]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/failsafe/failsafe_ops.c
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / failsafe / failsafe_ops.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2017 6WIND S.A.
3 * Copyright 2017 Mellanox Technologies, Ltd
4 */
5
6 #include <stdbool.h>
7 #include <stdint.h>
8 #include <unistd.h>
9
10 #include <rte_debug.h>
11 #include <rte_atomic.h>
12 #include <rte_ethdev_driver.h>
13 #include <rte_malloc.h>
14 #include <rte_flow.h>
15 #include <rte_cycles.h>
16 #include <rte_ethdev.h>
17 #include <rte_string_fns.h>
18
19 #include "failsafe_private.h"
20
21 static int
22 fs_dev_configure(struct rte_eth_dev *dev)
23 {
24 struct sub_device *sdev;
25 uint8_t i;
26 int ret;
27
28 fs_lock(dev, 0);
29 FOREACH_SUBDEV(sdev, i, dev) {
30 int rmv_interrupt = 0;
31 int lsc_interrupt = 0;
32 int lsc_enabled;
33
34 if (sdev->state != DEV_PROBED &&
35 !(PRIV(dev)->alarm_lock == 0 && sdev->state == DEV_ACTIVE))
36 continue;
37
38 rmv_interrupt = ETH(sdev)->data->dev_flags &
39 RTE_ETH_DEV_INTR_RMV;
40 if (rmv_interrupt) {
41 DEBUG("Enabling RMV interrupts for sub_device %d", i);
42 dev->data->dev_conf.intr_conf.rmv = 1;
43 } else {
44 DEBUG("sub_device %d does not support RMV event", i);
45 }
46 lsc_enabled = dev->data->dev_conf.intr_conf.lsc;
47 lsc_interrupt = lsc_enabled &&
48 (ETH(sdev)->data->dev_flags &
49 RTE_ETH_DEV_INTR_LSC);
50 if (lsc_interrupt) {
51 DEBUG("Enabling LSC interrupts for sub_device %d", i);
52 dev->data->dev_conf.intr_conf.lsc = 1;
53 } else if (lsc_enabled && !lsc_interrupt) {
54 DEBUG("Disabling LSC interrupts for sub_device %d", i);
55 dev->data->dev_conf.intr_conf.lsc = 0;
56 }
57 DEBUG("Configuring sub-device %d", i);
58 ret = rte_eth_dev_configure(PORT_ID(sdev),
59 dev->data->nb_rx_queues,
60 dev->data->nb_tx_queues,
61 &dev->data->dev_conf);
62 if (ret) {
63 if (!fs_err(sdev, ret))
64 continue;
65 ERROR("Could not configure sub_device %d", i);
66 fs_unlock(dev, 0);
67 return ret;
68 }
69 if (rmv_interrupt && sdev->rmv_callback == 0) {
70 ret = rte_eth_dev_callback_register(PORT_ID(sdev),
71 RTE_ETH_EVENT_INTR_RMV,
72 failsafe_eth_rmv_event_callback,
73 sdev);
74 if (ret)
75 WARN("Failed to register RMV callback for sub_device %d",
76 SUB_ID(sdev));
77 else
78 sdev->rmv_callback = 1;
79 }
80 dev->data->dev_conf.intr_conf.rmv = 0;
81 if (lsc_interrupt && sdev->lsc_callback == 0) {
82 ret = rte_eth_dev_callback_register(PORT_ID(sdev),
83 RTE_ETH_EVENT_INTR_LSC,
84 failsafe_eth_lsc_event_callback,
85 dev);
86 if (ret)
87 WARN("Failed to register LSC callback for sub_device %d",
88 SUB_ID(sdev));
89 else
90 sdev->lsc_callback = 1;
91 }
92 dev->data->dev_conf.intr_conf.lsc = lsc_enabled;
93 sdev->state = DEV_ACTIVE;
94 }
95 if (PRIV(dev)->state < DEV_ACTIVE)
96 PRIV(dev)->state = DEV_ACTIVE;
97 fs_unlock(dev, 0);
98 return 0;
99 }
100
101 static void
102 fs_set_queues_state_start(struct rte_eth_dev *dev)
103 {
104 struct rxq *rxq;
105 struct txq *txq;
106 uint16_t i;
107
108 for (i = 0; i < dev->data->nb_rx_queues; i++) {
109 rxq = dev->data->rx_queues[i];
110 if (rxq != NULL && !rxq->info.conf.rx_deferred_start)
111 dev->data->rx_queue_state[i] =
112 RTE_ETH_QUEUE_STATE_STARTED;
113 }
114 for (i = 0; i < dev->data->nb_tx_queues; i++) {
115 txq = dev->data->tx_queues[i];
116 if (txq != NULL && !txq->info.conf.tx_deferred_start)
117 dev->data->tx_queue_state[i] =
118 RTE_ETH_QUEUE_STATE_STARTED;
119 }
120 }
121
122 static int
123 fs_dev_start(struct rte_eth_dev *dev)
124 {
125 struct sub_device *sdev;
126 uint8_t i;
127 int ret;
128
129 fs_lock(dev, 0);
130 ret = failsafe_rx_intr_install(dev);
131 if (ret) {
132 fs_unlock(dev, 0);
133 return ret;
134 }
135 FOREACH_SUBDEV(sdev, i, dev) {
136 if (sdev->state != DEV_ACTIVE)
137 continue;
138 DEBUG("Starting sub_device %d", i);
139 ret = rte_eth_dev_start(PORT_ID(sdev));
140 if (ret) {
141 if (!fs_err(sdev, ret))
142 continue;
143 fs_unlock(dev, 0);
144 return ret;
145 }
146 ret = failsafe_rx_intr_install_subdevice(sdev);
147 if (ret) {
148 if (!fs_err(sdev, ret))
149 continue;
150 rte_eth_dev_stop(PORT_ID(sdev));
151 fs_unlock(dev, 0);
152 return ret;
153 }
154 sdev->state = DEV_STARTED;
155 }
156 if (PRIV(dev)->state < DEV_STARTED) {
157 PRIV(dev)->state = DEV_STARTED;
158 fs_set_queues_state_start(dev);
159 }
160 fs_switch_dev(dev, NULL);
161 fs_unlock(dev, 0);
162 return 0;
163 }
164
165 static void
166 fs_set_queues_state_stop(struct rte_eth_dev *dev)
167 {
168 uint16_t i;
169
170 for (i = 0; i < dev->data->nb_rx_queues; i++)
171 if (dev->data->rx_queues[i] != NULL)
172 dev->data->rx_queue_state[i] =
173 RTE_ETH_QUEUE_STATE_STOPPED;
174 for (i = 0; i < dev->data->nb_tx_queues; i++)
175 if (dev->data->tx_queues[i] != NULL)
176 dev->data->tx_queue_state[i] =
177 RTE_ETH_QUEUE_STATE_STOPPED;
178 }
179
180 static void
181 fs_dev_stop(struct rte_eth_dev *dev)
182 {
183 struct sub_device *sdev;
184 uint8_t i;
185
186 fs_lock(dev, 0);
187 PRIV(dev)->state = DEV_STARTED - 1;
188 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_STARTED) {
189 rte_eth_dev_stop(PORT_ID(sdev));
190 failsafe_rx_intr_uninstall_subdevice(sdev);
191 sdev->state = DEV_STARTED - 1;
192 }
193 failsafe_rx_intr_uninstall(dev);
194 fs_set_queues_state_stop(dev);
195 fs_unlock(dev, 0);
196 }
197
198 static int
199 fs_dev_set_link_up(struct rte_eth_dev *dev)
200 {
201 struct sub_device *sdev;
202 uint8_t i;
