]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/i40e/i40e_rxtx_vec_neon.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / i40e / i40e_rxtx_vec_neon.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2015 Intel Corporation.
3 * Copyright(c) 2016-2018, Linaro Limited.
4 */
5
6 #include <stdint.h>
7 #include <rte_ethdev_driver.h>
8 #include <rte_malloc.h>
9
10 #include "base/i40e_prototype.h"
11 #include "base/i40e_type.h"
12 #include "i40e_ethdev.h"
13 #include "i40e_rxtx.h"
14 #include "i40e_rxtx_vec_common.h"
15
16 #include <arm_neon.h>
17
18 #pragma GCC diagnostic ignored "-Wcast-qual"
19
20 static inline void
21 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
22 {
23 int i;
24 uint16_t rx_id;
25 volatile union i40e_rx_desc *rxdp;
26 struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
27 struct rte_mbuf *mb0, *mb1;
28 uint64x2_t dma_addr0, dma_addr1;
29 uint64x2_t zero = vdupq_n_u64(0);
30 uint64_t paddr;
31
32 rxdp = rxq->rx_ring + rxq->rxrearm_start;
33
34 /* Pull 'n' more MBUFs into the software ring */
35 if (unlikely(rte_mempool_get_bulk(rxq->mp,
36 (void *)rxep,
37 RTE_I40E_RXQ_REARM_THRESH) < 0)) {
38 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
39 rxq->nb_rx_desc) {
40 for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
41 rxep[i].mbuf = &rxq->fake_mbuf;
42 vst1q_u64((uint64_t *)&rxdp[i].read, zero);
43 }
44 }
45 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46 RTE_I40E_RXQ_REARM_THRESH;
47 return;
48 }
49
50 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51 for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
52 mb0 = rxep[0].mbuf;
53 mb1 = rxep[1].mbuf;
54
55 paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
56 dma_addr0 = vdupq_n_u64(paddr);
57
58 /* flush desc with pa dma_addr */
59 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
60
61 paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
62 dma_addr1 = vdupq_n_u64(paddr);
63 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
64 }
65
66 rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
67 if (rxq->rxrearm_start >= rxq->nb_rx_desc)
68 rxq->rxrearm_start = 0;
69
70 rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
71
72 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
73 (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
74
75 /* Update the tail pointer on the NIC */
76 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
77 }
78
79 static inline void
80 desc_to_olflags_v(struct i40e_rx_queue *rxq, uint64x2_t descs[4],
81 struct rte_mbuf **rx_pkts)
82 {
83 uint32x4_t vlan0, vlan1, rss, l3_l4e;
84 const uint64x2_t mbuf_init = {rxq->mbuf_initializer, 0};
85 uint64x2_t rearm0, rearm1, rearm2, rearm3;
86
87 /* mask everything except RSS, flow director and VLAN flags
88 * bit2 is for VLAN tag, bit11 for flow director indication
89 * bit13:12 for RSS indication.
90 */
91 const uint32x4_t rss_vlan_msk = {
92 0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804};
93
94 const uint32x4_t cksum_mask = {
95 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
96 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
97 PKT_RX_EIP_CKSUM_BAD,
98 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
99 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
100 PKT_RX_EIP_CKSUM_BAD,
101 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
102 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
103 PKT_RX_EIP_CKSUM_BAD,
104 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
105 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
106 PKT_RX_EIP_CKSUM_BAD};
107
108 /* map rss and vlan type to rss hash and vlan flag */
109 const uint8x16_t vlan_flags = {
110 0, 0, 0, 0,
111 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, 0, 0,
112 0, 0, 0, 0,
113 0, 0, 0, 0};
114
115 const uint8x16_t rss_flags = {
116 0, PKT_RX_FDIR, 0, 0,
117 0, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH | PKT_RX_FDIR,
118 0, 0, 0, 0,
119 0, 0, 0, 0};
120
121 const uint8x16_t l3_l4e_flags = {
122 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
123 PKT_RX_IP_CKSUM_BAD >> 1,
124 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
125 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
126 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
127 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
128 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
129 PKT_RX_L4_CKSUM_BAD) >> 1,
130 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
131 PKT_RX_IP_CKSUM_BAD) >> 1,
132 0, 0, 0, 0, 0, 0, 0, 0};
133
134 vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
135 vreinterpretq_u32_u64(descs[2])).val[1];
136 vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
137 vreinterpretq_u32_u64(descs[3])).val[1];
138 vlan0 = vzipq_u32(vlan0, vlan1).val[0];
139
140 vlan1 = vandq_u32(vlan0, rss_vlan_msk);
141 vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags,
