]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/ice/base/ice_flex_pipe.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / ice / base / ice_flex_pipe.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2001-2019
3 */
4
5 #include "ice_common.h"
6 #include "ice_flex_pipe.h"
7 #include "ice_protocol_type.h"
8 #include "ice_flow.h"
9
10 static const struct ice_tunnel_type_scan tnls[] = {
11 { TNL_VXLAN, "TNL_VXLAN" },
12 { TNL_GTPC, "TNL_GTPC" },
13 { TNL_GTPC_TEID, "TNL_GTPC_TEID" },
14 { TNL_GTPU, "TNL_GTPC" },
15 { TNL_GTPU_TEID, "TNL_GTPU_TEID" },
16 { TNL_VXLAN_GPE, "TNL_VXLAN_GPE" },
17 { TNL_GENEVE, "TNL_GENEVE" },
18 { TNL_NAT, "TNL_NAT" },
19 { TNL_ROCE_V2, "TNL_ROCE_V2" },
20 { TNL_MPLSO_UDP, "TNL_MPLSO_UDP" },
21 { TNL_UDP2_END, "TNL_UDP2_END" },
22 { TNL_UPD_END, "TNL_UPD_END" },
23 { TNL_LAST, "" }
24 };
25
26 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
27 /* SWITCH */
28 {
29 ICE_SID_XLT0_SW,
30 ICE_SID_XLT_KEY_BUILDER_SW,
31 ICE_SID_XLT1_SW,
32 ICE_SID_XLT2_SW,
33 ICE_SID_PROFID_TCAM_SW,
34 ICE_SID_PROFID_REDIR_SW,
35 ICE_SID_FLD_VEC_SW,
36 ICE_SID_CDID_KEY_BUILDER_SW,
37 ICE_SID_CDID_REDIR_SW
38 },
39
40 /* ACL */
41 {
42 ICE_SID_XLT0_ACL,
43 ICE_SID_XLT_KEY_BUILDER_ACL,
44 ICE_SID_XLT1_ACL,
45 ICE_SID_XLT2_ACL,
46 ICE_SID_PROFID_TCAM_ACL,
47 ICE_SID_PROFID_REDIR_ACL,
48 ICE_SID_FLD_VEC_ACL,
49 ICE_SID_CDID_KEY_BUILDER_ACL,
50 ICE_SID_CDID_REDIR_ACL
51 },
52
53 /* FD */
54 {
55 ICE_SID_XLT0_FD,
56 ICE_SID_XLT_KEY_BUILDER_FD,
57 ICE_SID_XLT1_FD,
58 ICE_SID_XLT2_FD,
59 ICE_SID_PROFID_TCAM_FD,
60 ICE_SID_PROFID_REDIR_FD,
61 ICE_SID_FLD_VEC_FD,
62 ICE_SID_CDID_KEY_BUILDER_FD,
63 ICE_SID_CDID_REDIR_FD
64 },
65
66 /* RSS */
67 {
68 ICE_SID_XLT0_RSS,
69 ICE_SID_XLT_KEY_BUILDER_RSS,
70 ICE_SID_XLT1_RSS,
71 ICE_SID_XLT2_RSS,
72 ICE_SID_PROFID_TCAM_RSS,
73 ICE_SID_PROFID_REDIR_RSS,
74 ICE_SID_FLD_VEC_RSS,
75 ICE_SID_CDID_KEY_BUILDER_RSS,
76 ICE_SID_CDID_REDIR_RSS
77 },
78
79 /* PE */
80 {
81 ICE_SID_XLT0_PE,
82 ICE_SID_XLT_KEY_BUILDER_PE,
83 ICE_SID_XLT1_PE,
84 ICE_SID_XLT2_PE,
85 ICE_SID_PROFID_TCAM_PE,
86 ICE_SID_PROFID_REDIR_PE,
87 ICE_SID_FLD_VEC_PE,
88 ICE_SID_CDID_KEY_BUILDER_PE,
89 ICE_SID_CDID_REDIR_PE
90 }
91 };
92
93 /**
94 * ice_sect_id - returns section ID
95 * @blk: block type
96 * @sect: section type
97 *
98 * This helper function returns the proper section ID given a block type and a
99 * section type.
100 */
101 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
102 {
103 return ice_sect_lkup[blk][sect];
104 }
105
106 /**
107 * ice_pkg_val_buf
108 * @buf: pointer to the ice buffer
109 *
110 * This helper function validates a buffer's header.
111 */
112 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
113 {
114 struct ice_buf_hdr *hdr;
115 u16 section_count;
116 u16 data_end;
117
118 hdr = (struct ice_buf_hdr *)buf->buf;
119 /* verify data */
120 section_count = LE16_TO_CPU(hdr->section_count);
121 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
122 return NULL;
123
124 data_end = LE16_TO_CPU(hdr->data_end);
125 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
126 return NULL;
127
128 return hdr;
129 }
130
131 /**
132 * ice_find_buf_table
133 * @ice_seg: pointer to the ice segment
134 *
135 * Returns the address of the buffer table within the ice segment.
136 */
137 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
138 {
139 struct ice_nvm_table *nvms;
140
141 nvms = (struct ice_nvm_table *)(ice_seg->device_table +
142 LE32_TO_CPU(ice_seg->device_table_count));
143
144 return (struct ice_buf_table *)
145 (nvms->vers + LE32_TO_CPU(nvms->table_count));
146 }
147
148 /**
149 * ice_pkg_enum_buf
150 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
151 * @state: pointer to the enum state
152 *
153 * This function will enumerate all the buffers in the ice segment. The first
154 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
155 * ice_seg is set to NULL which continues the enumeration. When the function
156 * returns a NULL pointer, then the end of the buffers has been reached, or an
157 * unexpected value has been detected (for example an invalid section count or
158 * an invalid buffer end value).
159 */
160 static struct ice_buf_hdr *
161 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
162 {
163 if (ice_seg) {
164 state->buf_table = ice_find_buf_table(ice_seg);
165 if (!state->buf_table)
166 return NULL;
167
168 state->buf_idx = 0;
169 return ice_pkg_val_buf(state->buf_table->buf_array);
170 }
171
172 if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count))
173 return ice_pkg_val_buf(state->buf_table->buf_array +
174 state->buf_idx);
175 else
176 return NULL;
177 }
178
179 /**
180 * ice_pkg_advance_sect
181 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
182 * @state: pointer to the enum state
183 *
184 * This helper function will advance the section within the ice segment,
185 * also advancing the buffer if needed.
186 */
187 static bool
188 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
189 {
190 if (!ice_seg && !state->buf)
191 return false;
192
193 if (!ice_seg && state->buf)
194 if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count))
195 return true;
196
197 state->buf = ice_pkg_enum_buf(ice_seg, state);
198 if (!state->buf)
199 return false;
200
201 /* start of new buffer, reset section index */
202 state->sect_idx = 0;
203 return true;
204 }
205
206 /**
207 * ice_pkg_enum_section
208 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
209 * @state: pointer to the enum state
210 * @sect_type: section type to enumerate
211 *
212 * This function will enumerate all the sections of a particular type in the
213 * ice segment. The first call is made with the ice_seg parameter non-NULL;
214 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
215 * When the function returns a NULL pointer, then the end of the matching
216 * sections has been reached.
217 */
218 static void *
219 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
220 u32 sect_type)
221 {
222 u16 offset, size;
223
224 if (ice_seg)
225 state->type = sect_type;
226
227 if (!ice_pkg_advance_sect(ice_seg, state))
228 return NULL;
229
230 /* scan for next matching section */
231 while (state->buf->section_entry[state->sect_idx].type !=
232 CPU_TO_LE32(state->type))
233 if (!ice_pkg_advance_sect(NULL, state))
234 return NULL;
235
236 /* validate section */
237 offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
238 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
239 return NULL;
240
241 size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size);
242 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
243 return NULL;
244
245 /* make sure the section fits in the buffer */
246 if (offset + size > ICE_PKG_BUF_SIZE)
247 return NULL;
248
249 state->sect_type =
250 LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type);
251
252 /* calc pointer to this section */
253 state->sect = ((u8 *)state->buf) +
254 LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
255
256 return state->sect;
257 }
258
259 /**
260 * ice_pkg_enum_entry
261 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
262 * @state: pointer to the enum state
263 * @sect_type: section type to enumerate
264 * @offset: pointer to variable that receives the offset in the table (optional)
265 * @handler: function that handles access to the entries into the section type
266 *
267 * This function will enumerate all the entries in particular section type in
268 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
269 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
270 * When the function returns a NULL pointer, then the end of the entries has
271 * been reached.
272 *
273 * Since each section may have a different header and entry size, the handler
274 * function is needed to determine the number and location entries in each
275 * section.
276 *
277 * The offset parameter is optional, but should be used for sections that
278 * contain an offset for each section table. For such cases, the section handler
279 * function must return the appropriate offset + index to give the absolution
280 * offset for each entry. For example, if the base for a section's header
281 * indicates a base offset of 10, and the index for the entry is 2, then
282 * section handler function should set the offset to 10 + 2 = 12.
283 */
284 static void *
285 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
286 u32 sect_type, u32 *offset,
287 void *(*handler)(u32 sect_type, void *section,
288 u32 index, u32 *offset))
289 {
290 void *entry;
291
292 if (ice_seg) {
293 if (!handler)
294 return NULL;
295
296 if (!ice_pkg_enum_section(ice_seg, state, sect_type))
297 return NULL;
298
299 state->entry_idx = 0;
300 state->handler = handler;
301 } else {
302 state->entry_idx++;
303 }
304
305 if (!state->handler)
306 return NULL;
307
308 /* get entry */
309 entry = state->handler(state->sect_type, state->sect, state->entry_idx,
310 offset);
311 if (!entry) {
312 /* end of a section, look for another section of this type */
313 if (!ice_pkg_enum_section(NULL, state, 0))
314 return NULL;
315
316 state->entry_idx = 0;
317 entry = state->handler(state->sect_type, state->sect,
318 state->entry_idx, offset);
319 }
320
321 return entry;
322 }
323
324 /**
325 * ice_boost_tcam_handler
326 * @sect_type: section type
327 * @section: pointer to section
328 * @index: index of the boost TCAM entry to be returned
329 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
330 *
331 * This is a callback function that can be passed to ice_pkg_enum_entry.