203 int ret;
204
205 fs_lock(dev, 0);
206 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
207 DEBUG("Calling rte_eth_dev_set_link_up on sub_device %d", i);
208 ret = rte_eth_dev_set_link_up(PORT_ID(sdev));
209 if ((ret = fs_err(sdev, ret))) {
210 ERROR("Operation rte_eth_dev_set_link_up failed for sub_device %d"
211 " with error %d", i, ret);
212 fs_unlock(dev, 0);
213 return ret;
214 }
215 }
216 fs_unlock(dev, 0);
217 return 0;
218 }
219
220 static int
221 fs_dev_set_link_down(struct rte_eth_dev *dev)
222 {
223 struct sub_device *sdev;
224 uint8_t i;
225 int ret;
226
227 fs_lock(dev, 0);
228 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
229 DEBUG("Calling rte_eth_dev_set_link_down on sub_device %d", i);
230 ret = rte_eth_dev_set_link_down(PORT_ID(sdev));
231 if ((ret = fs_err(sdev, ret))) {
232 ERROR("Operation rte_eth_dev_set_link_down failed for sub_device %d"
233 " with error %d", i, ret);
234 fs_unlock(dev, 0);
235 return ret;
236 }
237 }
238 fs_unlock(dev, 0);
239 return 0;
240 }
241
242 static void fs_dev_free_queues(struct rte_eth_dev *dev);
243 static void
244 fs_dev_close(struct rte_eth_dev *dev)
245 {
246 struct sub_device *sdev;
247 uint8_t i;
248
249 fs_lock(dev, 0);
250 failsafe_hotplug_alarm_cancel(dev);
251 if (PRIV(dev)->state == DEV_STARTED)
252 dev->dev_ops->dev_stop(dev);
253 PRIV(dev)->state = DEV_ACTIVE - 1;
254 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
255 DEBUG("Closing sub_device %d", i);
256 failsafe_eth_dev_unregister_callbacks(sdev);
257 rte_eth_dev_close(PORT_ID(sdev));
258 sdev->state = DEV_ACTIVE - 1;
259 }
260 fs_dev_free_queues(dev);
261 fs_unlock(dev, 0);
262 }
263
264 static int
265 fs_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
266 {
267 struct sub_device *sdev;
268 uint8_t i;
269 int ret;
270 int err = 0;
271 bool failure = true;
272
273 fs_lock(dev, 0);
274 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
275 uint16_t port_id = ETH(sdev)->data->port_id;
276
277 ret = rte_eth_dev_rx_queue_stop(port_id, rx_queue_id);
278 ret = fs_err(sdev, ret);
279 if (ret) {
280 ERROR("Rx queue stop failed for subdevice %d", i);
281 err = ret;
282 } else {
283 failure = false;
284 }
285 }
286 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
287 fs_unlock(dev, 0);
288 /* Return 0 in case of at least one successful queue stop */
289 return (failure) ? err : 0;
290 }
291
292 static int
293 fs_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
294 {
295 struct sub_device *sdev;
296 uint8_t i;
297 int ret;
298
299 fs_lock(dev, 0);
300 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
301 uint16_t port_id = ETH(sdev)->data->port_id;
302
303 ret = rte_eth_dev_rx_queue_start(port_id, rx_queue_id);
304 ret = fs_err(sdev, ret);
305 if (ret) {
306 ERROR("Rx queue start failed for subdevice %d", i);
307 fs_rx_queue_stop(dev, rx_queue_id);
308 fs_unlock(dev, 0);
309 return ret;
310 }
311 }
312 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
313 fs_unlock(dev, 0);
314 return 0;
315 }
316
317 static int
318 fs_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
319 {
320 struct sub_device *sdev;
321 uint8_t i;
322 int ret;
323 int err = 0;
324 bool failure = true;
325
326 fs_lock(dev, 0);
327 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
328 uint16_t port_id = ETH(sdev)->data->port_id;
329
330 ret = rte_eth_dev_tx_queue_stop(port_id, tx_queue_id);
331 ret = fs_err(sdev, ret);
332 if (ret) {
333 ERROR("Tx queue stop failed for subdevice %d", i);
334 err = ret;
335 } else {
336 failure = false;
337 }
338 }
339 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
340 fs_unlock(dev, 0);
341 /* Return 0 in case of at least one successful queue stop */
342 return (failure) ? err : 0;
343 }
344
345 static int
346 fs_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
347 {
348 struct sub_device *sdev;
349 uint8_t i;
350 int ret;
351
352 fs_lock(dev, 0);
353 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
354 uint16_t port_id = ETH(sdev)->data->port_id;
355
356 ret = rte_eth_dev_tx_queue_start(port_id, tx_queue_id);
357 ret = fs_err(sdev, ret);
358 if (ret) {
359 ERROR("Tx queue start failed for subdevice %d", i);
360 fs_tx_queue_stop(dev, tx_queue_id);
361 fs_unlock(dev, 0);
362 return ret;
363 }
364 }
365 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
366 fs_unlock(dev, 0);
367 return 0;
368 }
369
370 static void
371 fs_rx_queue_release(void *queue)
372 {
373 struct rte_eth_dev *dev;
374 struct sub_device *sdev;
375 uint8_t i;
376 struct rxq *rxq;
377
378 if (queue == NULL)
379 return;
380 rxq = queue;
381 dev = &rte_eth_devices[rxq->priv->data->port_id];
382 fs_lock(dev, 0);
383 if (rxq->event_fd >= 0)
384 close(rxq->event_fd);
385 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
386 if (ETH(sdev)->data->rx_queues != NULL &&
387 ETH(sdev)->data->rx_queues[rxq->qid] != NULL) {
388 SUBOPS(sdev, rx_queue_release)
389 (ETH(sdev)->data->rx_queues[rxq->qid]);
390 }
391 }
392 dev->data->rx_queues[rxq->qid] = NULL;
393 rte_free(rxq);
394 fs_unlock(dev, 0);
395 }
396
397 static int
398 fs_rx_queue_setup(struct rte_eth_dev *dev,
399 uint16_t rx_queue_id,
400 uint16_t nb_rx_desc,
401 unsigned int socket_id,
402 const struct rte_eth_rxconf *rx_conf,
403 struct rte_mempool *mb_pool)
404 {
405 /*
406 * FIXME: Add a proper interface in rte_eal_interrupts for
407 * allocating eventfd as an interrupt vector.
