]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/i40e/i40e_rxtx_vec_avx2.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / i40e / i40e_rxtx_vec_avx2.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2017 Intel Corporation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <stdint.h>
35 #include <rte_ethdev_driver.h>
36 #include <rte_malloc.h>
37
38 #include "base/i40e_prototype.h"
39 #include "base/i40e_type.h"
40 #include "i40e_ethdev.h"
41 #include "i40e_rxtx.h"
42 #include "i40e_rxtx_vec_common.h"
43
44 #include <x86intrin.h>
45
46 #ifndef __INTEL_COMPILER
47 #pragma GCC diagnostic ignored "-Wcast-qual"
48 #endif
49
50 static inline void
51 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
52 {
53 int i;
54 uint16_t rx_id;
55 volatile union i40e_rx_desc *rxdp;
56 struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
57
58 rxdp = rxq->rx_ring + rxq->rxrearm_start;
59
60 /* Pull 'n' more MBUFs into the software ring */
61 if (rte_mempool_get_bulk(rxq->mp,
62 (void *)rxep,
63 RTE_I40E_RXQ_REARM_THRESH) < 0) {
64 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
65 rxq->nb_rx_desc) {
66 __m128i dma_addr0;
67 dma_addr0 = _mm_setzero_si128();
68 for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
69 rxep[i].mbuf = &rxq->fake_mbuf;
70 _mm_store_si128((__m128i *)&rxdp[i].read,
71 dma_addr0);
72 }
73 }
74 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
75 RTE_I40E_RXQ_REARM_THRESH;
76 return;
77 }
78
79 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
80 struct rte_mbuf *mb0, *mb1;
81 __m128i dma_addr0, dma_addr1;
82 __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
83 RTE_PKTMBUF_HEADROOM);
84 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
85 for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
86 __m128i vaddr0, vaddr1;
87
88 mb0 = rxep[0].mbuf;
89 mb1 = rxep[1].mbuf;
90
91 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
92 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
93 offsetof(struct rte_mbuf, buf_addr) + 8);
94 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
95 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
96
97 /* convert pa to dma_addr hdr/data */
98 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
99 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
100
101 /* add headroom to pa values */
102 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
103 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
104
105 /* flush desc with pa dma_addr */
106 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
107 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
108 }
109 #else
110 struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
111 __m256i dma_addr0_1, dma_addr2_3;
112 __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
113 /* Initialize the mbufs in vector, process 4 mbufs in one loop */
114 for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH;
115 i += 4, rxep += 4, rxdp += 4) {
116 __m128i vaddr0, vaddr1, vaddr2, vaddr3;
117 __m256i vaddr0_1, vaddr2_3;
118
119 mb0 = rxep[0].mbuf;
120 mb1 = rxep[1].mbuf;
121 mb2 = rxep[2].mbuf;
122 mb3 = rxep[3].mbuf;
123
124 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
125 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
126 offsetof(struct rte_mbuf, buf_addr) + 8);
127 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
128 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
129 vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
130 vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
131
132 /*
133 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
134 * into the high lanes. Similarly for 2 & 3
135 */
136 vaddr0_1 = _mm256_inserti128_si256(
137 _mm256_castsi128_si256(vaddr0), vaddr1, 1);
138 vaddr2_3 = _mm256_inserti128_si256(
139 _mm256_castsi128_si256(vaddr2), vaddr3, 1);
140
141 /* convert pa to dma_addr hdr/data */
142 dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
143 dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
144
145 /* add headroom to pa values */
146 dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
147 dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
148
149 /* flush desc with pa dma_addr */
150 _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
151 _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
152 }
153
154 #endif
155
156 rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
157 if (rxq->rxrearm_start >= rxq->nb_rx_desc)
158 rxq->rxrearm_start = 0;
159
160 rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
161
162 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