332 * Handles enumeration of individual boost TCAM entries.
333 */
334 static void *
335 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
336 {
337 struct ice_boost_tcam_section *boost;
338
339 if (!section)
340 return NULL;
341
342 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
343 return NULL;
344
345 if (index > ICE_MAX_BST_TCAMS_IN_BUF)
346 return NULL;
347
348 if (offset)
349 *offset = 0;
350
351 boost = (struct ice_boost_tcam_section *)section;
352 if (index >= LE16_TO_CPU(boost->count))
353 return NULL;
354
355 return boost->tcam + index;
356 }
357
358 /**
359 * ice_find_boost_entry
360 * @ice_seg: pointer to the ice segment (non-NULL)
361 * @addr: Boost TCAM address of entry to search for
362 * @entry: returns pointer to the entry
363 *
364 * Finds a particular Boost TCAM entry and returns a pointer to that entry
365 * if it is found. The ice_seg parameter must not be NULL since the first call
366 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
367 */
368 static enum ice_status
369 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
370 struct ice_boost_tcam_entry **entry)
371 {
372 struct ice_boost_tcam_entry *tcam;
373 struct ice_pkg_enum state;
374
375 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
376
377 if (!ice_seg)
378 return ICE_ERR_PARAM;
379
380 do {
381 tcam = (struct ice_boost_tcam_entry *)
382 ice_pkg_enum_entry(ice_seg, &state,
383 ICE_SID_RXPARSER_BOOST_TCAM, NULL,
384 ice_boost_tcam_handler);
385 if (tcam && LE16_TO_CPU(tcam->addr) == addr) {
386 *entry = tcam;
387 return ICE_SUCCESS;
388 }
389
390 ice_seg = NULL;
391 } while (tcam);
392
393 *entry = NULL;
394 return ICE_ERR_CFG;
395 }
396
397 /**
398 * ice_label_enum_handler
399 * @sect_type: section type
400 * @section: pointer to section
401 * @index: index of the label entry to be returned
402 * @offset: pointer to receive absolute offset, always zero for label sections
403 *
404 * This is a callback function that can be passed to ice_pkg_enum_entry.
405 * Handles enumeration of individual label entries.
406 */
407 static void *
408 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
409 u32 *offset)
410 {
411 struct ice_label_section *labels;
412
413 if (!section)
414 return NULL;
415
416 if (index > ICE_MAX_LABELS_IN_BUF)
417 return NULL;
418
419 if (offset)
420 *offset = 0;
421
422 labels = (struct ice_label_section *)section;
423 if (index >= LE16_TO_CPU(labels->count))
424 return NULL;
425
426 return labels->label + index;
427 }
428
429 /**
430 * ice_enum_labels
431 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
432 * @type: the section type that will contain the label (0 on subsequent calls)
433 * @state: ice_pkg_enum structure that will hold the state of the enumeration
434 * @value: pointer to a value that will return the label's value if found
435 *
436 * Enumerates a list of labels in the package. The caller will call
437 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
438 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
439 * the end of the list has been reached.
440 */
441 static char *
442 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
443 u16 *value)
444 {
445 struct ice_label *label;
446
447 /* Check for valid label section on first call */
448 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
449 return NULL;
450
451 label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type,
452 NULL,
453 ice_label_enum_handler);
454 if (!label)
455 return NULL;
456
457 *value = LE16_TO_CPU(label->value);
458 return label->name;
459 }
460
461 /**
462 * ice_init_pkg_hints
463 * @hw: pointer to the HW structure
464 * @ice_seg: pointer to the segment of the package scan (non-NULL)
465 *
466 * This function will scan the package and save off relevant information
467 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
468 * since the first call to ice_enum_labels requires a pointer to an actual
469 * ice_seg structure.
470 */
471 void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
472 {
473 struct ice_pkg_enum state;
474 char *label_name;
475 u16 val;
476 int i;
477
478 ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM);
479
480 if (!ice_seg)
481 return;
482
483 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
484 &val);
485
486 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
487 for (i = 0; tnls[i].type != TNL_LAST; i++) {
488 if (!strncmp(label_name, tnls[i].label_prefix,
489 strlen(tnls[i].label_prefix))) {
490 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
491 hw->tnl.tbl[hw->tnl.count].valid = false;
492 hw->tnl.tbl[hw->tnl.count].in_use = false;
493 hw->tnl.tbl[hw->tnl.count].marked = false;
494 hw->tnl.tbl[hw->tnl.count].boost_addr = val;
495 hw->tnl.tbl[hw->tnl.count].port = 0;
496 hw->tnl.count++;
497 break;
498 }
499 }
500
501 label_name = ice_enum_labels(NULL, 0, &state, &val);
502 }
503
504 /* Cache the appropriate boost TCAM entry pointers */
505 for (i = 0; i < hw->tnl.count; i++) {
506 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
507 &hw->tnl.tbl[i].boost_entry);
508 if (hw->tnl.tbl[i].boost_entry)
509 hw->tnl.tbl[i].valid = true;
510 }
511 }
512
513 /* Key creation */
514
515 #define ICE_DC_KEY 0x1 /* don't care */
516 #define ICE_DC_KEYINV 0x1
517 #define ICE_NM_KEY 0x0 /* never match */
518 #define ICE_NM_KEYINV 0x0
519 #define ICE_0_KEY 0x1 /* match 0 */
520 #define ICE_0_KEYINV 0x0
521 #define ICE_1_KEY 0x0 /* match 1 */
522 #define ICE_1_KEYINV 0x1
523
524 /**
525 * ice_gen_key_word - generate 16-bits of a key/mask word
526 * @val: the value
527 * @valid: valid bits mask (change only the valid bits)
528 * @dont_care: don't care mask
529 * @nvr_mtch: never match mask
530 * @key: pointer to an array of where the resulting key portion
531 * @key_inv: pointer to an array of where the resulting key invert portion
532 *
533 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
534 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
535 * of key and 8 bits of key invert.
536 *
537 * '0' = b01, always match a 0 bit
538 * '1' = b10, always match a 1 bit
539 * '?' = b11, don't care bit (always matches)
540 * '~' = b00, never match bit
541 *
542 * Input:
543 * val: b0 1 0 1 0 1
544 * dont_care: b0 0 1 1 0 0
545 * never_mtch: b0 0 0 0 1 1
546 * ------------------------------
547 * Result: key: b01 10 11 11 00 00
548 */
549 static enum ice_status
550 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
551 u8 *key_inv)
552 {
553 u8 in_key = *key, in_key_inv = *key_inv;
554 u8 i;
555
556 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
557 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
558 return ICE_ERR_CFG;
559
560 *key = 0;
561 *key_inv = 0;
562
563 /* encode the 8 bits into 8-bit key and 8-bit key invert */
564 for (i = 0; i < 8; i++) {
565 *key >>= 1;
566 *key_inv >>= 1;
567
568 if (!(valid & 0x1)) { /* change only valid bits */
569 *key |= (in_key & 0x1) << 7;
570 *key_inv |= (in_key_inv & 0x1) << 7;
571 } else if (dont_care & 0x1) { /* don't care bit */
572 *key |= ICE_DC_KEY << 7;
573 *key_inv |= ICE_DC_KEYINV << 7;
574 } else if (nvr_mtch & 0x1) { /* never match bit */
575 *key |= ICE_NM_KEY << 7;
576 *key_inv |= ICE_NM_KEYINV << 7;
577 } else if (val & 0x01) { /* exact 1 match */
578 *key |= ICE_1_KEY << 7;
579 *key_inv |= ICE_1_KEYINV << 7;
580 } else { /* exact 0 match */
581 *key |= ICE_0_KEY << 7;
582 *key_inv |= ICE_0_KEYINV << 7;
583 }
584
585 dont_care >>= 1;
586 nvr_mtch >>= 1;
587 valid >>= 1;
588 val >>= 1;
589 in_key >>= 1;
590 in_key_inv >>= 1;
591 }
592
593 return ICE_SUCCESS;
594 }
595
596 /**
597 * ice_bits_max_set - determine if the number of bits set is within a maximum
598 * @mask: pointer to the byte array which is the mask
599 * @size: the number of bytes in the mask
600 * @max: the max number of set bits
601 *
602 * This function determines if there are at most 'max' number of bits set in an
603 * array. Returns true if the number for bits set is <= max or will return false
604 * otherwise.
605 */
606 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
607 {
608 u16 count = 0;
609 u16 i, j;
610
611 /* check each byte */
612 for (i = 0; i < size; i++) {
613 /* if 0, go to next byte */
614 if (!mask[i])
615 continue;
616
617 /* We know there is at least one set bit in this byte because of
618 * the above check; if we already have found 'max' number of
619 * bits set, then we can return failure now.