408 * For the time being, fake as if we are using MSIX interrupts,
409 * this will cause rte_intr_efd_enable to allocate an eventfd for us.
410 */
411 struct rte_intr_handle intr_handle = {
412 .type = RTE_INTR_HANDLE_VFIO_MSIX,
413 .efds = { -1, },
414 };
415 struct sub_device *sdev;
416 struct rxq *rxq;
417 uint8_t i;
418 int ret;
419
420 fs_lock(dev, 0);
421 if (rx_conf->rx_deferred_start) {
422 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
423 if (SUBOPS(sdev, rx_queue_start) == NULL) {
424 ERROR("Rx queue deferred start is not "
425 "supported for subdevice %d", i);
426 fs_unlock(dev, 0);
427 return -EINVAL;
428 }
429 }
430 }
431 rxq = dev->data->rx_queues[rx_queue_id];
432 if (rxq != NULL) {
433 fs_rx_queue_release(rxq);
434 dev->data->rx_queues[rx_queue_id] = NULL;
435 }
436 rxq = rte_zmalloc(NULL,
437 sizeof(*rxq) +
438 sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
439 RTE_CACHE_LINE_SIZE);
440 if (rxq == NULL) {
441 fs_unlock(dev, 0);
442 return -ENOMEM;
443 }
444 FOREACH_SUBDEV(sdev, i, dev)
445 rte_atomic64_init(&rxq->refcnt[i]);
446 rxq->qid = rx_queue_id;
447 rxq->socket_id = socket_id;
448 rxq->info.mp = mb_pool;
449 rxq->info.conf = *rx_conf;
450 rxq->info.nb_desc = nb_rx_desc;
451 rxq->priv = PRIV(dev);
452 rxq->sdev = PRIV(dev)->subs;
453 ret = rte_intr_efd_enable(&intr_handle, 1);
454 if (ret < 0) {
455 fs_unlock(dev, 0);
456 return ret;
457 }
458 rxq->event_fd = intr_handle.efds[0];
459 dev->data->rx_queues[rx_queue_id] = rxq;
460 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
461 ret = rte_eth_rx_queue_setup(PORT_ID(sdev),
462 rx_queue_id,
463 nb_rx_desc, socket_id,
464 rx_conf, mb_pool);
465 if ((ret = fs_err(sdev, ret))) {
466 ERROR("RX queue setup failed for sub_device %d", i);
467 goto free_rxq;
468 }
469 }
470 fs_unlock(dev, 0);
471 return 0;
472 free_rxq:
473 fs_rx_queue_release(rxq);
474 fs_unlock(dev, 0);
475 return ret;
476 }
477
478 static int
479 fs_rx_intr_enable(struct rte_eth_dev *dev, uint16_t idx)
480 {
481 struct rxq *rxq;
482 struct sub_device *sdev;
483 uint8_t i;
484 int ret;
485 int rc = 0;
486
487 fs_lock(dev, 0);
488 if (idx >= dev->data->nb_rx_queues) {
489 rc = -EINVAL;
490 goto unlock;
491 }
492 rxq = dev->data->rx_queues[idx];
493 if (rxq == NULL || rxq->event_fd <= 0) {
494 rc = -EINVAL;
495 goto unlock;
496 }
497 /* Fail if proxy service is nor running. */
498 if (PRIV(dev)->rxp.sstate != SS_RUNNING) {
499 ERROR("failsafe interrupt services are not running");
500 rc = -EAGAIN;
501 goto unlock;
502 }
503 rxq->enable_events = 1;
504 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
505 ret = rte_eth_dev_rx_intr_enable(PORT_ID(sdev), idx);
506 ret = fs_err(sdev, ret);
507 if (ret)
508 rc = ret;
509 }
510 unlock:
511 fs_unlock(dev, 0);
512 if (rc)
513 rte_errno = -rc;
514 return rc;
515 }
516
517 static int
518 fs_rx_intr_disable(struct rte_eth_dev *dev, uint16_t idx)
519 {
520 struct rxq *rxq;
521 struct sub_device *sdev;
522 uint64_t u64;
523 uint8_t i;
524 int rc = 0;
525 int ret;
526
527 fs_lock(dev, 0);
528 if (idx >= dev->data->nb_rx_queues) {
529 rc = -EINVAL;
530 goto unlock;
531 }
532 rxq = dev->data->rx_queues[idx];
533 if (rxq == NULL || rxq->event_fd <= 0) {
534 rc = -EINVAL;
535 goto unlock;
536 }
537 rxq->enable_events = 0;
538 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
539 ret = rte_eth_dev_rx_intr_disable(PORT_ID(sdev), idx);
540 ret = fs_err(sdev, ret);
541 if (ret)
542 rc = ret;
543 }
544 /* Clear pending events */
545 while (read(rxq->event_fd, &u64, sizeof(uint64_t)) > 0)
546 ;
547 unlock:
548 fs_unlock(dev, 0);
549 if (rc)
550 rte_errno = -rc;
551 return rc;
552 }
553
554 static void
555 fs_tx_queue_release(void *queue)
556 {
557 struct rte_eth_dev *dev;
558 struct sub_device *sdev;
559 uint8_t i;
560 struct txq *txq;
561
562 if (queue == NULL)
563 return;
564 txq = queue;
565 dev = &rte_eth_devices[txq->priv->data->port_id];
566 fs_lock(dev, 0);
567 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
568 if (ETH(sdev)->data->tx_queues != NULL &&
569 ETH(sdev)->data->tx_queues[txq->qid] != NULL) {
570 SUBOPS(sdev, tx_queue_release)
571 (ETH(sdev)->data->tx_queues[txq->qid]);
572 }
573 }
574 dev->data->tx_queues[txq->qid] = NULL;
575 rte_free(txq);
576 fs_unlock(dev, 0);
577 }
578
579 static int
580 fs_tx_queue_setup(struct rte_eth_dev *dev,
581 uint16_t tx_queue_id,
582 uint16_t nb_tx_desc,
583 unsigned int socket_id,
584 const struct rte_eth_txconf *tx_conf)
585 {
586 struct sub_device *sdev;
587 struct txq *txq;
588 uint8_t i;
589 int ret;
590
591 fs_lock(dev, 0);
592 if (tx_conf->tx_deferred_start) {
593 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
594 if (SUBOPS(sdev, tx_queue_start) == NULL) {
595 ERROR("Tx queue deferred start is not "
596 "supported for subdevice %d", i);
597 fs_unlock(dev, 0);
598 return -EINVAL;
599 }
600 }
601 }
602 txq = dev->data->tx_queues[tx_queue_id];
603 if (txq != NULL) {
604 fs_tx_queue_release(txq);
605 dev->data->tx_queues[tx_queue_id] = NULL;
606 }
607 txq = rte_zmalloc("ethdev TX queue",
608 sizeof(*txq) +
609 sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
610 RTE_CACHE_LINE_SIZE);
611 if (txq == NULL) {
612 fs_unlock(dev, 0);
613 return -ENOMEM;
614 }
615 FOREACH_SUBDEV(sdev, i, dev)
616 rte_atomic64_init(&txq->refcnt[i]);
