]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/fm10k/fm10k_rxtx_vec.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / fm10k / fm10k_rxtx_vec.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2013-2015 Intel Corporation
3 */
4
5 #include <inttypes.h>
6
7 #include <rte_ethdev_driver.h>
8 #include <rte_common.h>
9 #include "fm10k.h"
10 #include "base/fm10k_type.h"
11
12 #include <tmmintrin.h>
13
14 #ifndef __INTEL_COMPILER
15 #pragma GCC diagnostic ignored "-Wcast-qual"
16 #endif
17
18 static void
19 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq);
20
21 /* Handling the offload flags (olflags) field takes computation
22 * time when receiving packets. Therefore we provide a flag to disable
23 * the processing of the olflags field when they are not needed. This
24 * gives improved performance, at the cost of losing the offload info
25 * in the received packet
26 */
27 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
28
29 /* Vlan present flag shift */
30 #define VP_SHIFT (2)
31 /* L3 type shift */
32 #define L3TYPE_SHIFT (4)
33 /* L4 type shift */
34 #define L4TYPE_SHIFT (7)
35 /* HBO flag shift */
36 #define HBOFLAG_SHIFT (10)
37 /* RXE flag shift */
38 #define RXEFLAG_SHIFT (13)
39 /* IPE/L4E flag shift */
40 #define L3L4EFLAG_SHIFT (14)
41 /* shift PKT_RX_L4_CKSUM_GOOD into one byte by 1 bit */
42 #define CKSUM_SHIFT (1)
43
44 static inline void
45 fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
46 {
47 __m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag;
48 union {
49 uint16_t e[4];
50 uint64_t dword;
51 } vol;
52
53 const __m128i pkttype_msk = _mm_set_epi16(
54 0x0000, 0x0000, 0x0000, 0x0000,
55 PKT_RX_VLAN, PKT_RX_VLAN,
56 PKT_RX_VLAN, PKT_RX_VLAN);
57
58 /* mask everything except rss type */
59 const __m128i rsstype_msk = _mm_set_epi16(
60 0x0000, 0x0000, 0x0000, 0x0000,
61 0x000F, 0x000F, 0x000F, 0x000F);
62
63 /* mask for HBO and RXE flag flags */
64 const __m128i rxe_msk = _mm_set_epi16(
65 0x0000, 0x0000, 0x0000, 0x0000,
66 0x0001, 0x0001, 0x0001, 0x0001);
67
68 /* mask the lower byte of ol_flags */
69 const __m128i ol_flags_msk = _mm_set_epi16(
70 0x0000, 0x0000, 0x0000, 0x0000,
71 0x00FF, 0x00FF, 0x00FF, 0x00FF);
72
73 const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0,
74 0, 0, 0, 0,
75 0, 0, 0, 0,
76 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
77 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT,
78 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
79 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT);
80
81 const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0,
82 0, 0, 0, 0,
83 0, 0, 0, 0,
84 0, 0, 0, 0);
85
86 /* map rss type to rss hash flag */
87 const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
88 0, 0, 0, PKT_RX_RSS_HASH,
89 PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
90 PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
91
92 /* Calculate RSS_hash and Vlan fields */
93 ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
94 ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
95 vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
96 vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
97
98 ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
99 ptype0 = _mm_and_si128(ptype0, rsstype_msk);
100 ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
101
102 vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
103 eflag0 = vtag1;
104 cksumflag = vtag1;
105 vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
106 vtag1 = _mm_and_si128(vtag1, pkttype_msk);
107
108 vtag1 = _mm_or_si128(ptype0, vtag1);
109
110 /* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */
111 eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT);
112 eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT);
113 eflag0 = _mm_or_si128(eflag0, eflag1);
114 eflag0 = _mm_and_si128(eflag0, rxe_msk);
115 eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0);
116
117 vtag1 = _mm_or_si128(eflag0, vtag1);
118
119 /* Process L4/L3 checksum error flags */
120 cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT);
121 cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag);
122
123 /* clean the higher byte and shift back the flag bits */
124 cksumflag = _mm_and_si128(cksumflag, ol_flags_msk);
125 cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT);
126 vtag1 = _mm_or_si128(cksumflag, vtag1);
127
128 vol.dword = _mm_cvtsi128_si64(vtag1);
129
130 rx_pkts[0]->ol_flags = vol.e[0];
131 rx_pkts[1]->ol_flags = vol.e[1];
132 rx_pkts[2]->ol_flags = vol.e[2];
133 rx_pkts[3]->ol_flags = vol.e[3];
134 }
135
136 /* @note: When this function is changed, make corresponding change to
137 * fm10k_dev_supported_ptypes_get().