620 */
621 if (count == max)
622 return false;
623
624 /* count the bits in this byte, checking threshold */
625 for (j = 0; j < BITS_PER_BYTE; j++) {
626 count += (mask[i] & (0x1 << j)) ? 1 : 0;
627 if (count > max)
628 return false;
629 }
630 }
631
632 return true;
633 }
634
635 /**
636 * ice_set_key - generate a variable sized key with multiples of 16-bits
637 * @key: pointer to where the key will be stored
638 * @size: the size of the complete key in bytes (must be even)
639 * @val: array of 8-bit values that makes up the value portion of the key
640 * @upd: array of 8-bit masks that determine what key portion to update
641 * @dc: array of 8-bit masks that make up the dont' care mask
642 * @nm: array of 8-bit masks that make up the never match mask
643 * @off: the offset of the first byte in the key to update
644 * @len: the number of bytes in the key update
645 *
646 * This function generates a key from a value, a don't care mask and a never
647 * match mask.
648 * upd, dc, and nm are optional parameters, and can be NULL:
649 * upd == NULL --> udp mask is all 1's (update all bits)
650 * dc == NULL --> dc mask is all 0's (no don't care bits)
651 * nm == NULL --> nm mask is all 0's (no never match bits)
652 */
653 enum ice_status
654 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
655 u16 len)
656 {
657 u16 half_size;
658 u16 i;
659
660 /* size must be a multiple of 2 bytes. */
661 if (size % 2)
662 return ICE_ERR_CFG;
663 half_size = size / 2;
664
665 if (off + len > half_size)
666 return ICE_ERR_CFG;
667
668 /* Make sure at most one bit is set in the never match mask. Having more
669 * than one never match mask bit set will cause HW to consume excessive
670 * power otherwise; this is a power management efficiency check.
671 */
672 #define ICE_NVR_MTCH_BITS_MAX 1
673 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
674 return ICE_ERR_CFG;
675
676 for (i = 0; i < len; i++)
677 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
678 dc ? dc[i] : 0, nm ? nm[i] : 0,
679 key + off + i, key + half_size + off + i))
680 return ICE_ERR_CFG;
681
682 return ICE_SUCCESS;
683 }
684
685 /**
686 * ice_acquire_global_cfg_lock
687 * @hw: pointer to the HW structure
688 * @access: access type (read or write)
689 *
690 * This function will request ownership of the global config lock for reading
691 * or writing of the package. When attempting to obtain write access, the
692 * caller must check for the following two return values:
693 *
694 * ICE_SUCCESS - Means the caller has acquired the global config lock
695 * and can perform writing of the package.
696 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
697 * package or has found that no update was necessary; in
698 * this case, the caller can just skip performing any
699 * update of the package.
700 */
701 static enum ice_status
702 ice_acquire_global_cfg_lock(struct ice_hw *hw,
703 enum ice_aq_res_access_type access)
704 {
705 enum ice_status status;
706
707 ice_debug(hw, ICE_DBG_TRACE, "ice_acquire_global_cfg_lock");
708
709 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
710 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
711
712 if (status == ICE_ERR_AQ_NO_WORK)
713 ice_debug(hw, ICE_DBG_PKG,
714 "Global config lock: No work to do\n");
715
716 return status;
717 }
718
719 /**
720 * ice_release_global_cfg_lock
721 * @hw: pointer to the HW structure
722 *
723 * This function will release the global config lock.
724 */
725 static void ice_release_global_cfg_lock(struct ice_hw *hw)
726 {
727 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
728 }
729
730 /**
731 * ice_acquire_change_lock
732 * @hw: pointer to the HW structure
733 * @access: access type (read or write)
734 *
735 * This function will request ownership of the change lock.
736 */
737 static enum ice_status
738 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
739 {
740 ice_debug(hw, ICE_DBG_TRACE, "ice_acquire_change_lock");
741
742 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
743 ICE_CHANGE_LOCK_TIMEOUT);
744 }
745
746 /**
747 * ice_release_change_lock
748 * @hw: pointer to the HW structure
749 *
750 * This function will release the change lock using the proper Admin Command.
751 */
752 static void ice_release_change_lock(struct ice_hw *hw)
753 {
754 ice_debug(hw, ICE_DBG_TRACE, "ice_release_change_lock");
755
756 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
757 }
758
759 /**
760 * ice_aq_download_pkg
761 * @hw: pointer to the hardware structure
762 * @pkg_buf: the package buffer to transfer
763 * @buf_size: the size of the package buffer
764 * @last_buf: last buffer indicator
765 * @error_offset: returns error offset
766 * @error_info: returns error information
767 * @cd: pointer to command details structure or NULL
768 *
769 * Download Package (0x0C40)
770 */
771 static enum ice_status
772 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
773 u16 buf_size, bool last_buf, u32 *error_offset,
774 u32 *error_info, struct ice_sq_cd *cd)
775 {
776 struct ice_aqc_download_pkg *cmd;
777 struct ice_aq_desc desc;
778 enum ice_status status;
779
780 ice_debug(hw, ICE_DBG_TRACE, "ice_aq_download_pkg");
781
782 if (error_offset)
783 *error_offset = 0;
784 if (error_info)
785 *error_info = 0;
786
787 cmd = &desc.params.download_pkg;
788 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
789 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
790
791 if (last_buf)
792 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
793
794 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
795 if (status == ICE_ERR_AQ_ERROR) {
796 /* Read error from buffer only when the FW returned an error */
797 struct ice_aqc_download_pkg_resp *resp;
798
799 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
800 if (error_offset)
801 *error_offset = LE32_TO_CPU(resp->error_offset);
802 if (error_info)
803 *error_info = LE32_TO_CPU(resp->error_info);
804 }
805
806 return status;
807 }
808
809 /**
810 * ice_aq_upload_section
811 * @hw: pointer to the hardware structure
812 * @pkg_buf: the package buffer which will receive the section
813 * @buf_size: the size of the package buffer
814 * @cd: pointer to command details structure or NULL
815 *
816 * Upload Section (0x0C41)
817 */
818 enum ice_status
819 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
820 u16 buf_size, struct ice_sq_cd *cd)
821 {
822 struct ice_aq_desc desc;
823
824 ice_debug(hw, ICE_DBG_TRACE, "ice_aq_upload_section");
825 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
826 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
827
828 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
829 }
830
831 /**
832 * ice_aq_update_pkg
833 * @hw: pointer to the hardware structure
834 * @pkg_buf: the package cmd buffer
835 * @buf_size: the size of the package cmd buffer
836 * @last_buf: last buffer indicator
837 * @error_offset: returns error offset
838 * @error_info: returns error information
839 * @cd: pointer to command details structure or NULL
840 *
841 * Update Package (0x0C42)
842 */
843 static enum ice_status
844 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
845 bool last_buf, u32 *error_offset, u32 *error_info,
846 struct ice_sq_cd *cd)
847 {
848 struct ice_aqc_download_pkg *cmd;
849 struct ice_aq_desc desc;
850 enum ice_status status;
851
852 ice_debug(hw, ICE_DBG_TRACE, "ice_aq_update_pkg");
853
854 if (error_offset)
855 *error_offset = 0;
856 if (error_info)
857 *error_info = 0;
858
859 cmd = &desc.params.download_pkg;
860 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
861 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
862
863 if (last_buf)
864 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
865
866 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
867 if (status == ICE_ERR_AQ_ERROR) {
868 /* Read error from buffer only when the FW returned an error */
869 struct ice_aqc_download_pkg_resp *resp;
870
871 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
872 if (error_offset)
873 *error_offset = LE32_TO_CPU(resp->error_offset);
874 if (error_info)
875 *error_info = LE32_TO_CPU(resp->error_info);
876 }
877
878 return status;
879 }
880
881 /**
882 * ice_find_seg_in_pkg
883 * @hw: pointer to the hardware structure
884 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
885 * @pkg_hdr: pointer to the package header to be searched
886 *
887 * This function searches a package file for a particular segment type. On
888 * success it returns a pointer to the segment header, otherwise it will
889 * return NULL.
890 */
891 struct ice_generic_seg_hdr *
892 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
893 struct ice_pkg_hdr *pkg_hdr)
894 {
895 u32 i;
896
897 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
898 ice_debug(hw, ICE_DBG_PKG, "Package version: %d.%d.%d.%d\n",
899 pkg_hdr->format_ver.major, pkg_hdr->format_ver.minor,
900 pkg_hdr->format_ver.update, pkg_hdr->format_ver.draft);
901
902 /* Search all package segments for the requested segment type */
903 for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) {
904 struct ice_generic_seg_hdr *seg;
905
906 seg = (struct ice_generic_seg_hdr *)
907 ((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i]));
908
909 if (LE32_TO_CPU(seg->seg_type) == seg_type)
910 return seg;
911 }
912
913 return NULL;
914 }
915
916 /**
917 * ice_update_pkg
918 * @hw: pointer to the hardware structure
919 * @bufs: pointer to an array of buffers
920 * @count: the number of buffers in the array
921 *
922 * Obtains change lock and updates package.
923 */
924 enum ice_status
925 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
926 {
927 enum ice_status status;
928 u32 offset, info, i;
929
930 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
931 if (status)
932 return status;
933
934 for (i = 0; i < count; i++) {
935 bool last = ((i + 1) == count);
936
937 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
938
939 status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end),
940 last, &offset, &info, NULL);
941
942 if (status) {
943 ice_debug(hw, ICE_DBG_PKG,
944 "Update pkg failed: err %d off %d inf %d\n",
945 status, offset, info);
946 break;
947 }
948 }
949
950 ice_release_change_lock(hw);
951
952 return status;
953 }
954
955 /**
956 * ice_dwnld_cfg_bufs
957 * @hw: pointer to the hardware structure
958 * @bufs: pointer to an array of buffers
959 * @count: the number of buffers in the array
960 *
961 * Obtains global config lock and downloads the package configuration buffers
962 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
963 * found indicates that the rest of the buffers are all metadata buffers.