617 txq->qid = tx_queue_id;
618 txq->socket_id = socket_id;
619 txq->info.conf = *tx_conf;
620 txq->info.nb_desc = nb_tx_desc;
621 txq->priv = PRIV(dev);
622 dev->data->tx_queues[tx_queue_id] = txq;
623 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
624 ret = rte_eth_tx_queue_setup(PORT_ID(sdev),
625 tx_queue_id,
626 nb_tx_desc, socket_id,
627 tx_conf);
628 if ((ret = fs_err(sdev, ret))) {
629 ERROR("TX queue setup failed for sub_device %d", i);
630 goto free_txq;
631 }
632 }
633 fs_unlock(dev, 0);
634 return 0;
635 free_txq:
636 fs_tx_queue_release(txq);
637 fs_unlock(dev, 0);
638 return ret;
639 }
640
641 static void
642 fs_dev_free_queues(struct rte_eth_dev *dev)
643 {
644 uint16_t i;
645
646 for (i = 0; i < dev->data->nb_rx_queues; i++) {
647 fs_rx_queue_release(dev->data->rx_queues[i]);
648 dev->data->rx_queues[i] = NULL;
649 }
650 dev->data->nb_rx_queues = 0;
651 for (i = 0; i < dev->data->nb_tx_queues; i++) {
652 fs_tx_queue_release(dev->data->tx_queues[i]);
653 dev->data->tx_queues[i] = NULL;
654 }
655 dev->data->nb_tx_queues = 0;
656 }
657
658 static int
659 fs_promiscuous_enable(struct rte_eth_dev *dev)
660 {
661 struct sub_device *sdev;
662 uint8_t i;
663 int ret = 0;
664
665 fs_lock(dev, 0);
666 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
667 ret = rte_eth_promiscuous_enable(PORT_ID(sdev));
668 ret = fs_err(sdev, ret);
669 if (ret != 0) {
670 ERROR("Promiscuous mode enable failed for subdevice %d",
671 PORT_ID(sdev));
672 break;
673 }
674 }
675 if (ret != 0) {
676 /* Rollback in the case of failure */
677 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
678 ret = rte_eth_promiscuous_disable(PORT_ID(sdev));
679 ret = fs_err(sdev, ret);
680 if (ret != 0)
681 ERROR("Promiscuous mode disable during rollback failed for subdevice %d",
682 PORT_ID(sdev));
683 }
684 }
685 fs_unlock(dev, 0);
686
687 return ret;
688 }
689
690 static int
691 fs_promiscuous_disable(struct rte_eth_dev *dev)
692 {
693 struct sub_device *sdev;
694 uint8_t i;
695 int ret = 0;
696
697 fs_lock(dev, 0);
698 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
699 ret = rte_eth_promiscuous_disable(PORT_ID(sdev));
700 ret = fs_err(sdev, ret);
701 if (ret != 0) {
702 ERROR("Promiscuous mode disable failed for subdevice %d",
703 PORT_ID(sdev));
704 break;
705 }
706 }
707 if (ret != 0) {
708 /* Rollback in the case of failure */
709 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
710 ret = rte_eth_promiscuous_enable(PORT_ID(sdev));
711 ret = fs_err(sdev, ret);
712 if (ret != 0)
713 ERROR("Promiscuous mode enable during rollback failed for subdevice %d",
714 PORT_ID(sdev));
715 }
716 }
717 fs_unlock(dev, 0);
718
719 return ret;
720 }
721
722 static int
723 fs_allmulticast_enable(struct rte_eth_dev *dev)
724 {
725 struct sub_device *sdev;
726 uint8_t i;
727 int ret = 0;
728
729 fs_lock(dev, 0);
730 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
731 ret = rte_eth_allmulticast_enable(PORT_ID(sdev));
732 ret = fs_err(sdev, ret);
733 if (ret != 0) {
734 ERROR("All-multicast mode enable failed for subdevice %d",
735 PORT_ID(sdev));
736 break;
737 }
738 }
739 if (ret != 0) {
740 /* Rollback in the case of failure */
741 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
742 ret = rte_eth_allmulticast_disable(PORT_ID(sdev));
743 ret = fs_err(sdev, ret);
744 if (ret != 0)
745 ERROR("All-multicast mode disable during rollback failed for subdevice %d",
746 PORT_ID(sdev));
747 }
748 }
749 fs_unlock(dev, 0);
750
751 return ret;
752 }
753
754 static int
755 fs_allmulticast_disable(struct rte_eth_dev *dev)
756 {
757 struct sub_device *sdev;
758 uint8_t i;
759 int ret = 0;
760
761 fs_lock(dev, 0);
762 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
763 ret = rte_eth_allmulticast_disable(PORT_ID(sdev));
764 ret = fs_err(sdev, ret);
765 if (ret != 0) {
766 ERROR("All-multicast mode disable failed for subdevice %d",
767 PORT_ID(sdev));
768 break;
769 }
770 }
771 if (ret != 0) {
772 /* Rollback in the case of failure */
773 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
774 ret = rte_eth_allmulticast_enable(PORT_ID(sdev));
775 ret = fs_err(sdev, ret);
776 if (ret != 0)
777 ERROR("All-multicast mode enable during rollback failed for subdevice %d",
778 PORT_ID(sdev));
779 }
780 }
781 fs_unlock(dev, 0);
782
783 return ret;
784 }
785
786 static int
787 fs_link_update(struct rte_eth_dev *dev,
788 int wait_to_complete)
789 {
790 struct sub_device *sdev;
791 uint8_t i;
792 int ret;
793
794 fs_lock(dev, 0);
795 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
796 DEBUG("Calling link_update on sub_device %d", i);
797 ret = (SUBOPS(sdev, link_update))(ETH(sdev), wait_to_complete);
798 if (ret && ret != -1 && sdev->remove == 0 &&
799 rte_eth_dev_is_removed(PORT_ID(sdev)) == 0) {
800 ERROR("Link update failed for sub_device %d with error %d",
801 i, ret);
802 fs_unlock(dev, 0);
803 return ret;
804 }
805 }
806 if (TX_SUBDEV(dev)) {
807 struct rte_eth_link *l1;
808 struct rte_eth_link *l2;
809
810 l1 = &dev->data->dev_link;
811 l2 = &ETH(TX_SUBDEV(dev))->data->dev_link;
812 if (memcmp(l1, l2, sizeof(*l1))) {
813 *l1 = *l2;
814 fs_unlock(dev, 0);
815 return 0;
816 }
817 }
818 fs_unlock(dev, 0);
819 return -1;
820 }
821
822 static int
823 fs_stats_get(struct rte_eth_dev *dev,