142 vreinterpretq_u8_u32(vlan1)));
143
144 rss = vshrq_n_u32(vlan1, 11);
145 rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags,
146 vreinterpretq_u8_u32(rss)));
147
148 l3_l4e = vshrq_n_u32(vlan1, 22);
149 l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags,
150 vreinterpretq_u8_u32(l3_l4e)));
151 /* then we shift left 1 bit */
152 l3_l4e = vshlq_n_u32(l3_l4e, 1);
153 /* we need to mask out the reduntant bits */
154 l3_l4e = vandq_u32(l3_l4e, cksum_mask);
155
156 vlan0 = vorrq_u32(vlan0, rss);
157 vlan0 = vorrq_u32(vlan0, l3_l4e);
158
159 rearm0 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 0), mbuf_init, 1);
160 rearm1 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 1), mbuf_init, 1);
161 rearm2 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 2), mbuf_init, 1);
162 rearm3 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 3), mbuf_init, 1);
163
164 vst1q_u64((uint64_t *)&rx_pkts[0]->rearm_data, rearm0);
165 vst1q_u64((uint64_t *)&rx_pkts[1]->rearm_data, rearm1);
166 vst1q_u64((uint64_t *)&rx_pkts[2]->rearm_data, rearm2);
167 vst1q_u64((uint64_t *)&rx_pkts[3]->rearm_data, rearm3);
168 }
169
170 #define PKTLEN_SHIFT 10
171 #define I40E_UINT16_BIT (CHAR_BIT * sizeof(uint16_t))
172
173 static inline void
174 desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **rx_pkts,
175 uint32_t *ptype_tbl)
176 {
177 int i;
178 uint8_t ptype;
179 uint8x16_t tmp;
180
181 for (i = 0; i < 4; i++) {
182 tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30));
183 ptype = vgetq_lane_u8(tmp, 8);
184 rx_pkts[i]->packet_type = ptype_tbl[ptype];
185 }
186
187 }
188
189 /*
190 * Notice:
191 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
192 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
193 * numbers of DD bits
194 */
195 static inline uint16_t
196 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
197 uint16_t nb_pkts, uint8_t *split_packet)
198 {
199 volatile union i40e_rx_desc *rxdp;
200 struct i40e_rx_entry *sw_ring;
201 uint16_t nb_pkts_recd;
202 int pos;
203 uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
204
205 /* mask to shuffle from desc. to mbuf */
206 uint8x16_t shuf_msk = {
207 0xFF, 0xFF, /* pkt_type set as unknown */
208 0xFF, 0xFF, /* pkt_type set as unknown */
209 14, 15, /* octet 15~14, low 16 bits pkt_len */
210 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
211 14, 15, /* octet 15~14, 16 bits data_len */
212 2, 3, /* octet 2~3, low 16 bits vlan_macip */
213 4, 5, 6, 7 /* octet 4~7, 32bits rss */
214 };
215
216 uint8x16_t eop_check = {
217 0x02, 0x00, 0x02, 0x00,
218 0x02, 0x00, 0x02, 0x00,
219 0x00, 0x00, 0x00, 0x00,
220 0x00, 0x00, 0x00, 0x00
221 };
222
223 uint16x8_t crc_adjust = {
224 0, 0, /* ignore pkt_type field */
225 rxq->crc_len, /* sub crc on pkt_len */
226 0, /* ignore high-16bits of pkt_len */
227 rxq->crc_len, /* sub crc on data_len */
228 0, 0, 0 /* ignore non-length fields */
229 };
230
231 /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
232 nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
233
234 /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
235 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
236
237 /* Just the act of getting into the function from the application is
238 * going to cost about 7 cycles
239 */
240 rxdp = rxq->rx_ring + rxq->rx_tail;
241
242 rte_prefetch_non_temporal(rxdp);
243
244 /* See if we need to rearm the RX queue - gives the prefetch a bit
245 * of time to act
246 */
247 if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
248 i40e_rxq_rearm(rxq);
249
250 /* Before we start moving massive data around, check to see if
251 * there is actually a packet available
252 */
253 if (!(rxdp->wb.qword1.status_error_len &
254 rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
255 return 0;
256
257 /* Cache is empty -> need to scan the buffer rings, but first move
258 * the next 'n' mbufs into the cache
259 */
260 sw_ring = &rxq->sw_ring[rxq->rx_tail];
261
262 /* A. load 4 packet in one loop
263 * [A*. mask out 4 unused dirty field in desc]
264 * B. copy 4 mbuf point from swring to rx_pkts
265 * C. calc the number of DD bits among the 4 packets
266 * [C*. extract the end-of-packet bit, if requested]
267 * D. fill info. from desc to mbuf
268 */
269
270 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
271 pos += RTE_I40E_DESCS_PER_LOOP,
272 rxdp += RTE_I40E_DESCS_PER_LOOP) {
273 uint64x2_t descs[RTE_I40E_DESCS_PER_LOOP];
274 uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
275 uint16x8x2_t sterr_tmp1, sterr_tmp2;
276 uint64x2_t mbp1, mbp2;
277 uint16x8_t staterr;
278 uint16x8_t tmp;
279 uint64_t stat;
280
281 int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT};
282
283 /* B.1 load 1 mbuf point */
284 mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
285 /* Read desc statuses backwards to avoid race condition */
286 /* A.1 load 4 pkts desc */