964 */
965 static enum ice_status
966 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
967 {
968 enum ice_status status;
969 struct ice_buf_hdr *bh;
970 u32 offset, info, i;
971
972 if (!bufs || !count)
973 return ICE_ERR_PARAM;
974
975 /* If the first buffer's first section has its metadata bit set
976 * then there are no buffers to be downloaded, and the operation is
977 * considered a success.
978 */
979 bh = (struct ice_buf_hdr *)bufs;
980 if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF)
981 return ICE_SUCCESS;
982
983 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
984 if (status)
985 return status;
986
987 for (i = 0; i < count; i++) {
988 bool last = ((i + 1) == count);
989
990 if (!last) {
991 /* check next buffer for metadata flag */
992 bh = (struct ice_buf_hdr *)(bufs + i + 1);
993
994 /* A set metadata flag in the next buffer will signal
995 * that the current buffer will be the last buffer
996 * downloaded
997 */
998 if (LE16_TO_CPU(bh->section_count))
999 if (LE32_TO_CPU(bh->section_entry[0].type) &
1000 ICE_METADATA_BUF)
1001 last = true;
1002 }
1003
1004 bh = (struct ice_buf_hdr *)(bufs + i);
1005
1006 status = ice_aq_download_pkg(hw, bh, LE16_TO_CPU(bh->data_end),
1007 last, &offset, &info, NULL);
1008
1009 if (status) {
1010 ice_debug(hw, ICE_DBG_PKG,
1011 "Pkg download failed: err %d off %d inf %d\n",
1012 status, offset, info);
1013 break;
1014 }
1015
1016 if (last)
1017 break;
1018 }
1019
1020 ice_release_global_cfg_lock(hw);
1021
1022 return status;
1023 }
1024
1025 /**
1026 * ice_aq_get_pkg_info_list
1027 * @hw: pointer to the hardware structure
1028 * @pkg_info: the buffer which will receive the information list
1029 * @buf_size: the size of the pkg_info information buffer
1030 * @cd: pointer to command details structure or NULL
1031 *
1032 * Get Package Info List (0x0C43)
1033 */
1034 static enum ice_status
1035 ice_aq_get_pkg_info_list(struct ice_hw *hw,
1036 struct ice_aqc_get_pkg_info_resp *pkg_info,
1037 u16 buf_size, struct ice_sq_cd *cd)
1038 {
1039 struct ice_aq_desc desc;
1040
1041 ice_debug(hw, ICE_DBG_TRACE, "ice_aq_get_pkg_info_list");
1042 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1043
1044 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1045 }
1046
1047 /**
1048 * ice_download_pkg
1049 * @hw: pointer to the hardware structure
1050 * @ice_seg: pointer to the segment of the package to be downloaded
1051 *
1052 * Handles the download of a complete package.
1053 */
1054 enum ice_status ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1055 {
1056 struct ice_buf_table *ice_buf_tbl;
1057
1058 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1059 ice_debug(hw, ICE_DBG_PKG, "Segment version: %d.%d.%d.%d\n",
1060 ice_seg->hdr.seg_ver.major, ice_seg->hdr.seg_ver.minor,
1061 ice_seg->hdr.seg_ver.update, ice_seg->hdr.seg_ver.draft);
1062
1063 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1064 LE32_TO_CPU(ice_seg->hdr.seg_type),
1065 LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_name);
1066
1067 ice_buf_tbl = ice_find_buf_table(ice_seg);
1068
1069 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1070 LE32_TO_CPU(ice_buf_tbl->buf_count));
1071
1072 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1073 LE32_TO_CPU(ice_buf_tbl->buf_count));
1074 }
1075
1076 /**
1077 * ice_init_pkg_info
1078 * @hw: pointer to the hardware structure
1079 * @pkg_hdr: pointer to the driver's package hdr
1080 *
1081 * Saves off the package details into the HW structure.
1082 */
1083 enum ice_status
1084 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1085 {
1086 struct ice_aqc_get_pkg_info_resp *pkg_info;
1087 struct ice_global_metadata_seg *meta_seg;
1088 struct ice_generic_seg_hdr *seg_hdr;
1089 enum ice_status status;
1090 u16 size;
1091 u32 i;
1092
1093 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1094 if (!pkg_hdr)
1095 return ICE_ERR_PARAM;
1096
1097 meta_seg = (struct ice_global_metadata_seg *)
1098 ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr);
1099 if (meta_seg) {
1100 hw->pkg_ver = meta_seg->pkg_ver;
1101 ice_memcpy(hw->pkg_name, meta_seg->pkg_name,
1102 sizeof(hw->pkg_name), ICE_NONDMA_TO_NONDMA);
1103
1104 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1105 meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor,
1106 meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft,
1107 meta_seg->pkg_name);
1108 } else {
1109 ice_debug(hw, ICE_DBG_INIT,
1110 "Did not find metadata segment in driver package\n");
1111 return ICE_ERR_CFG;
1112 }
1113
1114 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1115 if (seg_hdr) {
1116 hw->ice_pkg_ver = seg_hdr->seg_ver;
1117 ice_memcpy(hw->ice_pkg_name, seg_hdr->seg_name,
1118 sizeof(hw->ice_pkg_name), ICE_NONDMA_TO_NONDMA);
1119
1120 ice_debug(hw, ICE_DBG_PKG, "Ice Pkg: %d.%d.%d.%d, %s\n",
1121 seg_hdr->seg_ver.major, seg_hdr->seg_ver.minor,
1122 seg_hdr->seg_ver.update, seg_hdr->seg_ver.draft,
1123 seg_hdr->seg_name);
1124 } else {
1125 ice_debug(hw, ICE_DBG_INIT,
1126 "Did not find ice segment in driver package\n");
1127 return ICE_ERR_CFG;
1128 }
1129
1130 #define ICE_PKG_CNT 4
1131 size = sizeof(*pkg_info) + (sizeof(pkg_info->pkg_info[0]) *
1132 (ICE_PKG_CNT - 1));
1133 pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1134 if (!pkg_info)
1135 return ICE_ERR_NO_MEMORY;
1136
1137 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1138 if (status)
1139 goto init_pkg_free_alloc;
1140
1141 for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) {
1142 #define ICE_PKG_FLAG_COUNT 4
1143 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1144 u8 place = 0;
1145
1146 if (pkg_info->pkg_info[i].is_active) {
1147 flags[place++] = 'A';
1148 hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1149 ice_memcpy(hw->active_pkg_name,
1150 pkg_info->pkg_info[i].name,
1151 sizeof(hw->active_pkg_name),
1152 ICE_NONDMA_TO_NONDMA);
1153 }
1154 if (pkg_info->pkg_info[i].is_active_at_boot)
1155 flags[place++] = 'B';
1156 if (pkg_info->pkg_info[i].is_modified)
1157 flags[place++] = 'M';
1158 if (pkg_info->pkg_info[i].is_in_nvm)
1159 flags[place++] = 'N';
1160
1161 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1162 i, pkg_info->pkg_info[i].ver.major,
1163 pkg_info->pkg_info[i].ver.minor,
1164 pkg_info->pkg_info[i].ver.update,
1165 pkg_info->pkg_info[i].ver.draft,
1166 pkg_info->pkg_info[i].name, flags);
1167 }
1168
1169 init_pkg_free_alloc:
1170 ice_free(hw, pkg_info);
1171
1172 return status;
1173 }
1174
1175 /**
1176 * ice_find_label_value
1177 * @ice_seg: pointer to the ice segment (non-NULL)
1178 * @name: name of the label to search for
1179 * @type: the section type that will contain the label
1180 * @value: pointer to a value that will return the label's value if found
1181 *
1182 * Finds a label's value given the label name and the section type to search.
1183 * The ice_seg parameter must not be NULL since the first call to
1184 * ice_enum_labels requires a pointer to an actual ice_seg structure.
1185 */
1186 enum ice_status
1187 ice_find_label_value(struct ice_seg *ice_seg, char const *name, u32 type,
1188 u16 *value)
1189 {
1190 struct ice_pkg_enum state;
1191 char *label_name;
1192 u16 val;
1193
1194 if (!ice_seg)
1195 return ICE_ERR_PARAM;
1196
1197 do {
1198 label_name = ice_enum_labels(ice_seg, type, &state, &val);
1199 if (label_name && !strcmp(label_name, name)) {
1200 *value = val;
1201 return ICE_SUCCESS;
1202 }
1203
1204 ice_seg = NULL;
1205 } while (label_name);
1206
1207 return ICE_ERR_CFG;
1208 }
1209
1210 /**
1211 * ice_verify_pkg - verify package
1212 * @pkg: pointer to the package buffer
1213 * @len: size of the package buffer
1214 *
1215 * Verifies various attributes of the package file, including length, format
1216 * version, and the requirement of at least one segment.
1217 */
1218 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1219 {
1220 u32 seg_count;
1221 u32 i;
1222
1223 if (len < sizeof(*pkg))
1224 return ICE_ERR_BUF_TOO_SHORT;
1225
1226 if (pkg->format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1227 pkg->format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1228 pkg->format_ver.update != ICE_PKG_FMT_VER_UPD ||
1229 pkg->format_ver.draft != ICE_PKG_FMT_VER_DFT)
1230 return ICE_ERR_CFG;
1231
1232 /* pkg must have at least one segment */
1233 seg_count = LE32_TO_CPU(pkg->seg_count);
1234 if (seg_count < 1)
1235 return ICE_ERR_CFG;
1236
1237 /* make sure segment array fits in package length */
1238 if (len < sizeof(*pkg) + ((seg_count - 1) * sizeof(pkg->seg_offset)))
1239 return ICE_ERR_BUF_TOO_SHORT;
1240
1241 /* all segments must fit within length */
1242 for (i = 0; i < seg_count; i++) {
1243 u32 off = LE32_TO_CPU(pkg->seg_offset[i]);
1244 struct ice_generic_seg_hdr *seg;
1245
1246 /* segment header must fit */
1247 if (len < off + sizeof(*seg))
1248 return ICE_ERR_BUF_TOO_SHORT;
1249
1250 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1251
1252 /* segment body must fit */
1253 if (len < off + LE32_TO_CPU(seg->seg_size))
1254 return ICE_ERR_BUF_TOO_SHORT;
1255 }
1256
1257 return ICE_SUCCESS;
1258 }
1259
1260 /**
1261 * ice_free_seg - free package segment pointer
1262 * @hw: pointer to the hardware structure
1263 *
1264 * Frees the package segment pointer in the proper manner, depending on if the
1265 * segment was allocated or just the passed in pointer was stored.