824 struct rte_eth_stats *stats)
825 {
826 struct rte_eth_stats backup;
827 struct sub_device *sdev;
828 uint8_t i;
829 int ret;
830
831 fs_lock(dev, 0);
832 rte_memcpy(stats, &PRIV(dev)->stats_accumulator, sizeof(*stats));
833 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
834 struct rte_eth_stats *snapshot = &sdev->stats_snapshot.stats;
835 uint64_t *timestamp = &sdev->stats_snapshot.timestamp;
836
837 rte_memcpy(&backup, snapshot, sizeof(backup));
838 ret = rte_eth_stats_get(PORT_ID(sdev), snapshot);
839 if (ret) {
840 if (!fs_err(sdev, ret)) {
841 rte_memcpy(snapshot, &backup, sizeof(backup));
842 goto inc;
843 }
844 ERROR("Operation rte_eth_stats_get failed for sub_device %d with error %d",
845 i, ret);
846 *timestamp = 0;
847 fs_unlock(dev, 0);
848 return ret;
849 }
850 *timestamp = rte_rdtsc();
851 inc:
852 failsafe_stats_increment(stats, snapshot);
853 }
854 fs_unlock(dev, 0);
855 return 0;
856 }
857
858 static int
859 fs_stats_reset(struct rte_eth_dev *dev)
860 {
861 struct sub_device *sdev;
862 uint8_t i;
863 int ret;
864
865 fs_lock(dev, 0);
866 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
867 ret = rte_eth_stats_reset(PORT_ID(sdev));
868 if (ret) {
869 if (!fs_err(sdev, ret))
870 continue;
871
872 ERROR("Operation rte_eth_stats_reset failed for sub_device %d with error %d",
873 i, ret);
874 fs_unlock(dev, 0);
875 return ret;
876 }
877 memset(&sdev->stats_snapshot, 0, sizeof(struct rte_eth_stats));
878 }
879 memset(&PRIV(dev)->stats_accumulator, 0, sizeof(struct rte_eth_stats));
880 fs_unlock(dev, 0);
881
882 return 0;
883 }
884
885 static int
886 __fs_xstats_count(struct rte_eth_dev *dev)
887 {
888 struct sub_device *sdev;
889 int count = 0;
890 uint8_t i;
891 int ret;
892
893 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
894 ret = rte_eth_xstats_get_names(PORT_ID(sdev), NULL, 0);
895 if (ret < 0)
896 return ret;
897 count += ret;
898 }
899
900 return count;
901 }
902
903 static int
904 __fs_xstats_get_names(struct rte_eth_dev *dev,
905 struct rte_eth_xstat_name *xstats_names,
906 unsigned int limit)
907 {
908 struct sub_device *sdev;
909 unsigned int count = 0;
910 uint8_t i;
911
912 /* Caller only cares about count */
913 if (!xstats_names)
914 return __fs_xstats_count(dev);
915
916 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
917 struct rte_eth_xstat_name *sub_names = xstats_names + count;
918 int j, r;
919
920 if (count >= limit)
921 break;
922
923 r = rte_eth_xstats_get_names(PORT_ID(sdev),
924 sub_names, limit - count);
925 if (r < 0)
926 return r;
927
928 /* add subN_ prefix to names */
929 for (j = 0; j < r; j++) {
930 char *xname = sub_names[j].name;
931 char tmp[RTE_ETH_XSTATS_NAME_SIZE];
932
933 if ((xname[0] == 't' || xname[0] == 'r') &&
934 xname[1] == 'x' && xname[2] == '_')
935 snprintf(tmp, sizeof(tmp), "%.3ssub%u_%s",
936 xname, i, xname + 3);
937 else
938 snprintf(tmp, sizeof(tmp), "sub%u_%s",
939 i, xname);
940
941 strlcpy(xname, tmp, RTE_ETH_XSTATS_NAME_SIZE);
942 }
943 count += r;
944 }
945 return count;
946 }
947
948 static int
949 fs_xstats_get_names(struct rte_eth_dev *dev,
950 struct rte_eth_xstat_name *xstats_names,
951 unsigned int limit)
952 {
953 int ret;
954
955 fs_lock(dev, 0);
956 ret = __fs_xstats_get_names(dev, xstats_names, limit);
957 fs_unlock(dev, 0);
958 return ret;
959 }
960
961 static int
962 __fs_xstats_get(struct rte_eth_dev *dev,
963 struct rte_eth_xstat *xstats,
964 unsigned int n)
965 {
966 unsigned int count = 0;
967 struct sub_device *sdev;
968 uint8_t i;
969 int j, ret;
970
971 ret = __fs_xstats_count(dev);
972 /*
973 * if error
974 * or caller did not give enough space
975 * or just querying
976 */
977 if (ret < 0 || ret > (int)n || xstats == NULL)
978 return ret;
979
980 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
981 ret = rte_eth_xstats_get(PORT_ID(sdev), xstats, n);
982 if (ret < 0)
983 return ret;
984
985 if (ret > (int)n)
986 return n + count;
987
988 /* add offset to id's from sub-device */
989 for (j = 0; j < ret; j++)
990 xstats[j].id += count;
991
992 xstats += ret;
993 n -= ret;
994 count += ret;
995 }
996
997 return count;
998 }
999
1000 static int
1001 fs_xstats_get(struct rte_eth_dev *dev,
1002 struct rte_eth_xstat *xstats,
1003 unsigned int n)
1004 {
1005 int ret;
1006
1007 fs_lock(dev, 0);
1008 ret = __fs_xstats_get(dev, xstats, n);
1009 fs_unlock(dev, 0);
1010
1011 return ret;
1012 }
1013
1014
1015 static int
1016 fs_xstats_reset(struct rte_eth_dev *dev)
1017 {
1018 struct sub_device *sdev;
1019 uint8_t i;
1020 int r = 0;
1021
1022 fs_lock(dev, 0);
1023 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1024 r = rte_eth_xstats_reset(PORT_ID(sdev));
1025 if (r < 0)
1026 break;
1027 }
1028 fs_unlock(dev, 0);
1029
1030 return r;
1031 }
1032
1033 static void
1034 fs_dev_merge_desc_lim(struct rte_eth_desc_lim *to,
1035 const struct rte_eth_desc_lim *from)
1036 {
1037 to->nb_max = RTE_MIN(to->nb_max, from->nb_max);
1038 to->nb_min = RTE_MAX(to->nb_min, from->nb_min);
1039 to->nb_align = RTE_MAX(to->nb_align, from->nb_align);
1040
1041 to->nb_seg_max = RTE_MIN(to->nb_seg_max, from->nb_seg_max);
1042 to->nb_mtu_seg_max = RTE_MIN(to->nb_mtu_seg_max, from->nb_mtu_seg_max);
1043 }
1044
1045 /*
1046 * Merge the information from sub-devices.