163 (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
164
165 /* Update the tail pointer on the NIC */
166 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
167 }
168
169 #define PKTLEN_SHIFT 10
170
171 static inline uint16_t
172 _recv_raw_pkts_vec_avx2(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
173 uint16_t nb_pkts, uint8_t *split_packet)
174 {
175 #define RTE_I40E_DESCS_PER_LOOP_AVX 8
176
177 const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
178 const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
179 0, rxq->mbuf_initializer);
180 struct i40e_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
181 volatile union i40e_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
182 const int avx_aligned = ((rxq->rx_tail & 1) == 0);
183 rte_prefetch0(rxdp);
184
185 /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP_AVX */
186 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP_AVX);
187
188 /* See if we need to rearm the RX queue - gives the prefetch a bit
189 * of time to act
190 */
191 if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
192 i40e_rxq_rearm(rxq);
193
194 /* Before we start moving massive data around, check to see if
195 * there is actually a packet available
196 */
197 if (!(rxdp->wb.qword1.status_error_len &
198 rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
199 return 0;
200
201 /* constants used in processing loop */
202 const __m256i crc_adjust = _mm256_set_epi16(
203 /* first descriptor */
204 0, 0, 0, /* ignore non-length fields */
205 -rxq->crc_len, /* sub crc on data_len */
206 0, /* ignore high-16bits of pkt_len */
207 -rxq->crc_len, /* sub crc on pkt_len */
208 0, 0, /* ignore pkt_type field */
209 /* second descriptor */
210 0, 0, 0, /* ignore non-length fields */
211 -rxq->crc_len, /* sub crc on data_len */
212 0, /* ignore high-16bits of pkt_len */
213 -rxq->crc_len, /* sub crc on pkt_len */
214 0, 0 /* ignore pkt_type field */
215 );
216
217 /* 8 packets DD mask, LSB in each 32-bit value */
218 const __m256i dd_check = _mm256_set1_epi32(1);
219
220 /* 8 packets EOP mask, second-LSB in each 32-bit value */
221 const __m256i eop_check = _mm256_slli_epi32(dd_check,
222 I40E_RX_DESC_STATUS_EOF_SHIFT);
223
224 /* mask to shuffle from desc. to mbuf (2 descriptors)*/
225 const __m256i shuf_msk = _mm256_set_epi8(
226 /* first descriptor */
227 7, 6, 5, 4, /* octet 4~7, 32bits rss */
228 3, 2, /* octet 2~3, low 16 bits vlan_macip */
229 15, 14, /* octet 15~14, 16 bits data_len */
230 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
231 15, 14, /* octet 15~14, low 16 bits pkt_len */
232 0xFF, 0xFF, /* pkt_type set as unknown */
233 0xFF, 0xFF, /*pkt_type set as unknown */
234 /* second descriptor */
235 7, 6, 5, 4, /* octet 4~7, 32bits rss */
236 3, 2, /* octet 2~3, low 16 bits vlan_macip */
237 15, 14, /* octet 15~14, 16 bits data_len */
238 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
239 15, 14, /* octet 15~14, low 16 bits pkt_len */
240 0xFF, 0xFF, /* pkt_type set as unknown */
241 0xFF, 0xFF /*pkt_type set as unknown */
242 );
243 /*
244 * compile-time check the above crc and shuffle layout is correct.
245 * NOTE: the first field (lowest address) is given last in set_epi
246 * calls above.
247 */
248 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
249 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
250 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
251 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
252 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
253 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
254 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
255 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
256
257 /* Status/Error flag masks */
258 /*
259 * mask everything except RSS, flow director and VLAN flags
260 * bit2 is for VLAN tag, bit11 for flow director indication
261 * bit13:12 for RSS indication. Bits 3-5 of error
262 * field (bits 22-24) are for IP/L4 checksum errors
263 */
264 const __m256i flags_mask = _mm256_set1_epi32(
265 (1 << 2) | (1 << 11) | (3 << 12) | (7 << 22));
266 /*
267 * data to be shuffled by result of flag mask. If VLAN bit is set,
268 * (bit 2), then position 4 in this array will be used in the
269 * destination
270 */
271 const __m256i vlan_flags_shuf = _mm256_set_epi32(
272 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
273 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
274 /*
275 * data to be shuffled by result of flag mask, shifted down 11.
276 * If RSS/FDIR bits are set, shuffle moves appropriate flags in
277 * place.