1266 */
1267 void ice_free_seg(struct ice_hw *hw)
1268 {
1269 if (hw->pkg_copy) {
1270 ice_free(hw, hw->pkg_copy);
1271 hw->pkg_copy = NULL;
1272 hw->pkg_size = 0;
1273 }
1274 hw->seg = NULL;
1275 }
1276
1277 /**
1278 * ice_init_fd_mask_regs - initialize Flow Director mask registers
1279 * @hw: pointer to the HW struct
1280 *
1281 * This function sets up the Flow Director mask registers to allow for complete
1282 * masking off of any of the 24 Field Vector words. After this call, mask 0 will
1283 * mask off all of FV index 0, mask 1 will mask off all of FV index 1, etc.
1284 */
1285 static void ice_init_fd_mask_regs(struct ice_hw *hw)
1286 {
1287 u16 i;
1288
1289 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
1290 wr32(hw, GLQF_FDMASK(i), i);
1291 ice_debug(hw, ICE_DBG_INIT, "init fd mask(%d): %x = %x\n", i,
1292 GLQF_FDMASK(i), i);
1293 }
1294 }
1295
1296 /**
1297 * ice_init_pkg_regs - initialize additional package registers
1298 * @hw: pointer to the hardware structure
1299 */
1300 static void ice_init_pkg_regs(struct ice_hw *hw)
1301 {
1302 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1303 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1304 #define ICE_SW_BLK_IDX 0
1305
1306 /* setup Switch block input mask, which is 48-bits in two parts */
1307 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1308 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1309 /* setup default flow director masks */
1310 ice_init_fd_mask_regs(hw);
1311 }
1312
1313 /**
1314 * ice_init_pkg - initialize/download package
1315 * @hw: pointer to the hardware structure
1316 * @buf: pointer to the package buffer
1317 * @len: size of the package buffer
1318 *
1319 * This function initializes a package. The package contains HW tables
1320 * required to do packet processing. First, the function extracts package
1321 * information such as version. Then it finds the ice configuration segment
1322 * within the package; this function then saves a copy of the segment pointer
1323 * within the supplied package buffer. Next, the function will cache any hints
1324 * from the package, followed by downloading the package itself. Note, that if
1325 * a previous PF driver has already downloaded the package successfully, then
1326 * the current driver will not have to download the package again.
1327 *
1328 * The local package contents will be used to query default behavior and to
1329 * update specific sections of the HW's version of the package (e.g. to update
1330 * the parse graph to understand new protocols).
1331 *
1332 * This function stores a pointer to the package buffer memory, and it is
1333 * expected that the supplied buffer will not be freed immediately. If the
1334 * package buffer needs to be freed, such as when read from a file, use
1335 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1336 * case.
1337 */
1338 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1339 {
1340 struct ice_pkg_hdr *pkg;
1341 enum ice_status status;
1342 struct ice_seg *seg;
1343
1344 if (!buf || !len)
1345 return ICE_ERR_PARAM;
1346
1347 pkg = (struct ice_pkg_hdr *)buf;
1348 status = ice_verify_pkg(pkg, len);
1349 if (status) {
1350 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1351 status);
1352 return status;
1353 }
1354
1355 /* initialize package info */
1356 status = ice_init_pkg_info(hw, pkg);
1357 if (status)
1358 return status;
1359
1360 /* find segment in given package */
1361 seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg);
1362 if (!seg) {
1363 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1364 return ICE_ERR_CFG;
1365 }
1366
1367 /* initialize package hints and then download package */
1368 ice_init_pkg_hints(hw, seg);
1369 status = ice_download_pkg(hw, seg);
1370 if (status == ICE_ERR_AQ_NO_WORK) {
1371 ice_debug(hw, ICE_DBG_INIT,
1372 "package previously loaded - no work.\n");
1373 status = ICE_SUCCESS;
1374 }
1375
1376 if (!status) {
1377 hw->seg = seg;
1378 /* on successful package download, update other required
1379 * registers to support the package
1380 */
1381 ice_init_pkg_regs(hw);
1382 } else {
1383 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1384 status);
1385 }
1386
1387 return status;
1388 }
1389
1390 /**
1391 * ice_copy_and_init_pkg - initialize/download a copy of the package
1392 * @hw: pointer to the hardware structure
1393 * @buf: pointer to the package buffer
1394 * @len: size of the package buffer
1395 *
1396 * This function copies the package buffer, and then calls ice_init_pkg() to
1397 * initialize the copied package contents.
1398 *
1399 * The copying is necessary if the package buffer supplied is constant, or if
1400 * the memory may disappear shortly after calling this function.
1401 *
1402 * If the package buffer resides in the data segment and can be modified, the
1403 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1404 *
1405 * However, if the package buffer needs to be copied first, such as when being
1406 * read from a file, the caller should use ice_copy_and_init_pkg().
1407 *
1408 * This function will first copy the package buffer, before calling
1409 * ice_init_pkg(). The caller is free to immediately destroy the original
1410 * package buffer, as the new copy will be managed by this function and
1411 * related routines.
1412 */
1413 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1414 {
1415 enum ice_status status;
1416 u8 *buf_copy;
1417
1418 if (!buf || !len)
1419 return ICE_ERR_PARAM;
1420
1421 buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA);
1422
1423 status = ice_init_pkg(hw, buf_copy, len);
1424 if (status) {
1425 /* Free the copy, since we failed to initialize the package */
1426 ice_free(hw, buf_copy);
1427 } else {
1428 /* Track the copied pkg so we can free it later */
1429 hw->pkg_copy = buf_copy;
1430 hw->pkg_size = len;
1431 }
1432
1433 return status;
1434 }
1435
1436 /**
1437 * ice_pkg_buf_alloc
1438 * @hw: pointer to the HW structure
1439 *
1440 * Allocates a package buffer and returns a pointer to the buffer header.
1441 * Note: all package contents must be in Little Endian form.
1442 */
1443 struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1444 {
1445 struct ice_buf_build *bld;
1446 struct ice_buf_hdr *buf;
1447
1448 bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld));
1449 if (!bld)
1450 return NULL;
1451
1452 buf = (struct ice_buf_hdr *)bld;
1453 buf->data_end = CPU_TO_LE16(sizeof(*buf) -
1454 sizeof(buf->section_entry[0]));
1455 return bld;
1456 }
1457
1458 /**
1459 * ice_sw_fv_handler
1460 * @sect_type: section type
1461 * @section: pointer to section
1462 * @index: index of the field vector entry to be returned
1463 * @offset: ptr to variable that receives the offset in the field vector table
1464 *
1465 * This is a callback function that can be passed to ice_pkg_enum_entry.
1466 * This function treats the given section as of type ice_sw_fv_section and
1467 * enumerates offset field. "offset" is an index into the field vector
1468 * vector table.
1469 */
1470 static void *
1471 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1472 {
1473 struct ice_sw_fv_section *fv_section =
1474 (struct ice_sw_fv_section *)section;
1475
1476 if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1477 return NULL;
1478 if (index >= LE16_TO_CPU(fv_section->count))
1479 return NULL;
1480 if (offset)
1481 /* "index" passed in to this function is relative to a given
1482 * 4k block. To get to the true index into the field vector
1483 * table need to add the relative index to the base_offset
1484 * field of this section
1485 */
1486 *offset = LE16_TO_CPU(fv_section->base_offset) + index;
1487 return fv_section->fv + index;
1488 }
1489
1490 /**
1491 * ice_get_sw_fv_list
1492 * @hw: pointer to the HW structure
1493 * @prot_ids: field vector to search for with a given protocol ID
1494 * @ids_cnt: lookup/protocol count
1495 * @fv_list: Head of a list
1496 *
1497 * Finds all the field vector entries from switch block that contain
1498 * a given protocol ID and returns a list of structures of type
1499 * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1500 * definition and profile ID information
1501 * NOTE: The caller of the function is responsible for freeing the memory
1502 * allocated for every list entry.
1503 */
1504 enum ice_status
1505 ice_get_sw_fv_list(struct ice_hw *hw, u16 *prot_ids, u8 ids_cnt,
1506 struct LIST_HEAD_TYPE *fv_list)
1507 {
1508 struct ice_sw_fv_list_entry *fvl;
1509 struct ice_sw_fv_list_entry *tmp;
1510 struct ice_pkg_enum state;
1511 struct ice_seg *ice_seg;
1512 struct ice_fv *fv;
1513 u32 offset;
1514
1515 if (!ids_cnt || !hw->seg)
1516 return ICE_ERR_PARAM;
1517
1518 ice_seg = hw->seg;
1519 do {
1520 u8 i;
1521
1522 fv = (struct ice_fv *)
1523 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1524 &offset, ice_sw_fv_handler);
1525
1526 for (i = 0; i < ids_cnt && fv; i++) {
1527 int j;
1528
1529 /* This code assumes that if a switch field vector line
1530 * has a matching protocol, then this line will contain
1531 * the entries necessary to represent every field in
1532 * that protocol header.