1047 *
1048 * The reported values must be the common subset of all sub devices
1049 */
1050 static void
1051 fs_dev_merge_info(struct rte_eth_dev_info *info,
1052 const struct rte_eth_dev_info *sinfo)
1053 {
1054 info->max_rx_pktlen = RTE_MIN(info->max_rx_pktlen, sinfo->max_rx_pktlen);
1055 info->max_rx_queues = RTE_MIN(info->max_rx_queues, sinfo->max_rx_queues);
1056 info->max_tx_queues = RTE_MIN(info->max_tx_queues, sinfo->max_tx_queues);
1057 info->max_mac_addrs = RTE_MIN(info->max_mac_addrs, sinfo->max_mac_addrs);
1058 info->max_hash_mac_addrs = RTE_MIN(info->max_hash_mac_addrs,
1059 sinfo->max_hash_mac_addrs);
1060 info->max_vmdq_pools = RTE_MIN(info->max_vmdq_pools, sinfo->max_vmdq_pools);
1061 info->max_vfs = RTE_MIN(info->max_vfs, sinfo->max_vfs);
1062
1063 fs_dev_merge_desc_lim(&info->rx_desc_lim, &sinfo->rx_desc_lim);
1064 fs_dev_merge_desc_lim(&info->tx_desc_lim, &sinfo->tx_desc_lim);
1065
1066 info->rx_offload_capa &= sinfo->rx_offload_capa;
1067 info->tx_offload_capa &= sinfo->tx_offload_capa;
1068 info->rx_queue_offload_capa &= sinfo->rx_queue_offload_capa;
1069 info->tx_queue_offload_capa &= sinfo->tx_queue_offload_capa;
1070 info->flow_type_rss_offloads &= sinfo->flow_type_rss_offloads;
1071 info->hash_key_size = RTE_MIN(info->hash_key_size,
1072 sinfo->hash_key_size);
1073 }
1074
1075 /**
1076 * Fail-safe dev_infos_get rules:
1077 *
1078 * No sub_device:
1079 * Numerables:
1080 * Use the maximum possible values for any field, so as not
1081 * to impede any further configuration effort.
1082 * Capabilities:
1083 * Limits capabilities to those that are understood by the
1084 * fail-safe PMD. This understanding stems from the fail-safe
1085 * being capable of verifying that the related capability is
1086 * expressed within the device configuration (struct rte_eth_conf).
1087 *
1088 * At least one probed sub_device:
1089 * Numerables:
1090 * Uses values from the active probed sub_device
1091 * The rationale here is that if any sub_device is less capable
1092 * (for example concerning the number of queues) than the active
1093 * sub_device, then its subsequent configuration will fail.
1094 * It is impossible to foresee this failure when the failing sub_device
1095 * is supposed to be plugged-in later on, so the configuration process
1096 * is the single point of failure and error reporting.
1097 * Capabilities:
1098 * Uses a logical AND of RX capabilities among
1099 * all sub_devices and the default capabilities.
1100 * Uses a logical AND of TX capabilities among
1101 * the active probed sub_device and the default capabilities.
1102 * Uses a logical AND of device capabilities among
1103 * all sub_devices and the default capabilities.
1104 *
1105 */
1106 static int
1107 fs_dev_infos_get(struct rte_eth_dev *dev,
1108 struct rte_eth_dev_info *infos)
1109 {
1110 struct sub_device *sdev;
1111 uint8_t i;
1112 int ret;
1113
1114 /* Use maximum upper bounds by default */
1115 infos->max_rx_pktlen = UINT32_MAX;
1116 infos->max_rx_queues = RTE_MAX_QUEUES_PER_PORT;
1117 infos->max_tx_queues = RTE_MAX_QUEUES_PER_PORT;
1118 infos->max_mac_addrs = FAILSAFE_MAX_ETHADDR;
1119 infos->max_hash_mac_addrs = UINT32_MAX;
1120 infos->max_vfs = UINT16_MAX;
1121 infos->max_vmdq_pools = UINT16_MAX;
1122 infos->hash_key_size = UINT8_MAX;
1123
1124 /*
1125 * Set of capabilities that can be verified upon
1126 * configuring a sub-device.