278 */
279 const __m256i rss_flags_shuf = _mm256_set_epi8(
280 0, 0, 0, 0, 0, 0, 0, 0,
281 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
282 0, 0, PKT_RX_FDIR, 0, /* end up 128-bits */
283 0, 0, 0, 0, 0, 0, 0, 0,
284 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
285 0, 0, PKT_RX_FDIR, 0);
286
287 /*
288 * data to be shuffled by the result of the flags mask shifted by 22
289 * bits. This gives use the l3_l4 flags.
290 */
291 const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
292 /* shift right 1 bit to make sure it not exceed 255 */
293 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
294 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1,
295 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
296 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
297 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
298 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
299 PKT_RX_IP_CKSUM_BAD >> 1,
300 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
301 /* second 128-bits */
302 0, 0, 0, 0, 0, 0, 0, 0,
303 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
304 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1,
305 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
306 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
307 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
308 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
309 PKT_RX_IP_CKSUM_BAD >> 1,
310 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
311
312 const __m256i cksum_mask = _mm256_set1_epi32(
313 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
314 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
315 PKT_RX_EIP_CKSUM_BAD);
316
317 RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
318
319 uint16_t i, received;
320 for (i = 0, received = 0; i < nb_pkts;
321 i += RTE_I40E_DESCS_PER_LOOP_AVX,
322 rxdp += RTE_I40E_DESCS_PER_LOOP_AVX) {
323 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
324 _mm256_storeu_si256((void *)&rx_pkts[i],
325 _mm256_loadu_si256((void *)&sw_ring[i]));
326 #ifdef RTE_ARCH_X86_64
327 _mm256_storeu_si256((void *)&rx_pkts[i + 4],
328 _mm256_loadu_si256((void *)&sw_ring[i + 4]));
329 #endif
330
331 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
332 #ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC
333 /* for AVX we need alignment otherwise loads are not atomic */
334 if (avx_aligned) {
335 /* load in descriptors, 2 at a time, in reverse order */
336 raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
337 rte_compiler_barrier();
338 raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
339 rte_compiler_barrier();
340 raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
341 rte_compiler_barrier();
342 raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
343 } else
344 #endif
345 do {
346 const __m128i raw_desc7 = _mm_load_si128((void *)(rxdp + 7));
347 rte_compiler_barrier();
348 const __m128i raw_desc6 = _mm_load_si128((void *)(rxdp + 6));
349 rte_compiler_barrier();
350 const __m128i raw_desc5 = _mm_load_si128((void *)(rxdp + 5));
351 rte_compiler_barrier();
352 const __m128i raw_desc4 = _mm_load_si128((void *)(rxdp + 4));
353 rte_compiler_barrier();
354 const __m128i raw_desc3 = _mm_load_si128((void *)(rxdp + 3));
355 rte_compiler_barrier();
356 const __m128i raw_desc2 = _mm_load_si128((void *)(rxdp + 2));
357 rte_compiler_barrier();
358 const __m128i raw_desc1 = _mm_load_si128((void *)(rxdp + 1));
359 rte_compiler_barrier();
360 const __m128i raw_desc0 = _mm_load_si128((void *)(rxdp + 0));
361
362 raw_desc6_7 = _mm256_inserti128_si256(
363 _mm256_castsi128_si256(raw_desc6), raw_desc7, 1);
364 raw_desc4_5 = _mm256_inserti128_si256(
365 _mm256_castsi128_si256(raw_desc4), raw_desc5, 1);
366 raw_desc2_3 = _mm256_inserti128_si256(
367 _mm256_castsi128_si256(raw_desc2), raw_desc3, 1);
368 raw_desc0_1 = _mm256_inserti128_si256(
369 _mm256_castsi128_si256(raw_desc0), raw_desc1, 1);
370 } while (0);
371
372 if (split_packet) {
373 int j;
374 for (j = 0; j < RTE_I40E_DESCS_PER_LOOP_AVX; j++)
375 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
376 }
377
378 /*
379 * convert descriptors 4-7 into mbufs, adjusting length and
380 * re-arranging fields. Then write into the mbuf
381 */
382 const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, PKTLEN_SHIFT);
383 const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, PKTLEN_SHIFT);
384 const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, len6_7, 0x80);
385 const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, len4_5, 0x80);
386 __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
387 __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
388 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
389 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
390 /*
391 * to get packet types, shift 64-bit values down 30 bits
392 * and so ptype is in lower 8-bits in each
393 */
394 const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
395 const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
396 const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
397 const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
398 const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
399 const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
400 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
401 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
402 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
403 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
404 /* merge the status bits into one register */
405 const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
406 desc4_5);
407
408 /*
409 * convert descriptors 0-3 into mbufs, adjusting length and
410 * re-arranging fields. Then write into the mbuf
411 */
412 const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, PKTLEN_SHIFT);
413 const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, PKTLEN_SHIFT);
