 * Fail-safe dev_infos_get rules:
694 *
695 * No sub_device:
696 * Numerables:
697 * Use the maximum possible values for any field, so as not
698 * to impede any further configuration effort.
699 * Capabilities:
700 * Limits capabilities to those that are understood by the
701 * fail-safe PMD. This understanding stems from the fail-safe
702 * being capable of verifying that the related capability is
703 * expressed within the device configuration (struct rte_eth_conf).
704 *
705 * At least one probed sub_device:
706 * Numerables:
707 * Uses values from the active probed sub_device
708 * The rationale here is that if any sub_device is less capable
709 * (for example concerning the number of queues) than the active
710 * sub_device, then its subsequent configuration will fail.
711 * It is impossible to foresee this failure when the failing sub_device
712 * is supposed to be plugged-in later on, so the configuration process
713 * is the single point of failure and error reporting.
714 * Capabilities:
715 * Uses a logical AND of RX capabilities among
716 * all sub_devices and the default capabilities.
717 * Uses a logical AND of TX capabilities among
718 * the active probed sub_device and the default capabilities.
719 *
720 */
721 static void
722 fs_dev_infos_get(struct rte_eth_dev *dev,
723 struct rte_eth_dev_info *infos)
724 {
725 struct sub_device *sdev;
726 uint8_t i;
727
728 sdev = TX_SUBDEV(dev);
729 if (sdev == NULL) {
730 DEBUG("No probed device, using default infos");
731 rte_memcpy(&PRIV(dev)->infos, &default_infos,
732 sizeof(default_infos));
733 } else {
734 uint64_t rx_offload_capa;
735 uint64_t rxq_offload_capa;
736 uint64_t rss_hf_offload_capa;
737
738 rx_offload_capa = default_infos.rx_offload_capa;
739 rxq_offload_capa = default_infos.rx_queue_offload_capa;
740 rss_hf_offload_capa = default_infos.flow_type_rss_offloads;
741 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
742 rte_eth_dev_info_get(PORT_ID(sdev),
743 &PRIV(dev)->infos);
744 rx_offload_capa &= PRIV(dev)->infos.rx_offload_capa;
745 rxq_offload_capa &=
746 PRIV(dev)->infos.rx_queue_offload_capa;
747 rss_hf_offload_capa &=
748 PRIV(dev)->infos.flow_type_rss_offloads;
749 }
750 sdev = TX_SUBDEV(dev);
751 rte_eth_dev_info_get(PORT_ID(sdev), &PRIV(dev)->infos);
752 PRIV(dev)->infos.rx_offload_capa = rx_offload_capa;
753 PRIV(dev)->infos.rx_queue_offload_capa = rxq_offload_capa;
754 PRIV(dev)->infos.flow_type_rss_offloads = rss_hf_offload_capa;
755 PRIV(dev)->infos.tx_offload_capa &=
756 default_infos.tx_offload_capa;
757 PRIV(dev)->infos.tx_queue_offload_capa &=
758 default_infos.tx_queue_offload_capa;
759 }
760 rte_memcpy(infos, &PRIV(dev)->infos, sizeof(*infos));
761 }
762
763 static const uint32_t *
764 fs_dev_supported_ptypes_get(struct rte_eth_dev *dev)
765 {
766 struct sub_device *sdev;
767 struct rte_eth_dev *edev;
768 const uint32_t *ret;
769
770 fs_lock(dev, 0);
771 sdev = TX_SUBDEV(dev);
772 if (sdev == NULL) {
773 ret = NULL;
774 goto unlock;
775 }
776 edev = ETH(sdev);
777 /* ENOTSUP: counts as no supported ptypes */
778 if (SUBOPS(sdev, dev_supported_ptypes_get) == NULL) {
779 ret = NULL;
780 goto unlock;
781 }
782 /*
783 * The API does not permit to do a clean AND of all ptypes,
784 * It is also incomplete by design and we do not really care
785 * to have a best possible value in this context.
786 * We just return the ptypes of the device of highest
787 * priority, usually the PREFERRED device.