1127 */
1128 infos->rx_offload_capa =
1129 DEV_RX_OFFLOAD_VLAN_STRIP |
1130 DEV_RX_OFFLOAD_IPV4_CKSUM |
1131 DEV_RX_OFFLOAD_UDP_CKSUM |
1132 DEV_RX_OFFLOAD_TCP_CKSUM |
1133 DEV_RX_OFFLOAD_TCP_LRO |
1134 DEV_RX_OFFLOAD_QINQ_STRIP |
1135 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1136 DEV_RX_OFFLOAD_MACSEC_STRIP |
1137 DEV_RX_OFFLOAD_HEADER_SPLIT |
1138 DEV_RX_OFFLOAD_VLAN_FILTER |
1139 DEV_RX_OFFLOAD_VLAN_EXTEND |
1140 DEV_RX_OFFLOAD_JUMBO_FRAME |
1141 DEV_RX_OFFLOAD_SCATTER |
1142 DEV_RX_OFFLOAD_TIMESTAMP |
1143 DEV_RX_OFFLOAD_SECURITY;
1144
1145 infos->rx_queue_offload_capa =
1146 DEV_RX_OFFLOAD_VLAN_STRIP |
1147 DEV_RX_OFFLOAD_IPV4_CKSUM |
1148 DEV_RX_OFFLOAD_UDP_CKSUM |
1149 DEV_RX_OFFLOAD_TCP_CKSUM |
1150 DEV_RX_OFFLOAD_TCP_LRO |
1151 DEV_RX_OFFLOAD_QINQ_STRIP |
1152 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1153 DEV_RX_OFFLOAD_MACSEC_STRIP |
1154 DEV_RX_OFFLOAD_HEADER_SPLIT |
1155 DEV_RX_OFFLOAD_VLAN_FILTER |
1156 DEV_RX_OFFLOAD_VLAN_EXTEND |
1157 DEV_RX_OFFLOAD_JUMBO_FRAME |
1158 DEV_RX_OFFLOAD_SCATTER |
1159 DEV_RX_OFFLOAD_TIMESTAMP |
1160 DEV_RX_OFFLOAD_SECURITY;
1161
1162 infos->tx_offload_capa =
1163 DEV_TX_OFFLOAD_MULTI_SEGS |
1164 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
1165 DEV_TX_OFFLOAD_IPV4_CKSUM |
1166 DEV_TX_OFFLOAD_UDP_CKSUM |
1167 DEV_TX_OFFLOAD_TCP_CKSUM |
1168 DEV_TX_OFFLOAD_TCP_TSO;
1169
1170 infos->flow_type_rss_offloads =
1171 ETH_RSS_IP |
1172 ETH_RSS_UDP |
1173 ETH_RSS_TCP;
1174 infos->dev_capa =
1175 RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
1176 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
1177
1178 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
1179 struct rte_eth_dev_info sub_info;
1180
1181 ret = rte_eth_dev_info_get(PORT_ID(sdev), &sub_info);
1182 ret = fs_err(sdev, ret);
1183 if (ret != 0)
1184 return ret;
1185
1186 fs_dev_merge_info(infos, &sub_info);
1187 }
1188
1189 return 0;
1190 }
1191
1192 static const uint32_t *
1193 fs_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1194 {
1195 struct sub_device *sdev;
1196 struct rte_eth_dev *edev;
1197 const uint32_t *ret;
1198
1199 fs_lock(dev, 0);
1200 sdev = TX_SUBDEV(dev);
1201 if (sdev == NULL) {
1202 ret = NULL;
1203 goto unlock;
1204 }
1205 edev = ETH(sdev);
1206 /* ENOTSUP: counts as no supported ptypes */
1207 if (SUBOPS(sdev, dev_supported_ptypes_get) == NULL) {
1208 ret = NULL;
1209 goto unlock;
1210 }
1211 /*
1212 * The API does not permit to do a clean AND of all ptypes,
1213 * It is also incomplete by design and we do not really care
1214 * to have a best possible value in this context.
1215 * We just return the ptypes of the device of highest
1216 * priority, usually the PREFERRED device.
1217 */
1218 ret = SUBOPS(sdev, dev_supported_ptypes_get)(edev);
1219 unlock:
1220 fs_unlock(dev, 0);
1221 return ret;
1222 }
1223
1224 static int
1225 fs_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1226 {
1227 struct sub_device *sdev;
1228 uint8_t i;
1229 int ret;
1230
1231 fs_lock(dev, 0);
1232 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1233 DEBUG("Calling rte_eth_dev_set_mtu on sub_device %d", i);
1234 ret = rte_eth_dev_set_mtu(PORT_ID(sdev), mtu);
1235 if ((ret = fs_err(sdev, ret))) {
1236 ERROR("Operation rte_eth_dev_set_mtu failed for sub_device %d with error %d",
1237 i, ret);
1238 fs_unlock(dev, 0);
1239 return ret;
1240 }
1241 }
1242 fs_unlock(dev, 0);
1243 return 0;
1244 }
1245
1246 static int
1247 fs_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1248 {
1249 struct sub_device *sdev;
1250 uint8_t i;
1251 int ret;
1252
1253 fs_lock(dev, 0);
1254 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1255 DEBUG("Calling rte_eth_dev_vlan_filter on sub_device %d", i);
1256 ret = rte_eth_dev_vlan_filter(PORT_ID(sdev), vlan_id, on);
1257 if ((ret = fs_err(sdev, ret))) {
1258 ERROR("Operation rte_eth_dev_vlan_filter failed for sub_device %d"
1259 " with error %d", i, ret);
1260 fs_unlock(dev, 0);
1261 return ret;
1262 }
1263 }
1264 fs_unlock(dev, 0);
1265 return 0;
1266 }
1267
1268 static int
1269 fs_flow_ctrl_get(struct rte_eth_dev *dev,
1270 struct rte_eth_fc_conf *fc_conf)
1271 {
1272 struct sub_device *sdev;
1273 int ret;
1274
1275 fs_lock(dev, 0);
1276 sdev = TX_SUBDEV(dev);
1277 if (sdev == NULL) {
1278 ret = 0;
1279 goto unlock;
1280 }
1281 if (SUBOPS(sdev, flow_ctrl_get) == NULL) {
1282 ret = -ENOTSUP;
1283 goto unlock;
1284 }
1285 ret = SUBOPS(sdev, flow_ctrl_get)(ETH(sdev), fc_conf);
1286 unlock:
1287 fs_unlock(dev, 0);
1288 return ret;
1289 }
1290
1291 static int
1292 fs_flow_ctrl_set(struct rte_eth_dev *dev,
1293 struct rte_eth_fc_conf *fc_conf)
1294 {
1295 struct sub_device *sdev;
1296 uint8_t i;
1297 int ret;
1298
1299 fs_lock(dev, 0);
1300 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1301 DEBUG("Calling rte_eth_dev_flow_ctrl_set on sub_device %d", i);
1302 ret = rte_eth_dev_flow_ctrl_set(PORT_ID(sdev), fc_conf);
1303 if ((ret = fs_err(sdev, ret))) {
1304 ERROR("Operation rte_eth_dev_flow_ctrl_set failed for sub_device %d"
1305 " with error %d", i, ret);
1306 fs_unlock(dev, 0);
1307 return ret;
1308 }
1309 }
1310 fs_unlock(dev, 0);
1311 return 0;
1312 }
1313
1314 static void
1315 fs_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
1316 {
1317 struct sub_device *sdev;
1318 uint8_t i;
1319
1320 fs_lock(dev, 0);
1321 /* No check: already done within the rte_eth_dev_mac_addr_remove
1322 * call for the fail-safe device.