138 */
139 static inline void
140 fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
141 {
142 __m128i l3l4type0, l3l4type1, l3type, l4type;
143 union {
144 uint16_t e[4];
145 uint64_t dword;
146 } vol;
147
148 /* L3 pkt type mask Bit4 to Bit6 */
149 const __m128i l3type_msk = _mm_set_epi16(
150 0x0000, 0x0000, 0x0000, 0x0000,
151 0x0070, 0x0070, 0x0070, 0x0070);
152
153 /* L4 pkt type mask Bit7 to Bit9 */
154 const __m128i l4type_msk = _mm_set_epi16(
155 0x0000, 0x0000, 0x0000, 0x0000,
156 0x0380, 0x0380, 0x0380, 0x0380);
157
158 /* convert RRC l3 type to mbuf format */
159 const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
160 0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
161 RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
162 RTE_PTYPE_L3_IPV4, 0);
163
164 /* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
165 * to fill into8 bits length.
166 */
167 const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
168 RTE_PTYPE_TUNNEL_GENEVE >> 8,
169 RTE_PTYPE_TUNNEL_NVGRE >> 8,
170 RTE_PTYPE_TUNNEL_VXLAN >> 8,
171 RTE_PTYPE_TUNNEL_GRE >> 8,
172 RTE_PTYPE_L4_UDP >> 8,
173 RTE_PTYPE_L4_TCP >> 8,
174 0);
175
176 l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
177 l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
178 l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);
179
180 l3type = _mm_and_si128(l3l4type0, l3type_msk);
181 l4type = _mm_and_si128(l3l4type0, l4type_msk);
182
183 l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
184 l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);
185
186 l3type = _mm_shuffle_epi8(l3type_flags, l3type);
187 /* l4type_flags shift-left for 8 bits, need shift-right back */
188 l4type = _mm_shuffle_epi8(l4type_flags, l4type);
189
190 l4type = _mm_slli_epi16(l4type, 8);
191 l3l4type0 = _mm_or_si128(l3type, l4type);
192 vol.dword = _mm_cvtsi128_si64(l3l4type0);
193
194 rx_pkts[0]->packet_type = vol.e[0];
195 rx_pkts[1]->packet_type = vol.e[1];
196 rx_pkts[2]->packet_type = vol.e[2];
197 rx_pkts[3]->packet_type = vol.e[3];
198 }
199 #else
200 #define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
201 #define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
202 #endif
203
204 int __attribute__((cold))
205 fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
206 {
207 #ifndef RTE_LIBRTE_IEEE1588
208 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
209 struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
210
211 #ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
212 /* whithout rx ol_flags, no VP flag report */
213 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
214 return -1;
215 #endif
216
217 /* no fdir support */
218 if (fconf->mode != RTE_FDIR_MODE_NONE)
219 return -1;
220
221 /* no header split support */
222 if (rxmode->offloads & DEV_RX_OFFLOAD_HEADER_SPLIT)
223 return -1;
224
225 return 0;
226 #else
227 RTE_SET_USED(dev);
228 return -1;
229 #endif
230 }
231
232 int __attribute__((cold))
233 fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
234 {
235 uintptr_t p;
236 struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
237
238 mb_def.nb_segs = 1;
239 /* data_off will be ajusted after new mbuf allocated for 512-byte
240 * alignment.