287 descs[3] = vld1q_u64((uint64_t *)(rxdp + 3));
288 rte_rmb();
289
290 /* B.2 copy 2 mbuf point into rx_pkts */
291 vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
292
293 /* B.1 load 1 mbuf point */
294 mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
295
296 descs[2] = vld1q_u64((uint64_t *)(rxdp + 2));
297 /* B.1 load 2 mbuf point */
298 descs[1] = vld1q_u64((uint64_t *)(rxdp + 1));
299 descs[0] = vld1q_u64((uint64_t *)(rxdp));
300
301 /* B.2 copy 2 mbuf point into rx_pkts */
302 vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
303
304 if (split_packet) {
305 rte_mbuf_prefetch_part2(rx_pkts[pos]);
306 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
307 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
308 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
309 }
310
311 /* avoid compiler reorder optimization */
312 rte_compiler_barrier();
313
314 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
315 uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]),
316 len_shl);
317 descs[3] = vreinterpretq_u64_u32(len3);
318 uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]),
319 len_shl);
320 descs[2] = vreinterpretq_u64_u32(len2);
321
322 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
323 pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
324 pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
325
326 /* C.1 4=>2 filter staterr info only */
327 sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]),
328 vreinterpretq_u16_u64(descs[3]));
329 /* C.1 4=>2 filter staterr info only */
330 sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]),
331 vreinterpretq_u16_u64(descs[2]));
332
333 /* C.2 get 4 pkts staterr value */
334 staterr = vzipq_u16(sterr_tmp1.val[1],
335 sterr_tmp2.val[1]).val[0];
336
337 desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
338
339 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
340 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
341 pkt_mb4 = vreinterpretq_u8_u16(tmp);
342 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
343 pkt_mb3 = vreinterpretq_u8_u16(tmp);
344
345 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
346 uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]),
347 len_shl);
348 descs[1] = vreinterpretq_u64_u32(len1);
349 uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]),
350 len_shl);
351 descs[0] = vreinterpretq_u64_u32(len0);
352
353 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
354 pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
355 pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
356
357 /* D.3 copy final 3,4 data to rx_pkts */
358 vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
359 pkt_mb4);
360 vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
361 pkt_mb3);
362
363 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
364 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
365 pkt_mb2 = vreinterpretq_u8_u16(tmp);
366 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
367 pkt_mb1 = vreinterpretq_u8_u16(tmp);
368
369 /* C* extract and record EOP bit */
370 if (split_packet) {
371 uint8x16_t eop_shuf_mask = {
372 0x00, 0x02, 0x04, 0x06,
373 0xFF, 0xFF, 0xFF, 0xFF,
374 0xFF, 0xFF, 0xFF, 0xFF,
375 0xFF, 0xFF, 0xFF, 0xFF};
376 uint8x16_t eop_bits;
377
378 /* and with mask to extract bits, flipping 1-0 */
379 eop_bits = vmvnq_u8(vreinterpretq_u8_u16(staterr));
380 eop_bits = vandq_u8(eop_bits, eop_check);
381 /* the staterr values are not in order, as the count
382 * count of dd bits doesn't care. However, for end of
383 * packet tracking, we do care, so shuffle. This also
384 * compresses the 32-bit values to 8-bit
385 */
386 eop_bits = vqtbl1q_u8(eop_bits, eop_shuf_mask);
387
388 /* store the resulting 32-bit value */
389 vst1q_lane_u32((uint32_t *)split_packet,
390 vreinterpretq_u32_u8(eop_bits), 0);
391 split_packet += RTE_I40E_DESCS_PER_LOOP;
392
393 /* zero-out next pointers */
394 rx_pkts[pos]->next = NULL;
395 rx_pkts[pos + 1]->next = NULL;
396 rx_pkts[pos + 2]->next = NULL;
397 rx_pkts[pos + 3]->next = NULL;
398 }
399
400 staterr = vshlq_n_u16(staterr, I40E_UINT16_BIT - 1);
401 staterr = vreinterpretq_u16_s16(
402 vshrq_n_s16(vreinterpretq_s16_u16(staterr),
403 I40E_UINT16_BIT - 1));
404 stat = ~vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0);
405
406 rte_prefetch_non_temporal(rxdp + RTE_I40E_DESCS_PER_LOOP);
407
408 /* D.3 copy final 1,2 data to rx_pkts */
409 vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
410 pkt_mb2);
411 vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1,
412 pkt_mb1);
413 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
414 /* C.4 calc avaialbe number of desc */
415 if (unlikely(stat == 0)) {
416 nb_pkts_recd += RTE_I40E_DESCS_PER_LOOP;
417 } else {
418 nb_pkts_recd += __builtin_ctzl(stat) / I40E_UINT16_BIT;
419 break;
420 }
421 }
422
423 /* Update our internal tail pointer */