414 const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, len2_3, 0x80);
415 const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, len0_1, 0x80);
416 __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
417 __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
418 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
419 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
420 /* get the packet types */
421 const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
422 const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
423 const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
424 const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
425 const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
426 const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
427 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
428 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
429 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
430 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
431 /* merge the status bits into one register */
432 const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
433 desc0_1);
434
435 /*
436 * take the two sets of status bits and merge to one
437 * After merge, the packets status flags are in the
438 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
439 */
440 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
441 status0_3);
442
443 /* now do flag manipulation */
444
445 /* get only flag/error bits we want */
446 const __m256i flag_bits = _mm256_and_si256(
447 status0_7, flags_mask);
448 /* set vlan and rss flags */
449 const __m256i vlan_flags = _mm256_shuffle_epi8(
450 vlan_flags_shuf, flag_bits);
451 const __m256i rss_flags = _mm256_shuffle_epi8(
452 rss_flags_shuf, _mm256_srli_epi32(flag_bits, 11));
453 /*
454 * l3_l4_error flags, shuffle, then shift to correct adjustment
455 * of flags in flags_shuf, and finally mask out extra bits
456 */
457 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
458 _mm256_srli_epi32(flag_bits, 22));
459 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
460 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
461
462 /* merge flags */
463 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
464 _mm256_or_si256(rss_flags, vlan_flags));
465 /*
466 * At this point, we have the 8 sets of flags in the low 16-bits
467 * of each 32-bit value in vlan0.
468 * We want to extract these, and merge them with the mbuf init data
469 * so we can do a single write to the mbuf to set the flags
470 * and all the other initialization fields. Extracting the
471 * appropriate flags means that we have to do a shift and blend for
472 * each mbuf before we do the write. However, we can also
473 * add in the previously computed rx_descriptor fields to
474 * make a single 256-bit write per mbuf
475 */
476 /* check the structure matches expectations */
477 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
478 offsetof(struct rte_mbuf, rearm_data) + 8);
479 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
480 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
481 /* build up data and do writes */
482 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
483 rearm6, rearm7;
484 rearm6 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04);
485 rearm4 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04);
486 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
487 rearm0 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04);
488 /* permute to add in the rx_descriptor e.g. rss fields */
489 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
490 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
491 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
492 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
493 /* write to mbuf */
494 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6);
495 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4);
496 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2);
497 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0);
498
499 /* repeat for the odd mbufs */
500 const __m256i odd_flags = _mm256_castsi128_si256(
501 _mm256_extracti128_si256(mbuf_flags, 1));
502 rearm7 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04);
503 rearm5 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04);
504 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
505 rearm1 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04);
506 /* since odd mbufs are already in hi 128-bits use blend */
507 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
508 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
509 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
510 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
511 /* again write to mbufs */
512 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7);
513 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5);
514 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3);
515 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1);
516
517 /* extract and record EOP bit */
518 if (split_packet) {
519 const __m128i eop_mask = _mm_set1_epi16(
520 1 << I40E_RX_DESC_STATUS_EOF_SHIFT);
521 const __m256i eop_bits256 = _mm256_and_si256(status0_7,
522 eop_check);
523 /* pack status bits into a single 128-bit register */
524 const __m128i eop_bits = _mm_packus_epi32(
525 _mm256_castsi256_si128(eop_bits256),
526 _mm256_extractf128_si256(eop_bits256, 1));
527 /*
528 * flip bits, and mask out the EOP bit, which is now
529 * a split-packet bit i.e. !EOP, rather than EOP one.
530 */
531 __m128i split_bits = _mm_andnot_si128(eop_bits,
532 eop_mask);
533 /*
534 * eop bits are out of order, so we need to shuffle them
535 * back into order again. In doing so, only use low 8
536 * bits, which acts like another pack instruction
537 * The original order is (hi->lo): 1,3,5,7,0,2,4,6
538 * [Since we use epi8, the 16-bit positions are
539 * multiplied by 2 in the eop_shuffle value.]