1533 */
1534 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1535 if (fv->ew[j].prot_id == prot_ids[i])
1536 break;
1537 if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1538 break;
1539 if (i + 1 == ids_cnt) {
1540 fvl = (struct ice_sw_fv_list_entry *)
1541 ice_malloc(hw, sizeof(*fvl));
1542 if (!fvl)
1543 goto err;
1544 fvl->fv_ptr = fv;
1545 fvl->profile_id = offset;
1546 LIST_ADD(&fvl->list_entry, fv_list);
1547 break;
1548 }
1549 }
1550 ice_seg = NULL;
1551 } while (fv);
1552 if (LIST_EMPTY(fv_list))
1553 return ICE_ERR_CFG;
1554 return ICE_SUCCESS;
1555
1556 err:
1557 LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry,
1558 list_entry) {
1559 LIST_DEL(&fvl->list_entry);
1560 ice_free(hw, fvl);
1561 }
1562
1563 return ICE_ERR_NO_MEMORY;
1564 }
1565
1566 /**
1567 * ice_pkg_buf_alloc_single_section
1568 * @hw: pointer to the HW structure
1569 * @type: the section type value
1570 * @size: the size of the section to reserve (in bytes)
1571 * @section: returns pointer to the section
1572 *
1573 * Allocates a package buffer with a single section.
1574 * Note: all package contents must be in Little Endian form.
1575 */
1576 static struct ice_buf_build *
1577 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
1578 void **section)
1579 {
1580 struct ice_buf_build *buf;
1581
1582 if (!section)
1583 return NULL;
1584
1585 buf = ice_pkg_buf_alloc(hw);
1586 if (!buf)
1587 return NULL;
1588
1589 if (ice_pkg_buf_reserve_section(buf, 1))
1590 goto ice_pkg_buf_alloc_single_section_err;
1591
1592 *section = ice_pkg_buf_alloc_section(buf, type, size);
1593 if (!*section)
1594 goto ice_pkg_buf_alloc_single_section_err;
1595
1596 return buf;
1597
1598 ice_pkg_buf_alloc_single_section_err:
1599 ice_pkg_buf_free(hw, buf);
1600 return NULL;
1601 }
1602
1603 /**
1604 * ice_pkg_buf_reserve_section
1605 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1606 * @count: the number of sections to reserve
1607 *
1608 * Reserves one or more section table entries in a package buffer. This routine
1609 * can be called multiple times as long as they are made before calling
1610 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1611 * is called once, the number of sections that can be allocated will not be able
1612 * to be increased; not using all reserved sections is fine, but this will
1613 * result in some wasted space in the buffer.
1614 * Note: all package contents must be in Little Endian form.
1615 */
1616 enum ice_status
1617 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1618 {
1619 struct ice_buf_hdr *buf;
1620 u16 section_count;
1621 u16 data_end;
1622
1623 if (!bld)
1624 return ICE_ERR_PARAM;
1625
1626 buf = (struct ice_buf_hdr *)&bld->buf;
1627
1628 /* already an active section, can't increase table size */
1629 section_count = LE16_TO_CPU(buf->section_count);
1630 if (section_count > 0)
1631 return ICE_ERR_CFG;
1632
1633 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1634 return ICE_ERR_CFG;
1635 bld->reserved_section_table_entries += count;
1636
1637 data_end = LE16_TO_CPU(buf->data_end) +
1638 (count * sizeof(buf->section_entry[0]));
1639 buf->data_end = CPU_TO_LE16(data_end);
1640
1641 return ICE_SUCCESS;
1642 }
1643
1644 /**
1645 * ice_pkg_buf_unreserve_section
1646 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1647 * @count: the number of sections to unreserve
1648 *
1649 * Unreserves one or more section table entries in a package buffer, releasing
1650 * space that can be used for section data. This routine can be called
1651 * multiple times as long as they are made before calling
1652 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1653 * is called once, the number of sections that can be allocated will not be able
1654 * to be increased; not using all reserved sections is fine, but this will
1655 * result in some wasted space in the buffer.
1656 * Note: all package contents must be in Little Endian form.
1657 */
1658 enum ice_status
1659 ice_pkg_buf_unreserve_section(struct ice_buf_build *bld, u16 count)
1660 {
1661 struct ice_buf_hdr *buf;
1662 u16 section_count;
1663 u16 data_end;
1664
1665 if (!bld)
1666 return ICE_ERR_PARAM;
1667
1668 buf = (struct ice_buf_hdr *)&bld->buf;
1669
1670 /* already an active section, can't decrease table size */
1671 section_count = LE16_TO_CPU(buf->section_count);
1672 if (section_count > 0)
1673 return ICE_ERR_CFG;
1674
1675 if (count > bld->reserved_section_table_entries)
1676 return ICE_ERR_CFG;
1677 bld->reserved_section_table_entries -= count;
1678
1679 data_end = LE16_TO_CPU(buf->data_end) -
1680 (count * sizeof(buf->section_entry[0]));
1681 buf->data_end = CPU_TO_LE16(data_end);
1682
1683 return ICE_SUCCESS;
1684 }
1685
1686 /**
1687 * ice_pkg_buf_alloc_section
1688 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1689 * @type: the section type value
1690 * @size: the size of the section to reserve (in bytes)
1691 *
1692 * Reserves memory in the buffer for a section's content and updates the
1693 * buffers' status accordingly. This routine returns a pointer to the first
1694 * byte of the section start within the buffer, which is used to fill in the
1695 * section contents.
1696 * Note: all package contents must be in Little Endian form.
1697 */
1698 void *
1699 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1700 {
1701 struct ice_buf_hdr *buf;
1702 u16 sect_count;
1703 u16 data_end;
1704
1705 if (!bld || !type || !size)
1706 return NULL;
1707
1708 buf = (struct ice_buf_hdr *)&bld->buf;
1709
1710 /* check for enough space left in buffer */
1711 data_end = LE16_TO_CPU(buf->data_end);
1712
1713 /* section start must align on 4 byte boundary */
1714 data_end = ICE_ALIGN(data_end, 4);
1715
1716 if ((data_end + size) > ICE_MAX_S_DATA_END)
1717 return NULL;
1718
1719 /* check for more available section table entries */
1720 sect_count = LE16_TO_CPU(buf->section_count);
1721 if (sect_count < bld->reserved_section_table_entries) {
1722 void *section_ptr = ((u8 *)buf) + data_end;
1723
1724 buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end);
1725 buf->section_entry[sect_count].size = CPU_TO_LE16(size);
1726 buf->section_entry[sect_count].type = CPU_TO_LE32(type);
1727
1728 data_end += size;
1729 buf->data_end = CPU_TO_LE16(data_end);
1730
1731 buf->section_count = CPU_TO_LE16(sect_count + 1);
1732 return section_ptr;
1733 }
1734
1735 /* no free section table entries */
1736 return NULL;
1737 }
1738
1739 /**
1740 * ice_pkg_buf_get_free_space
1741 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1742 *
1743 * Returns the number of free bytes remaining in the buffer.
1744 * Note: all package contents must be in Little Endian form.
1745 */
1746 u16 ice_pkg_buf_get_free_space(struct ice_buf_build *bld)
1747 {
1748 struct ice_buf_hdr *buf;
1749
1750 if (!bld)
1751 return 0;
1752
1753 buf = (struct ice_buf_hdr *)&bld->buf;
1754 return ICE_MAX_S_DATA_END - LE16_TO_CPU(buf->data_end);
1755 }
1756
1757 /**
1758 * ice_pkg_buf_get_active_sections
1759 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1760 *
1761 * Returns the number of active sections. Before using the package buffer
1762 * in an update package command, the caller should make sure that there is at
1763 * least one active section - otherwise, the buffer is not legal and should
1764 * not be used.
1765 * Note: all package contents must be in Little Endian form.
1766 */
1767 u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
1768 {
1769 struct ice_buf_hdr *buf;
1770
1771 if (!bld)
1772 return 0;
1773
1774 buf = (struct ice_buf_hdr *)&bld->buf;
1775 return LE16_TO_CPU(buf->section_count);
1776 }
1777
1778 /**
1779 * ice_pkg_buf_header
1780 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1781 *
1782 * Return a pointer to the buffer's header
1783 */
1784 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
1785 {
1786 if (!bld)
1787 return NULL;
1788
1789 return &bld->buf;
1790 }
1791
1792 /**
1793 * ice_pkg_buf_free
1794 * @hw: pointer to the HW structure
1795 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1796 *
1797 * Frees a package buffer
1798 */
1799 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1800 {
1801 ice_free(hw, bld);
1802 }
1803
1804 /* PTG Management */
1805
1806 /**
1807 * ice_ptg_update_xlt1 - Updates packet type groups in HW via XLT1 table
1808 * @hw: pointer to the hardware structure
1809 * @blk: HW block
1810 *
1811 * This function will update the XLT1 hardware table to reflect the new
1812 * packet type group configuration.