241 */
242 mb_def.data_off = RTE_PKTMBUF_HEADROOM;
243 mb_def.port = rxq->port_id;
244 rte_mbuf_refcnt_set(&mb_def, 1);
245
246 /* prevent compiler reordering: rearm_data covers previous fields */
247 rte_compiler_barrier();
248 p = (uintptr_t)&mb_def.rearm_data;
249 rxq->mbuf_initializer = *(uint64_t *)p;
250 return 0;
251 }
252
253 static inline void
254 fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
255 {
256 int i;
257 uint16_t rx_id;
258 volatile union fm10k_rx_desc *rxdp;
259 struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
260 struct rte_mbuf *mb0, *mb1;
261 __m128i head_off = _mm_set_epi64x(
262 RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
263 RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
264 __m128i dma_addr0, dma_addr1;
265 /* Rx buffer need to be aligned with 512 byte */
266 const __m128i hba_msk = _mm_set_epi64x(0,
267 UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);
268
269 rxdp = rxq->hw_ring + rxq->rxrearm_start;
270
271 /* Pull 'n' more MBUFs into the software ring */
272 if (rte_mempool_get_bulk(rxq->mp,
273 (void *)mb_alloc,
274 RTE_FM10K_RXQ_REARM_THRESH) < 0) {
275 dma_addr0 = _mm_setzero_si128();
276 /* Clean up all the HW/SW ring content */
277 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
278 mb_alloc[i] = &rxq->fake_mbuf;
279 _mm_store_si128((__m128i *)&rxdp[i].q,
280 dma_addr0);
281 }
282
283 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
284 RTE_FM10K_RXQ_REARM_THRESH;
285 return;
286 }
287
288 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
289 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
290 __m128i vaddr0, vaddr1;
291 uintptr_t p0, p1;
292
293 mb0 = mb_alloc[0];
294 mb1 = mb_alloc[1];
295
296 /* Flush mbuf with pkt template.
297 * Data to be rearmed is 6 bytes long.
298 */
299 p0 = (uintptr_t)&mb0->rearm_data;
300 *(uint64_t *)p0 = rxq->mbuf_initializer;
301 p1 = (uintptr_t)&mb1->rearm_data;
302 *(uint64_t *)p1 = rxq->mbuf_initializer;
303
304 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
305 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
306 offsetof(struct rte_mbuf, buf_addr) + 8);
307 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
308 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
309
310 /* convert pa to dma_addr hdr/data */
311 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
312 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
313
314 /* add headroom to pa values */
315 dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
316 dma_addr1 = _mm_add_epi64(dma_addr1, head_off);
317
318 /* Do 512 byte alignment to satisfy HW requirement, in the
319 * meanwhile, set Header Buffer Address to zero.