540 */
541 __m128i eop_shuffle = _mm_set_epi8(
542 0xFF, 0xFF, 0xFF, 0xFF, /* zero hi 64b */
543 0xFF, 0xFF, 0xFF, 0xFF,
544 8, 0, 10, 2, /* move values to lo 64b */
545 12, 4, 14, 6);
546 split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
547 *(uint64_t *)split_packet = _mm_cvtsi128_si64(split_bits);
548 split_packet += RTE_I40E_DESCS_PER_LOOP_AVX;
549 }
550
551 /* perform dd_check */
552 status0_7 = _mm256_and_si256(status0_7, dd_check);
553 status0_7 = _mm256_packs_epi32(status0_7,
554 _mm256_setzero_si256());
555
556 uint64_t burst = __builtin_popcountll(_mm_cvtsi128_si64(
557 _mm256_extracti128_si256(status0_7, 1)));
558 burst += __builtin_popcountll(_mm_cvtsi128_si64(
559 _mm256_castsi256_si128(status0_7)));
560 received += burst;
561 if (burst != RTE_I40E_DESCS_PER_LOOP_AVX)
562 break;
563 }
564
565 /* update tail pointers */
566 rxq->rx_tail += received;
567 rxq->rx_tail &= (rxq->nb_rx_desc - 1);
568 if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
569 rxq->rx_tail--;
570 received--;
571 }
572 rxq->rxrearm_nb += received;
573 return received;
574 }
575
576 /*
577 * Notice:
578 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
579 */
580 uint16_t
581 i40e_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
582 uint16_t nb_pkts)
583 {
584 return _recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
585 }
586
587 /*
588 * vPMD receive routine that reassembles single burst of 32 scattered packets
589 * Notice:
590 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
591 */
592 static uint16_t
593 i40e_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
594 uint16_t nb_pkts)
595 {
596 struct i40e_rx_queue *rxq = rx_queue;
597 uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
598
599 /* get some new buffers */
600 uint16_t nb_bufs = _recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
601 split_flags);
602 if (nb_bufs == 0)
603 return 0;
604
605 /* happy day case, full burst + no packets to be joined */
606 const uint64_t *split_fl64 = (uint64_t *)split_flags;
607
608 if (rxq->pkt_first_seg == NULL &&
609 split_fl64[0] == 0 && split_fl64[1] == 0 &&
610 split_fl64[2] == 0 && split_fl64[3] == 0)
611 return nb_bufs;
612
613 /* reassemble any packets that need reassembly*/
614 unsigned int i = 0;
615
616 if (rxq->pkt_first_seg == NULL) {
617 /* find the first split flag, and only reassemble then*/
618 while (i < nb_bufs && !split_flags[i])
619 i++;
620 if (i == nb_bufs)
621 return nb_bufs;
622 }
623 return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
624 &split_flags[i]);
625 }
626
627 /*
628 * vPMD receive routine that reassembles scattered packets.