1323 */
1324 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
1325 rte_eth_dev_mac_addr_remove(PORT_ID(sdev),
1326 &dev->data->mac_addrs[index]);
1327 PRIV(dev)->mac_addr_pool[index] = 0;
1328 fs_unlock(dev, 0);
1329 }
1330
1331 static int
1332 fs_mac_addr_add(struct rte_eth_dev *dev,
1333 struct rte_ether_addr *mac_addr,
1334 uint32_t index,
1335 uint32_t vmdq)
1336 {
1337 struct sub_device *sdev;
1338 int ret;
1339 uint8_t i;
1340
1341 RTE_ASSERT(index < FAILSAFE_MAX_ETHADDR);
1342 fs_lock(dev, 0);
1343 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1344 ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), mac_addr, vmdq);
1345 if ((ret = fs_err(sdev, ret))) {
1346 ERROR("Operation rte_eth_dev_mac_addr_add failed for sub_device %"
1347 PRIu8 " with error %d", i, ret);
1348 fs_unlock(dev, 0);
1349 return ret;
1350 }
1351 }
1352 if (index >= PRIV(dev)->nb_mac_addr) {
1353 DEBUG("Growing mac_addrs array");
1354 PRIV(dev)->nb_mac_addr = index;
1355 }
1356 PRIV(dev)->mac_addr_pool[index] = vmdq;
1357 fs_unlock(dev, 0);
1358 return 0;
1359 }
1360
1361 static int
1362 fs_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1363 {
1364 struct sub_device *sdev;
1365 uint8_t i;
1366 int ret;
1367
1368 fs_lock(dev, 0);
1369 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1370 ret = rte_eth_dev_default_mac_addr_set(PORT_ID(sdev), mac_addr);
1371 ret = fs_err(sdev, ret);
1372 if (ret) {
1373 ERROR("Operation rte_eth_dev_mac_addr_set failed for sub_device %d with error %d",
1374 i, ret);
1375 fs_unlock(dev, 0);
1376 return ret;
1377 }
1378 }
1379 fs_unlock(dev, 0);
1380
1381 return 0;
1382 }
1383
1384 static int
1385 fs_set_mc_addr_list(struct rte_eth_dev *dev,
1386 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1387 {
1388 struct sub_device *sdev;
1389 uint8_t i;
1390 int ret;
1391 void *mcast_addrs;
1392
1393 fs_lock(dev, 0);
1394
1395 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1396 ret = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
1397 mc_addr_set, nb_mc_addr);
1398 if (ret != 0) {
1399 ERROR("Operation rte_eth_dev_set_mc_addr_list failed for sub_device %d with error %d",
1400 i, ret);
1401 goto rollback;
1402 }
1403 }
1404
1405 mcast_addrs = rte_realloc(PRIV(dev)->mcast_addrs,
1406 nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]), 0);
1407 if (mcast_addrs == NULL && nb_mc_addr > 0) {
1408 ret = -ENOMEM;
1409 goto rollback;
1410 }
1411 rte_memcpy(mcast_addrs, mc_addr_set,
1412 nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]));
1413 PRIV(dev)->nb_mcast_addr = nb_mc_addr;
1414 PRIV(dev)->mcast_addrs = mcast_addrs;
1415
1416 fs_unlock(dev, 0);
1417 return 0;
1418
1419 rollback:
1420 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1421 int rc = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
1422 PRIV(dev)->mcast_addrs, PRIV(dev)->nb_mcast_addr);
1423 if (rc != 0) {
1424 ERROR("Multicast MAC address list rollback for sub_device %d failed with error %d",
1425 i, rc);
1426 }
1427 }
1428
1429 fs_unlock(dev, 0);
1430 return ret;
1431 }
1432
1433 static int
1434 fs_rss_hash_update(struct rte_eth_dev *dev,
1435 struct rte_eth_rss_conf *rss_conf)
1436 {
1437 struct sub_device *sdev;
1438 uint8_t i;
1439 int ret;
1440
1441 fs_lock(dev, 0);
1442 FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1443 ret = rte_eth_dev_rss_hash_update(PORT_ID(sdev), rss_conf);
1444 ret = fs_err(sdev, ret);
1445 if (ret) {
1446 ERROR("Operation rte_eth_dev_rss_hash_update"
1447 " failed for sub_device %d with error %d",
1448 i, ret);
1449 fs_unlock(dev, 0);
1450 return ret;
1451 }
1452 }
1453 fs_unlock(dev, 0);
1454
1455 return 0;
1456 }
1457
1458 static int
1459 fs_filter_ctrl(struct rte_eth_dev *dev __rte_unused,
1460 enum rte_filter_type type,
1461 enum rte_filter_op op,
1462 void *arg)
1463 {
1464 if (type == RTE_ETH_FILTER_GENERIC &&
1465 op == RTE_ETH_FILTER_GET) {
1466 *(const void **)arg = &fs_flow_ops;
1467 return 0;
1468 }
1469 return -ENOTSUP;
1470 }
1471
1472 const struct eth_dev_ops failsafe_ops = {
1473 .dev_configure = fs_dev_configure,
1474 .dev_start = fs_dev_start,
1475 .dev_stop = fs_dev_stop,
1476 .dev_set_link_down = fs_dev_set_link_down,
1477 .dev_set_link_up = fs_dev_set_link_up,
1478 .dev_close = fs_dev_close,
1479 .promiscuous_enable = fs_promiscuous_enable,
1480 .promiscuous_disable = fs_promiscuous_disable,
1481 .allmulticast_enable = fs_allmulticast_enable,
1482 .allmulticast_disable = fs_allmulticast_disable,
1483 .link_update = fs_link_update,
1484 .stats_get = fs_stats_get,
1485 .stats_reset = fs_stats_reset,
1486 .xstats_get = fs_xstats_get,
1487 .xstats_get_names = fs_xstats_get_names,
1488 .xstats_reset = fs_xstats_reset,
1489 .dev_infos_get = fs_dev_infos_get,
1490 .dev_supported_ptypes_get = fs_dev_supported_ptypes_get,
1491 .mtu_set = fs_mtu_set,
1492 .vlan_filter_set = fs_vlan_filter_set,
1493 .rx_queue_start = fs_rx_queue_start,
1494 .rx_queue_stop = fs_rx_queue_stop,
1495 .tx_queue_start = fs_tx_queue_start,
1496 .tx_queue_stop = fs_tx_queue_stop,
1497 .rx_queue_setup = fs_rx_queue_setup,
1498 .tx_queue_setup = fs_tx_queue_setup,
1499 .rx_queue_release = fs_rx_queue_release,
1500 .tx_queue_release = fs_tx_queue_release,
1501 .rx_queue_intr_enable = fs_rx_intr_enable,
1502 .rx_queue_intr_disable = fs_rx_intr_disable,
1503 .flow_ctrl_get = fs_flow_ctrl_get,
1504 .flow_ctrl_set = fs_flow_ctrl_set,
1505 .mac_addr_remove = fs_mac_addr_remove,
1506 .mac_addr_add = fs_mac_addr_add,
1507 .mac_addr_set = fs_mac_addr_set,
1508 .set_mc_addr_list = fs_set_mc_addr_list,
1509 .rss_hash_update = fs_rss_hash_update,
1510 .filter_ctrl = fs_filter_ctrl,
1511 };