320 */
321 dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
322 dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
323
324 /* flush desc with pa dma_addr */
325 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
326 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);
327
328 /* enforce 512B alignment on default Rx virtual addresses */
329 mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
330 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
331 - (char *)mb0->buf_addr);
332 mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
333 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
334 - (char *)mb1->buf_addr);
335 }
336
337 rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
338 if (rxq->rxrearm_start >= rxq->nb_desc)
339 rxq->rxrearm_start = 0;
340
341 rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;
342
343 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
344 (rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));
345
346 /* Update the tail pointer on the NIC */
347 FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
348 }
349
350 void __attribute__((cold))
351 fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq)
352 {
353 const unsigned mask = rxq->nb_desc - 1;
354 unsigned i;
355
356 if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc)
357 return;
358
359 /* free all mbufs that are valid in the ring */
360 for (i = rxq->next_dd; i != rxq->rxrearm_start; i = (i + 1) & mask)
361 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
362 rxq->rxrearm_nb = rxq->nb_desc;
363
364 /* set all entries to NULL */
365 memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc);
366 }
367
368 static inline uint16_t
369 fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
370 uint16_t nb_pkts, uint8_t *split_packet)
371 {
372 volatile union fm10k_rx_desc *rxdp;
373 struct rte_mbuf **mbufp;
374 uint16_t nb_pkts_recd;
375 int pos;
376 struct fm10k_rx_queue *rxq = rx_queue;
377 uint64_t var;
378 __m128i shuf_msk;
379 __m128i dd_check, eop_check;
380 uint16_t next_dd;
381
382 next_dd = rxq->next_dd;
383
384 /* Just the act of getting into the function from the application is
385 * going to cost about 7 cycles
386 */
387 rxdp = rxq->hw_ring + next_dd;
388
389 rte_prefetch0(rxdp);
390
391 /* See if we need to rearm the RX queue - gives the prefetch a bit
392 * of time to act
393 */
394 if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
395 fm10k_rxq_rearm(rxq);
396
397 /* Before we start moving massive data around, check to see if
398 * there is actually a packet available
399 */
400 if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
401 return 0;
402
403 /* Vecotr RX will process 4 packets at a time, strip the unaligned
404 * tails in case it's not multiple of 4.
405 */
406 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);
407
408 /* 4 packets DD mask */
409 dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
410
411 /* 4 packets EOP mask */
412 eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
413
414 /* mask to shuffle from desc. to mbuf */
415 shuf_msk = _mm_set_epi8(
416 7, 6, 5, 4, /* octet 4~7, 32bits rss */
417 15, 14, /* octet 14~15, low 16 bits vlan_macip */
418 13, 12, /* octet 12~13, 16 bits data_len */
419 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
420 13, 12, /* octet 12~13, low 16 bits pkt_len */
421 0xFF, 0xFF, /* skip high 16 bits pkt_type */
422 0xFF, 0xFF /* Skip pkt_type field in shuffle operation */
423 );
424 /*
425 * Compile-time verify the shuffle mask
426 * NOTE: some field positions already verified above, but duplicated
427 * here for completeness in case of future modifications.
428 */
429 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
430 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
431 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
432 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
433 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
434 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
435 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
436 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
437
438 /* Cache is empty -> need to scan the buffer rings, but first move
439 * the next 'n' mbufs into the cache
440 */
441 mbufp = &rxq->sw_ring[next_dd];
442
443 /* A. load 4 packet in one loop
444 * [A*. mask out 4 unused dirty field in desc]
445 * B. copy 4 mbuf point from swring to rx_pkts