1813 */
1814 enum ice_status ice_ptg_update_xlt1(struct ice_hw *hw, enum ice_block blk)
1815 {
1816 struct ice_xlt1_section *sect;
1817 struct ice_buf_build *bld;
1818 enum ice_status status;
1819 u16 index;
1820
1821 bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT1),
1822 ICE_XLT1_SIZE(ICE_XLT1_CNT),
1823 (void **)&sect);
1824 if (!bld)
1825 return ICE_ERR_NO_MEMORY;
1826
1827 sect->count = CPU_TO_LE16(ICE_XLT1_CNT);
1828 sect->offset = CPU_TO_LE16(0);
1829 for (index = 0; index < ICE_XLT1_CNT; index++)
1830 sect->value[index] = hw->blk[blk].xlt1.ptypes[index].ptg;
1831
1832 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1833
1834 ice_pkg_buf_free(hw, bld);
1835
1836 return status;
1837 }
1838
1839 /**
1840 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
1841 * @hw: pointer to the hardware structure
1842 * @blk: HW block
1843 * @ptype: the ptype to search for
1844 * @ptg: pointer to variable that receives the PTG
1845 *
1846 * This function will search the PTGs for a particular ptype, returning the
1847 * PTG ID that contains it through the ptg parameter, with the value of
1848 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
1849 */
1850 enum ice_status
1851 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
1852 {
1853 if (ptype >= ICE_XLT1_CNT || !ptg)
1854 return ICE_ERR_PARAM;
1855
1856 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
1857 return ICE_SUCCESS;
1858 }
1859
1860 /**
1861 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
1862 * @hw: pointer to the hardware structure
1863 * @blk: HW block
1864 * @ptg: the ptg to allocate
1865 *
1866 * This function allocates a given packet type group ID specified by the ptg
1867 * parameter.
1868 */
1869 static
1870 void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
1871 {
1872 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
1873 }
1874
1875 /**
1876 * ice_ptg_alloc - Find a free entry and allocates a new packet type group ID
1877 * @hw: pointer to the hardware structure
1878 * @blk: HW block
1879 *
1880 * This function allocates and returns a new packet type group ID. Note
1881 * that 0 is the default packet type group, so successfully created PTGs will
1882 * have a non-zero ID value; which means a 0 return value indicates an error.
1883 */
1884 u8 ice_ptg_alloc(struct ice_hw *hw, enum ice_block blk)
1885 {
1886 u16 i;
1887
1888 /* Skip the default PTG of 0 */
1889 for (i = 1; i < ICE_MAX_PTGS; i++)
1890 if (!hw->blk[blk].xlt1.ptg_tbl[i].in_use) {
1891 /* found a free PTG ID */
1892 ice_ptg_alloc_val(hw, blk, i);
1893 return (u8)i;
1894 }
1895
1896 return 0;
1897 }
1898
1899 /**
1900 * ice_ptg_free - Frees a packet type group
1901 * @hw: pointer to the hardware structure
1902 * @blk: HW block
1903 * @ptg: the ptg ID to free
1904 *
1905 * This function frees a packet type group, and returns all the current ptypes
1906 * within it to the default PTG.
1907 */
1908 void ice_ptg_free(struct ice_hw *hw, enum ice_block blk, u8 ptg)
1909 {
1910 struct ice_ptg_ptype *p, *temp;
1911
1912 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = false;
1913 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1914 while (p) {
1915 p->ptg = ICE_DEFAULT_PTG;
1916 temp = p->next_ptype;
1917 p->next_ptype = NULL;
1918 p = temp;
1919 }
1920
1921 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = NULL;
1922 }
1923
1924 /**
1925 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
1926 * @hw: pointer to the hardware structure
1927 * @blk: HW block
1928 * @ptype: the ptype to remove
1929 * @ptg: the ptg to remove the ptype from
1930 *
1931 * This function will remove the ptype from the specific ptg, and move it to
1932 * the default PTG (ICE_DEFAULT_PTG).
1933 */
1934 static enum ice_status
1935 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1936 {
1937 struct ice_ptg_ptype **ch;
1938 struct ice_ptg_ptype *p;
1939
1940 if (ptype > ICE_XLT1_CNT - 1)
1941 return ICE_ERR_PARAM;
1942
1943 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
1944 return ICE_ERR_DOES_NOT_EXIST;
1945
1946 /* Should not happen if .in_use is set, bad config */
1947 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
1948 return ICE_ERR_CFG;
1949
1950 /* find the ptype within this PTG, and bypass the link over it */
1951 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1952 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1953 while (p) {
1954 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
1955 *ch = p->next_ptype;
1956 break;
1957 }
1958
1959 ch = &p->next_ptype;
1960 p = p->next_ptype;
1961 }
1962
1963 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
1964 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
1965
1966 return ICE_SUCCESS;
1967 }
1968
1969 /**
1970 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
1971 * @hw: pointer to the hardware structure
1972 * @blk: HW block
1973 * @ptype: the ptype to add or move
1974 * @ptg: the ptg to add or move the ptype to
1975 *
1976 * This function will either add or move a ptype to a particular PTG depending
1977 * on if the ptype is already part of another group. Note that using a
1978 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
1979 * default PTG.
1980 */
1981 enum ice_status
1982 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1983 {
1984 enum ice_status status;
1985 u8 original_ptg;
1986
1987 if (ptype > ICE_XLT1_CNT - 1)
1988 return ICE_ERR_PARAM;
1989
1990 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
1991 return ICE_ERR_DOES_NOT_EXIST;
1992
1993 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
1994 if (status)
1995 return status;
1996
1997 /* Is ptype already in the correct PTG? */
1998 if (original_ptg == ptg)
1999 return ICE_SUCCESS;
2000
2001 /* Remove from original PTG and move back to the default PTG */
2002 if (original_ptg != ICE_DEFAULT_PTG)
2003 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2004
2005 /* Moving to default PTG? Then we're done with this request */
2006 if (ptg == ICE_DEFAULT_PTG)
2007 return ICE_SUCCESS;
2008
2009 /* Add ptype to PTG at beginning of list */
2010 hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2011 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2012 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2013 &hw->blk[blk].xlt1.ptypes[ptype];
2014
2015 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2016 hw->blk[blk].xlt1.t[ptype] = ptg;
2017
2018 return ICE_SUCCESS;
2019 }
2020
2021 /* Block / table size info */
2022 struct ice_blk_size_details {
2023 u16 xlt1; /* # XLT1 entries */
2024 u16 xlt2; /* # XLT2 entries */
2025 u16 prof_tcam; /* # profile ID TCAM entries */
2026 u16 prof_id; /* # profile IDs */
2027 u8 prof_cdid_bits; /* # cdid one-hot bits used in key */
2028 u16 prof_redir; /* # profile redirection entries */
2029 u16 es; /* # extraction sequence entries */
2030 u16 fvw; /* # field vector words */
2031 u8 overwrite; /* overwrite existing entries allowed */
2032 u8 reverse; /* reverse FV order */
2033 };
2034
2035 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2036 /**
2037 * Table Definitions
2038 * XLT1 - Number of entries in XLT1 table
2039 * XLT2 - Number of entries in XLT2 table
2040 * TCAM - Number of entries Profile ID TCAM table
2041 * CDID - Control Domain ID of the hardware block
2042 * PRED - Number of entries in the Profile Redirection Table
2043 * FV - Number of entries in the Field Vector
2044 * FVW - Width (in WORDs) of the Field Vector
2045 * OVR - Overwrite existing table entries
2046 * REV - Reverse FV
2047 */
2048 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
2049 /* Overwrite , Reverse FV */
2050 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
2051 false, false },
2052 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
2053 false, false },
2054 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2055 false, true },
2056 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2057 true, true },
2058 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
2059 false, false },
2060 };
2061
2062 enum ice_sid_all {
2063 ICE_SID_XLT1_OFF = 0,
2064 ICE_SID_XLT2_OFF,
2065 ICE_SID_PR_OFF,
2066 ICE_SID_PR_REDIR_OFF,
2067 ICE_SID_ES_OFF,
2068 ICE_SID_OFF_COUNT,
2069 };
2070
2071 /* Characteristic handling */
2072
2073 /**
2074 * ice_match_prop_lst - determine if properties of two lists match
2075 * @list1: first properties list
2076 * @list2: second properties list
2077 *
2078 * Count, cookies and the order must match in order to be considered equivalent.
2079 */
2080 static bool
2081 ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2)
2082 {
2083 struct ice_vsig_prof *tmp1;
2084 struct ice_vsig_prof *tmp2;
2085 u16 chk_count = 0;
2086 u16 count = 0;
2087
2088 /* compare counts */
2089 LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list) {
2090 count++;
2091 }
2092 LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list) {
2093 chk_count++;
2094 }
2095 if (!count || count != chk_count)
2096 return false;
2097
2098 tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list);
2099 tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list);
2100
2101 /* profile cookies must compare, and in the exact same order to take
2102 * into account priority
2103 */
2104 while (count--) {
2105 if (tmp2->profile_cookie != tmp1->profile_cookie)
2106 return false;
2107
2108 tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list);
2109 tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list);
2110 }
2111
2112 return true;
2113 }
2114
2115 /* VSIG Management */
2116
2117 /**
2118 * ice_vsig_update_xlt2_sect - update one section of XLT2 table
2119 * @hw: pointer to the hardware structure
2120 * @blk: HW block
2121 * @vsi: HW VSI number to program
2122 * @vsig: vsig for the VSI
2123 *
2124 * This function will update the XLT2 hardware table with the input VSI
2125 * group configuration.
2126 */
2127 static enum ice_status
2128 ice_vsig_update_xlt2_sect(struct ice_hw *hw, enum ice_block blk, u16 vsi,
2129 u16 vsig)
2130 {
2131 struct ice_xlt2_section *sect;
2132 struct ice_buf_build *bld;
2133 enum ice_status status;
2134
2135 bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT2),
2136 sizeof(struct ice_xlt2_section),
2137 (void **)&sect);
2138 if (!bld)
2139 return ICE_ERR_NO_MEMORY;
2140
2141 sect->count = CPU_TO_LE16(1);
2142 sect->offset = CPU_TO_LE16(vsi);
2143 sect->value[0] = CPU_TO_LE16(vsig);
2144
2145 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2146
2147 ice_pkg_buf_free(hw, bld);
2148
2149 return status;
2150 }
2151
2152 /**
2153 * ice_vsig_update_xlt2 - update XLT2 table with VSIG configuration
2154 * @hw: pointer to the hardware structure
2155 * @blk: HW block
2156 *
2157 * This function will update the XLT2 hardware table with the input VSI
2158 * group configuration of used vsis.