788 */
789 ret = SUBOPS(sdev, dev_supported_ptypes_get)(edev);
790 unlock:
791 fs_unlock(dev, 0);
792 return ret;
793 }
794
795 static int
796 fs_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
797 {
798 struct sub_device *sdev;
799 uint8_t i;
800 int ret;
801
802 fs_lock(dev, 0);
803 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
804 DEBUG("Calling rte_eth_dev_set_mtu on sub_device %d", i);
805 ret = rte_eth_dev_set_mtu(PORT_ID(sdev), mtu);
806 if ((ret = fs_err(sdev, ret))) {
807 ERROR("Operation rte_eth_dev_set_mtu failed for sub_device %d with error %d",
808 i, ret);
809 fs_unlock(dev, 0);
810 return ret;
811 }
812 }
813 fs_unlock(dev, 0);
814 return 0;
815 }
816
817 static int
818 fs_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
819 {
820 struct sub_device *sdev;
821 uint8_t i;
822 int ret;
823
824 fs_lock(dev, 0);
825 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
826 DEBUG("Calling rte_eth_dev_vlan_filter on sub_device %d", i);
827 ret = rte_eth_dev_vlan_filter(PORT_ID(sdev), vlan_id, on);
828 if ((ret = fs_err(sdev, ret))) {
829 ERROR("Operation rte_eth_dev_vlan_filter failed for sub_device %d"
830 " with error %d", i, ret);
831 fs_unlock(dev, 0);
832 return ret;
833 }
834 }
835 fs_unlock(dev, 0);
836 return 0;
837 }
838
839 static int
840 fs_flow_ctrl_get(struct rte_eth_dev *dev,
841 struct rte_eth_fc_conf *fc_conf)
842 {
843 struct sub_device *sdev;
844 int ret;
845
846 fs_lock(dev, 0);
847 sdev = TX_SUBDEV(dev);
848 if (sdev == NULL) {
849 ret = 0;
850 goto unlock;
851 }
852 if (SUBOPS(sdev, flow_ctrl_get) == NULL) {
853 ret = -ENOTSUP;
854 goto unlock;
855 }
856 ret = SUBOPS(sdev, flow_ctrl_get)(ETH(sdev), fc_conf);
857 unlock:
858 fs_unlock(dev, 0);
859 return ret;
860 }
861
862 static int
863 fs_flow_ctrl_set(struct rte_eth_dev *dev,
864 struct rte_eth_fc_conf *fc_conf)
865 {
866 struct sub_device *sdev;
867 uint8_t i;
868 int ret;
869
870 fs_lock(dev, 0);
871 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
872 DEBUG("Calling rte_eth_dev_flow_ctrl_set on sub_device %d", i);
873 ret = rte_eth_dev_flow_ctrl_set(PORT_ID(sdev), fc_conf);
874 if ((ret = fs_err(sdev, ret))) {
875 ERROR("Operation rte_eth_dev_flow_ctrl_set failed for sub_device %d"
876 " with error %d", i, ret);
877 fs_unlock(dev, 0);
878 return ret;
879 }
880 }
881 fs_unlock(dev, 0);
882 return 0;
883 }
884
885 static void
886 fs_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
887 {
888 struct sub_device *sdev;
889 uint8_t i;
890
891 fs_lock(dev, 0);
892 /* No check: already done within the rte_eth_dev_mac_addr_remove
893 * call for the fail-safe device.