446 * C. calc the number of DD bits among the 4 packets
447 * [C*. extract the end-of-packet bit, if requested]
448 * D. fill info. from desc to mbuf
449 */
450 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
451 pos += RTE_FM10K_DESCS_PER_LOOP,
452 rxdp += RTE_FM10K_DESCS_PER_LOOP) {
453 __m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
454 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
455 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
456 __m128i mbp1;
457 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
458 #if defined(RTE_ARCH_X86_64)
459 __m128i mbp2;
460 #endif
461
462 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
463 mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);
464
465 /* Read desc statuses backwards to avoid race condition */
466 /* A.1 load 4 pkts desc */
467 descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
468 rte_compiler_barrier();
469
470 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
471 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
472
473 #if defined(RTE_ARCH_X86_64)
474 /* B.1 load 2 64 bit mbuf poitns */
475 mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
476 #endif
477
478 descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
479 rte_compiler_barrier();
480 /* B.1 load 2 mbuf point */
481 descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
482 rte_compiler_barrier();
483 descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));
484
485 #if defined(RTE_ARCH_X86_64)
486 /* B.2 copy 2 mbuf point into rx_pkts */
487 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
488 #endif
489
490 /* avoid compiler reorder optimization */
491 rte_compiler_barrier();
492
493 if (split_packet) {
494 rte_mbuf_prefetch_part2(rx_pkts[pos]);
495 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
496 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
497 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
498 }
499
500 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
501 pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
502 pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);
503
504 /* C.1 4=>2 filter staterr info only */
505 sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
506 /* C.1 4=>2 filter staterr info only */
507 sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);
508
509 /* set ol_flags with vlan packet type */
510 fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);
511
512 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
513 pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
514 pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);
515
516 /* C.2 get 4 pkts staterr value */
517 zero = _mm_xor_si128(dd_check, dd_check);
518 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
519
520 /* D.3 copy final 3,4 data to rx_pkts */
521 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
522 pkt_mb4);
523 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
524 pkt_mb3);
525
526 /* C* extract and record EOP bit */
527 if (split_packet) {
528 __m128i eop_shuf_mask = _mm_set_epi8(
529 0xFF, 0xFF, 0xFF, 0xFF,
530 0xFF, 0xFF, 0xFF, 0xFF,
531 0xFF, 0xFF, 0xFF, 0xFF,
532 0x04, 0x0C, 0x00, 0x08
533 );
534
535 /* and with mask to extract bits, flipping 1-0 */
536 __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
537 /* the staterr values are not in order, as the count
538 * count of dd bits doesn't care. However, for end of
539 * packet tracking, we do care, so shuffle. This also
540 * compresses the 32-bit values to 8-bit
541 */
542 eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
543 /* store the resulting 32-bit value */
544 *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
545 split_packet += RTE_FM10K_DESCS_PER_LOOP;
546
547 /* zero-out next pointers */
548 rx_pkts[pos]->next = NULL;
549 rx_pkts[pos + 1]->next = NULL;
550 rx_pkts[pos + 2]->next = NULL;
551 rx_pkts[pos + 3]->next = NULL;
552 }
553
554 /* C.3 calc available number of desc */
555 staterr = _mm_and_si128(staterr, dd_check);
556 staterr = _mm_packs_epi32(staterr, zero);
557
558 /* D.3 copy final 1,2 data to rx_pkts */
559 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
560 pkt_mb2);
561 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
562 pkt_mb1);
563
564 fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);
565
566 /* C.4 calc avaialbe number of desc */