424 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
425 rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
426 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
427
428 return nb_pkts_recd;
429 }
430
431 /*
432 * Notice:
433 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
434 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
435 * numbers of DD bits
436 */
437 uint16_t
438 i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
439 uint16_t nb_pkts)
440 {
441 return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
442 }
443
444 /* vPMD receive routine that reassembles scattered packets
445 * Notice:
446 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
447 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
448 * numbers of DD bits
449 */
450 uint16_t
451 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
452 uint16_t nb_pkts)
453 {
454
455 struct i40e_rx_queue *rxq = rx_queue;
456 uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
457
458 /* get some new buffers */
459 uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
460 split_flags);
461 if (nb_bufs == 0)
462 return 0;
463
464 /* happy day case, full burst + no packets to be joined */
465 const uint64_t *split_fl64 = (uint64_t *)split_flags;
466
467 if (rxq->pkt_first_seg == NULL &&
468 split_fl64[0] == 0 && split_fl64[1] == 0 &&
469 split_fl64[2] == 0 && split_fl64[3] == 0)
470 return nb_bufs;
471
472 /* reassemble any packets that need reassembly*/
473 unsigned i = 0;
474
475 if (rxq->pkt_first_seg == NULL) {
476 /* find the first split flag, and only reassemble then*/
477 while (i < nb_bufs && !split_flags[i])
478 i++;
479 if (i == nb_bufs)
480 return nb_bufs;
481 }
482 return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
483 &split_flags[i]);
484 }
485
486 static inline void
487 vtx1(volatile struct i40e_tx_desc *txdp,
488 struct rte_mbuf *pkt, uint64_t flags)
489 {
490 uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
491 ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
492 ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
493
494 uint64x2_t descriptor = {pkt->buf_iova + pkt->data_off, high_qw};
495 vst1q_u64((uint64_t *)txdp, descriptor);
496 }
497
498 static inline void
499 vtx(volatile struct i40e_tx_desc *txdp,
500 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
501 {
502 int i;
503
504 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
505 vtx1(txdp, *pkt, flags);
506 }
507
508 uint16_t
509 i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
510 uint16_t nb_pkts)
511 {
512 struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
513 volatile struct i40e_tx_desc *txdp;
514 struct i40e_tx_entry *txep;
515 uint16_t n, nb_commit, tx_id;
516 uint64_t flags = I40E_TD_CMD;
517 uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
518 int i;
519
520 /* cross rx_thresh boundary is not allowed */
521 nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
522
523 if (txq->nb_tx_free < txq->tx_free_thresh)
524 i40e_tx_free_bufs(txq);
525
526 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
527 if (unlikely(nb_pkts == 0))
528 return 0;
529
530 tx_id = txq->tx_tail;
531 txdp = &txq->tx_ring[tx_id];
532 txep = &txq->sw_ring[tx_id];
533
534 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
535
536 n = (uint16_t)(txq->nb_tx_desc - tx_id);
537 if (nb_commit >= n) {
538 tx_backlog_entry(txep, tx_pkts, n);
539
540 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
541 vtx1(txdp, *tx_pkts, flags);
542
543 vtx1(txdp, *tx_pkts++, rs);
544
545 nb_commit = (uint16_t)(nb_commit - n);
546
547 tx_id = 0;
548 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
549
550 /* avoid reach the end of ring */
551 txdp = &txq->tx_ring[tx_id];
552 txep = &txq->sw_ring[tx_id];
553 }
554
555 tx_backlog_entry(txep, tx_pkts, nb_commit);
556
557 vtx(txdp, tx_pkts, nb_commit, flags);
558
559 tx_id = (uint16_t)(tx_id + nb_commit);
560 if (tx_id > txq->tx_next_rs) {
561 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
562 rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
563 I40E_TXD_QW1_CMD_SHIFT);
564 txq->tx_next_rs =
565 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
566 }
567
568 txq->tx_tail = tx_id;
569
570 I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
571
572 return nb_pkts;
573 }
574
575 void __attribute__((cold))
576 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
577 {
578 _i40e_rx_queue_release_mbufs_vec(rxq);
579 }
580
581 int __attribute__((cold))
582 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
583 {
584 return i40e_rxq_vec_setup_default(rxq);
585 }
586
587 int __attribute__((cold))
588 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
589 {
590 return 0;
591 }
592
593 int __attribute__((cold))
594 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
595 {
596 return i40e_rx_vec_dev_conf_condition_check_default(dev);
597 }