894 */
895 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
896 rte_eth_dev_mac_addr_remove(PORT_ID(sdev),
897 &dev->data->mac_addrs[index]);
898 PRIV(dev)->mac_addr_pool[index] = 0;
899 fs_unlock(dev, 0);
900 }
901
902 static int
903 fs_mac_addr_add(struct rte_eth_dev *dev,
904 struct ether_addr *mac_addr,
905 uint32_t index,
906 uint32_t vmdq)
907 {
908 struct sub_device *sdev;
909 int ret;
910 uint8_t i;
911
912 RTE_ASSERT(index < FAILSAFE_MAX_ETHADDR);
913 fs_lock(dev, 0);
914 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
915 ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), mac_addr, vmdq);
916 if ((ret = fs_err(sdev, ret))) {
917 ERROR("Operation rte_eth_dev_mac_addr_add failed for sub_device %"
918 PRIu8 " with error %d", i, ret);
919 fs_unlock(dev, 0);
920 return ret;
921 }
922 }
923 if (index >= PRIV(dev)->nb_mac_addr) {
924 DEBUG("Growing mac_addrs array");
925 PRIV(dev)->nb_mac_addr = index;
926 }
927 PRIV(dev)->mac_addr_pool[index] = vmdq;
928 fs_unlock(dev, 0);
929 return 0;
930 }
931
932 static int
933 fs_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
934 {
935 struct sub_device *sdev;
936 uint8_t i;
937 int ret;
938
939 fs_lock(dev, 0);
940 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
941 ret = rte_eth_dev_default_mac_addr_set(PORT_ID(sdev), mac_addr);
942 ret = fs_err(sdev, ret);
943 if (ret) {
944 ERROR("Operation rte_eth_dev_mac_addr_set failed for sub_device %d with error %d",
945 i, ret);
946 fs_unlock(dev, 0);
947 return ret;
948 }
949 }
950 fs_unlock(dev, 0);
951
952 return 0;
953 }
954
955 static int
956 fs_rss_hash_update(struct rte_eth_dev *dev,
957 struct rte_eth_rss_conf *rss_conf)
958 {
959 struct sub_device *sdev;
960 uint8_t i;
961 int ret;
962
963 fs_lock(dev, 0);
964 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
965 ret = rte_eth_dev_rss_hash_update(PORT_ID(sdev), rss_conf);
966 ret = fs_err(sdev, ret);
967 if (ret) {
968 ERROR("Operation rte_eth_dev_rss_hash_update"
969 " failed for sub_device %d with error %d",
970 i, ret);
971 fs_unlock(dev, 0);
972 return ret;
973 }
974 }
975 fs_unlock(dev, 0);
976
977 return 0;
978 }
979
980 static int
981 fs_filter_ctrl(struct rte_eth_dev *dev,
982 enum rte_filter_type type,
983 enum rte_filter_op op,
984 void *arg)
985 {
986 struct sub_device *sdev;
987 uint8_t i;
988 int ret;
989
990 if (type == RTE_ETH_FILTER_GENERIC &&
991 op == RTE_ETH_FILTER_GET) {
992 *(const void **)arg = &fs_flow_ops;
993 return 0;
994 }
995 fs_lock(dev, 0);
996 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
997 DEBUG("Calling rte_eth_dev_filter_ctrl on sub_device %d", i);
998 ret = rte_eth_dev_filter_ctrl(PORT_ID(sdev), type, op, arg);
999 if ((ret = fs_err(sdev, ret))) {
1000 ERROR("Operation rte_eth_dev_filter_ctrl failed for sub_device %d"
1001 " with error %d", i, ret);
1002 fs_unlock(dev, 0);
1003 return ret;
1004 }
1005 }
1006 fs_unlock(dev, 0);
1007 return 0;
1008 }
1009
1010 const struct eth_dev_ops failsafe_ops = {
1011 .dev_configure = fs_dev_configure,
1012 .dev_start = fs_dev_start,
1013 .dev_stop = fs_dev_stop,
1014 .dev_set_link_down = fs_dev_set_link_down,
1015 .dev_set_link_up = fs_dev_set_link_up,
1016 .dev_close = fs_dev_close,
1017 .promiscuous_enable = fs_promiscuous_enable,
1018 .promiscuous_disable = fs_promiscuous_disable,
1019 .allmulticast_enable = fs_allmulticast_enable,
1020 .allmulticast_disable = fs_allmulticast_disable,
1021 .link_update = fs_link_update,
1022 .stats_get = fs_stats_get,
1023 .stats_reset = fs_stats_reset,
1024 .dev_infos_get = fs_dev_infos_get,
1025 .dev_supported_ptypes_get = fs_dev_supported_ptypes_get,
1026 .mtu_set = fs_mtu_set,
1027 .vlan_filter_set = fs_vlan_filter_set,
1028 .rx_queue_setup = fs_rx_queue_setup,
1029 .tx_queue_setup = fs_tx_queue_setup,
1030 .rx_queue_release = fs_rx_queue_release,
1031 .tx_queue_release = fs_tx_queue_release,
1032 .rx_queue_intr_enable = fs_rx_intr_enable,
1033 .rx_queue_intr_disable = fs_rx_intr_disable,
1034 .flow_ctrl_get = fs_flow_ctrl_get,
1035 .flow_ctrl_set = fs_flow_ctrl_set,
1036 .mac_addr_remove = fs_mac_addr_remove,
1037 .mac_addr_add = fs_mac_addr_add,
1038 .mac_addr_set = fs_mac_addr_set,
1039 .rss_hash_update = fs_rss_hash_update,
1040 .filter_ctrl = fs_filter_ctrl,
1041 };