567 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
568 nb_pkts_recd += var;
569 if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
570 break;
571 }
572
573 /* Update our internal tail pointer */
574 rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
575 rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
576 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
577
578 return nb_pkts_recd;
579 }
580
581 /* vPMD receive routine
582 *
583 * Notice:
584 * - don't support ol_flags for rss and csum err
585 */
586 uint16_t
587 fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
588 uint16_t nb_pkts)
589 {
590 return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
591 }
592
593 static inline uint16_t
594 fm10k_reassemble_packets(struct fm10k_rx_queue *rxq,
595 struct rte_mbuf **rx_bufs,
596 uint16_t nb_bufs, uint8_t *split_flags)
597 {
598 struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/
599 struct rte_mbuf *start = rxq->pkt_first_seg;
600 struct rte_mbuf *end = rxq->pkt_last_seg;
601 unsigned pkt_idx, buf_idx;
602
603 for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
604 if (end != NULL) {
605 /* processing a split packet */
606 end->next = rx_bufs[buf_idx];
607 start->nb_segs++;
608 start->pkt_len += rx_bufs[buf_idx]->data_len;
609 end = end->next;
610
611 if (!split_flags[buf_idx]) {
612 /* it's the last packet of the set */
613 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
614 start->hash = end->hash;
615 start->ol_flags = end->ol_flags;
616 start->packet_type = end->packet_type;
617 #endif
618 pkts[pkt_idx++] = start;
619 start = end = NULL;
620 }
621 } else {
622 /* not processing a split packet */
623 if (!split_flags[buf_idx]) {
624 /* not a split packet, save and skip */
625 pkts[pkt_idx++] = rx_bufs[buf_idx];
626 continue;
627 }
628 end = start = rx_bufs[buf_idx];
629 }
630 }
631
632 /* save the partial packet for next time */
633 rxq->pkt_first_seg = start;
634 rxq->pkt_last_seg = end;
635 memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
636 return pkt_idx;
637 }
638
639 /*
640 * vPMD receive routine that reassembles scattered packets
641 *
642 * Notice:
643 * - don't support ol_flags for rss and csum err
644 * - nb_pkts > RTE_FM10K_MAX_RX_BURST, only scan RTE_FM10K_MAX_RX_BURST
645 * numbers of DD bit
646 */
647 uint16_t
648 fm10k_recv_scattered_pkts_vec(void *rx_queue,
649 struct rte_mbuf **rx_pkts,
650 uint16_t nb_pkts)
651 {
652 struct fm10k_rx_queue *rxq = rx_queue;
653 uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0};
654 unsigned i = 0;
655
656 /* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */
657 nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST);
658 /* get some new buffers */
659 uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
660 split_flags);
661 if (nb_bufs == 0)
662 return 0;
663
664 /* happy day case, full burst + no packets to be joined */
665 const uint64_t *split_fl64 = (uint64_t *)split_flags;
666
667 if (rxq->pkt_first_seg == NULL &&
668 split_fl64[0] == 0 && split_fl64[1] == 0 &&
669 split_fl64[2] == 0 && split_fl64[3] == 0)
670 return nb_bufs;
671
672 /* reassemble any packets that need reassembly*/
673 if (rxq->pkt_first_seg == NULL) {
674 /* find the first split flag, and only reassemble then*/
675 while (i < nb_bufs && !split_flags[i])
676 i++;
677 if (i == nb_bufs)
678 return nb_bufs;
679 }
680 return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
681 &split_flags[i]);
682 }
683
684 static const struct fm10k_txq_ops vec_txq_ops = {
685 .reset = fm10k_reset_tx_queue,
686 };
687
688 void __attribute__((cold))
689 fm10k_txq_vec_setup(struct fm10k_tx_queue *txq)
690 {
691 txq->ops = &vec_txq_ops;
692 }
693
694 int __attribute__((cold))
695 fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq)
696 {
697 /* Vector TX can't offload any features yet */
698 if (txq->offloads != 0)
699 return -1;
700
701 if (txq->tx_ftag_en)
702 return -1;
703
704 return 0;
705 }
706
707 static inline void
708 vtx1(volatile struct fm10k_tx_desc *txdp,
709 struct rte_mbuf *pkt, uint64_t flags)
710 {
711 __m128i descriptor = _mm_set_epi64x(flags << 56 |
712 pkt->vlan_tci << 16 | pkt->data_len,
713 MBUF_DMA_ADDR(pkt));
714 _mm_store_si128((__m128i *)txdp, descriptor);
715 }
716
717 static inline void
718 vtx(volatile struct fm10k_tx_desc *txdp,
719 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
720 {
721 int i;