629 * Main receive routine that can handle arbitrary burst sizes
630 * Notice:
631 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
632 */
633 uint16_t
634 i40e_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
635 uint16_t nb_pkts)
636 {
637 uint16_t retval = 0;
638 while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
639 uint16_t burst = i40e_recv_scattered_burst_vec_avx2(rx_queue,
640 rx_pkts + retval, RTE_I40E_VPMD_RX_BURST);
641 retval += burst;
642 nb_pkts -= burst;
643 if (burst < RTE_I40E_VPMD_RX_BURST)
644 return retval;
645 }
646 return retval + i40e_recv_scattered_burst_vec_avx2(rx_queue,
647 rx_pkts + retval, nb_pkts);
648 }
649
650
651 static inline void
652 vtx1(volatile struct i40e_tx_desc *txdp,
653 struct rte_mbuf *pkt, uint64_t flags)
654 {
655 uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
656 ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
657 ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
658
659 __m128i descriptor = _mm_set_epi64x(high_qw,
660 pkt->buf_physaddr + pkt->data_off);
661 _mm_store_si128((__m128i *)txdp, descriptor);
662 }
663
664 static inline void
665 vtx(volatile struct i40e_tx_desc *txdp,
666 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
667 {
668 const uint64_t hi_qw_tmpl = (I40E_TX_DESC_DTYPE_DATA |
669 ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT));
670
671 /* if unaligned on 32-bit boundary, do one to align */
672 if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
673 vtx1(txdp, *pkt, flags);
674 nb_pkts--, txdp++, pkt++;
675 }
676
677 /* do two at a time while possible, in bursts */
678 for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
679 uint64_t hi_qw3 = hi_qw_tmpl |
680 ((uint64_t)pkt[3]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
681 uint64_t hi_qw2 = hi_qw_tmpl |
682 ((uint64_t)pkt[2]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
683 uint64_t hi_qw1 = hi_qw_tmpl |
684 ((uint64_t)pkt[1]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
685 uint64_t hi_qw0 = hi_qw_tmpl |
686 ((uint64_t)pkt[0]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
687
688 __m256i desc2_3 = _mm256_set_epi64x(
689 hi_qw3, pkt[3]->buf_physaddr + pkt[3]->data_off,
690 hi_qw2, pkt[2]->buf_physaddr + pkt[2]->data_off);
691 __m256i desc0_1 = _mm256_set_epi64x(
692 hi_qw1, pkt[1]->buf_physaddr + pkt[1]->data_off,
693 hi_qw0, pkt[0]->buf_physaddr + pkt[0]->data_off);
694 _mm256_store_si256((void *)(txdp + 2), desc2_3);
695 _mm256_store_si256((void *)txdp, desc0_1);
696 }
697
698 /* do any last ones */
699 while (nb_pkts) {
700 vtx1(txdp, *pkt, flags);
701 txdp++, pkt++, nb_pkts--;
702 }
703 }
704
705 static inline uint16_t
706 i40e_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
707 uint16_t nb_pkts)
708 {
709 struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
710 volatile struct i40e_tx_desc *txdp;
711 struct i40e_tx_entry *txep;
712 uint16_t n, nb_commit, tx_id;
713 uint64_t flags = I40E_TD_CMD;
714 uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
715
716 /* cross rx_thresh boundary is not allowed */
717 nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
718
719 if (txq->nb_tx_free < txq->tx_free_thresh)
720 i40e_tx_free_bufs(txq);
721
722 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
723 if (unlikely(nb_pkts == 0))
724 return 0;
725
726 tx_id = txq->tx_tail;
727 txdp = &txq->tx_ring[tx_id];
728 txep = &txq->sw_ring[tx_id];
729
730 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
731
732 n = (uint16_t)(txq->nb_tx_desc - tx_id);
733 if (nb_commit >= n) {
734 tx_backlog_entry(txep, tx_pkts, n);
735
736 vtx(txdp, tx_pkts, n - 1, flags);
737 tx_pkts += (n - 1);
738 txdp += (n - 1);
739
740 vtx1(txdp, *tx_pkts++, rs);
741
742 nb_commit = (uint16_t)(nb_commit - n);
743
744 tx_id = 0;
745 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
746
747 /* avoid reach the end of ring */
748 txdp = &txq->tx_ring[tx_id];
749 txep = &txq->sw_ring[tx_id];
750 }
751
752 tx_backlog_entry(txep, tx_pkts, nb_commit);
753
754 vtx(txdp, tx_pkts, nb_commit, flags);
755
756 tx_id = (uint16_t)(tx_id + nb_commit);
757 if (tx_id > txq->tx_next_rs) {
758 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
759 rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
760 I40E_TXD_QW1_CMD_SHIFT);
761 txq->tx_next_rs =
762 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
763 }
764
765 txq->tx_tail = tx_id;
766
767 I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
768
769 return nb_pkts;
770 }
771
772 uint16_t
773 i40e_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
774 uint16_t nb_pkts)
775 {
776 uint16_t nb_tx = 0;
777 struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
778
779 while (nb_pkts) {
780 uint16_t ret, num;
781
782 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
783 ret = i40e_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
784 num);
785 nb_tx += ret;
786 nb_pkts -= ret;
787 if (ret < num)
788 break;
789 }
790
791 return nb_tx;
792 }