722
723 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
724 vtx1(txdp, *pkt, flags);
725 }
726
727 static __rte_always_inline int
728 fm10k_tx_free_bufs(struct fm10k_tx_queue *txq)
729 {
730 struct rte_mbuf **txep;
731 uint8_t flags;
732 uint32_t n;
733 uint32_t i;
734 int nb_free = 0;
735 struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
736
737 /* check DD bit on threshold descriptor */
738 flags = txq->hw_ring[txq->next_dd].flags;
739 if (!(flags & FM10K_TXD_FLAG_DONE))
740 return 0;
741
742 n = txq->rs_thresh;
743
744 /* First buffer to free from S/W ring is at index
745 * next_dd - (rs_thresh-1)
746 */
747 txep = &txq->sw_ring[txq->next_dd - (n - 1)];
748 m = rte_pktmbuf_prefree_seg(txep[0]);
749 if (likely(m != NULL)) {
750 free[0] = m;
751 nb_free = 1;
752 for (i = 1; i < n; i++) {
753 m = rte_pktmbuf_prefree_seg(txep[i]);
754 if (likely(m != NULL)) {
755 if (likely(m->pool == free[0]->pool))
756 free[nb_free++] = m;
757 else {
758 rte_mempool_put_bulk(free[0]->pool,
759 (void *)free, nb_free);
760 free[0] = m;
761 nb_free = 1;
762 }
763 }
764 }
765 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
766 } else {
767 for (i = 1; i < n; i++) {
768 m = rte_pktmbuf_prefree_seg(txep[i]);
769 if (m != NULL)
770 rte_mempool_put(m->pool, m);
771 }
772 }
773
774 /* buffers were freed, update counters */
775 txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
776 txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
777 if (txq->next_dd >= txq->nb_desc)
778 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
779
780 return txq->rs_thresh;
781 }
782
783 static __rte_always_inline void
784 tx_backlog_entry(struct rte_mbuf **txep,
785 struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
786 {
787 int i;
788
789 for (i = 0; i < (int)nb_pkts; ++i)
790 txep[i] = tx_pkts[i];
791 }
792
793 uint16_t
794 fm10k_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
795 uint16_t nb_pkts)
796 {
797 struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
798 volatile struct fm10k_tx_desc *txdp;
799 struct rte_mbuf **txep;
800 uint16_t n, nb_commit, tx_id;
801 uint64_t flags = FM10K_TXD_FLAG_LAST;
802 uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST;
803 int i;
804
805 /* cross rx_thresh boundary is not allowed */
806 nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
807
808 if (txq->nb_free < txq->free_thresh)
809 fm10k_tx_free_bufs(txq);
810
811 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
812 if (unlikely(nb_pkts == 0))
813 return 0;
814
815 tx_id = txq->next_free;
816 txdp = &txq->hw_ring[tx_id];
817 txep = &txq->sw_ring[tx_id];
818
819 txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
820
821 n = (uint16_t)(txq->nb_desc - tx_id);
822 if (nb_commit >= n) {
823 tx_backlog_entry(txep, tx_pkts, n);
824
825 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
826 vtx1(txdp, *tx_pkts, flags);
827
828 vtx1(txdp, *tx_pkts++, rs);
829
830 nb_commit = (uint16_t)(nb_commit - n);
831
832 tx_id = 0;
833 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
834
835 /* avoid reach the end of ring */
836 txdp = &(txq->hw_ring[tx_id]);
837 txep = &txq->sw_ring[tx_id];
838 }
839
840 tx_backlog_entry(txep, tx_pkts, nb_commit);
841
842 vtx(txdp, tx_pkts, nb_commit, flags);
843
844 tx_id = (uint16_t)(tx_id + nb_commit);
845 if (tx_id > txq->next_rs) {
846 txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS;
847 txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh);
848 }
849
850 txq->next_free = tx_id;
851
852 FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free);
853
854 return nb_pkts;
855 }
856
857 static void __attribute__((cold))
858 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq)
859 {
860 static const struct fm10k_tx_desc zeroed_desc = {0};
861 struct rte_mbuf **txe = txq->sw_ring;
862 uint16_t i;
863
864 /* Zero out HW ring memory */
865 for (i = 0; i < txq->nb_desc; i++)
866 txq->hw_ring[i] = zeroed_desc;
867
868 /* Initialize SW ring entries */
869 for (i = 0; i < txq->nb_desc; i++)
870 txe[i] = NULL;
871
872 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
873 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
874
875 txq->next_free = 0;
876 txq->nb_used = 0;
877 /* Always allow 1 descriptor to be un-allocated to avoid
878 * a H/W race condition
879 */
880 txq->nb_free = (uint16_t)(txq->nb_desc - 1);
881 FM10K_PCI_REG_WRITE(txq->tail_ptr, 0);
882 }