2159 */
2160 enum ice_status ice_vsig_update_xlt2(struct ice_hw *hw, enum ice_block blk)
2161 {
2162 u16 vsi;
2163
2164 for (vsi = 0; vsi < ICE_MAX_VSI; vsi++) {
2165 /* update only vsis that have been changed */
2166 if (hw->blk[blk].xlt2.vsis[vsi].changed) {
2167 enum ice_status status;
2168 u16 vsig;
2169
2170 vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2171 status = ice_vsig_update_xlt2_sect(hw, blk, vsi, vsig);
2172 if (status)
2173 return status;
2174
2175 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
2176 }
2177 }
2178
2179 return ICE_SUCCESS;
2180 }
2181
2182 /**
2183 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2184 * @hw: pointer to the hardware structure
2185 * @blk: HW block
2186 * @vsi: VSI of interest
2187 * @vsig: pointer to receive the VSI group
2188 *
2189 * This function will lookup the VSI entry in the XLT2 list and return
2190 * the VSI group its associated with.
2191 */
2192 enum ice_status
2193 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2194 {
2195 if (!vsig || vsi >= ICE_MAX_VSI)
2196 return ICE_ERR_PARAM;
2197
2198 /* As long as there's a default or valid VSIG associated with the input
2199 * VSI, the functions returns a success. Any handling of VSIG will be
2200 * done by the following add, update or remove functions.
2201 */
2202 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2203
2204 return ICE_SUCCESS;
2205 }
2206
2207 /**
2208 * ice_vsig_alloc_val - allocate a new VSIG by value
2209 * @hw: pointer to the hardware structure
2210 * @blk: HW block
2211 * @vsig: the vsig to allocate
2212 *
2213 * This function will allocate a given VSIG specified by the vsig parameter.
2214 */
2215 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2216 {
2217 u16 idx = vsig & ICE_VSIG_IDX_M;
2218
2219 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2220 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2221 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2222 }
2223
2224 return ICE_VSIG_VALUE(idx, hw->pf_id);
2225 }
2226
2227 /**
2228 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2229 * @hw: pointer to the hardware structure
2230 * @blk: HW block
2231 *
2232 * This function will iterate through the VSIG list and mark the first
2233 * unused entry for the new VSIG entry as used and return that value.
2234 */
2235 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2236 {
2237 u16 i;
2238
2239 for (i = 1; i < ICE_MAX_VSIGS; i++)
2240 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2241 return ice_vsig_alloc_val(hw, blk, i);
2242
2243 return ICE_DEFAULT_VSIG;
2244 }
2245
2246 /**
2247 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2248 * @hw: pointer to the hardware structure
2249 * @blk: HW block
2250 * @chs: characteristic list
2251 * @vsig: returns the VSIG with the matching profiles, if found
2252 *
2253 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2254 * a group have the same characteristic set. To check if there exists a VSIG
2255 * which has the same characteristics as the input characteristics; this
2256 * function will iterate through the XLT2 list and return the VSIG that has a
2257 * matching configuration. In order to make sure that priorities are accounted
2258 * for, the list must match exactly, including the order in which the
2259 * characteristics are listed.
2260 */
2261 enum ice_status
2262 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2263 struct LIST_HEAD_TYPE *chs, u16 *vsig)
2264 {
2265 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2266 u16 i;
2267
2268 for (i = 0; i < xlt2->count; i++) {
2269 if (xlt2->vsig_tbl[i].in_use &&
2270 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2271 *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2272 return ICE_SUCCESS;
2273 }
2274 }
2275
2276 return ICE_ERR_DOES_NOT_EXIST;
2277 }
2278
2279 /**
2280 * ice_vsig_free - free VSI group
2281 * @hw: pointer to the hardware structure
2282 * @blk: HW block
2283 * @vsig: VSIG to remove
2284 *
2285 * The function will remove all VSIs associated with the input VSIG and move
2286 * them to the DEFAULT_VSIG and mark the VSIG available.
2287 */
2288 enum ice_status
2289 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2290 {
2291 struct ice_vsig_prof *dtmp, *del;
2292 struct ice_vsig_vsi *vsi_cur;
2293 u16 idx;
2294
2295 idx = vsig & ICE_VSIG_IDX_M;
2296 if (idx >= ICE_MAX_VSIGS)
2297 return ICE_ERR_PARAM;
2298
2299 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2300 return ICE_ERR_DOES_NOT_EXIST;
2301
2302 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2303
2304 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2305 /* If the VSIG has at least 1 VSI then iterate through the
2306 * list and remove the VSIs before deleting the group.
2307 */
2308 if (vsi_cur) {
2309 /* remove all vsis associated with this VSIG XLT2 entry */
2310 do {
2311 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2312
2313 vsi_cur->vsig = ICE_DEFAULT_VSIG;
2314 vsi_cur->changed = 1;
2315 vsi_cur->next_vsi = NULL;
2316 vsi_cur = tmp;
2317 } while (vsi_cur);
2318
2319 /* NULL terminate head of VSI list */
2320 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2321 }
2322
2323 /* free characteristic list */
2324 LIST_FOR_EACH_ENTRY_SAFE(del, dtmp,
2325 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2326 ice_vsig_prof, list) {
2327 LIST_DEL(&del->list);
2328 ice_free(hw, del);
2329 }
2330
2331 return ICE_SUCCESS;
2332 }
2333
2334 /**
2335 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2336 * @hw: pointer to the hardware structure
2337 * @blk: HW block
2338 * @vsi: VSI to move
2339 * @vsig: destination VSI group
2340 *
2341 * This function will move or add the input VSI to the target VSIG.
2342 * The function will find the original VSIG the VSI belongs to and
2343 * move the entry to the DEFAULT_VSIG, update the original VSIG and
2344 * then move entry to the new VSIG.
2345 */
2346 enum ice_status
2347 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2348 {
2349 struct ice_vsig_vsi *tmp;
2350 enum ice_status status;
2351 u16 orig_vsig, idx;
2352
2353 idx = vsig & ICE_VSIG_IDX_M;
2354
2355 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2356 return ICE_ERR_PARAM;
2357
2358 /* if VSIG not in use and VSIG is not default type this VSIG
2359 * doesn't exist.
2360 */
2361 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
2362 vsig != ICE_DEFAULT_VSIG)
2363 return ICE_ERR_DOES_NOT_EXIST;
2364
2365 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
2366 if (status)
2367 return status;
2368
2369 /* no update required if vsigs match */
2370 if (orig_vsig == vsig)
2371 return ICE_SUCCESS;
2372
2373 if (orig_vsig != ICE_DEFAULT_VSIG) {
2374 /* remove entry from orig_vsig and add to default VSIG */
2375 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
2376 if (status)
2377 return status;
2378 }
2379
2380 if (idx == ICE_DEFAULT_VSIG)
2381 return ICE_SUCCESS;
2382
2383 /* Create VSI entry and add VSIG and prop_mask values */
2384 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
2385 hw->blk[blk].xlt2.vsis[vsi].changed = 1;
2386
2387 /* Add new entry to the head of the VSIG list */
2388 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2389 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
2390 &hw->blk[blk].xlt2.vsis[vsi];
2391 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
2392 hw->blk[blk].xlt2.t[vsi] = vsig;
2393
2394 return ICE_SUCCESS;
2395 }
2396
2397 /**
2398 * ice_vsig_remove_vsi - remove VSI from VSIG
2399 * @hw: pointer to the hardware structure
2400 * @blk: HW block
2401 * @vsi: VSI to remove
2402 * @vsig: VSI group to remove from
2403 *
2404 * The function will remove the input VSI from its VSI group and move it
2405 * to the DEFAULT_VSIG.
2406 */
2407 enum ice_status
2408 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2409 {
2410 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2411 u16 idx;
2412
2413 idx = vsig & ICE_VSIG_IDX_M;
2414
2415 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2416 return ICE_ERR_PARAM;
2417
2418 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2419 return ICE_ERR_DOES_NOT_EXIST;
2420
2421 /* entry already in default VSIG, don't have to remove */
2422 if (idx == ICE_DEFAULT_VSIG)
2423 return ICE_SUCCESS;
2424
2425 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2426 if (!(*vsi_head))
2427 return ICE_ERR_CFG;
2428
2429 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2430 vsi_cur = (*vsi_head);
2431
2432 /* iterate the VSI list, skip over the entry to be removed */
2433 while (vsi_cur) {
2434 if (vsi_tgt == vsi_cur) {
2435 (*vsi_head) = vsi_cur->next_vsi;
2436 break;
2437 }
2438 vsi_head = &vsi_cur->next_vsi;
2439 vsi_cur = vsi_cur->next_vsi;
2440 }
2441
2442 /* verify if VSI was removed from group list */
2443 if (!vsi_cur)
2444 return ICE_ERR_DOES_NOT_EXIST;
2445
2446 vsi_cur->vsig = ICE_DEFAULT_VSIG;
2447 vsi_cur->changed = 1;
2448 vsi_cur->next_vsi = NULL;
2449
2450 return ICE_SUCCESS;
2451 }
2452
2453 /**
2454 * ice_find_prof_id - find profile ID for a given field vector
2455 * @hw: pointer to the hardware structure
2456 * @blk: HW block
2457 * @fv: field vector to search for
2458 * @prof_id: receives the profile ID
2459 */
2460 static enum ice_status
2461 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk,
2462 struct ice_fv_word *fv, u8 *prof_id)
2463 {
2464 struct ice_es *es = &hw->blk[blk].es;
2465 u16 off, i;
2466
2467 for (i = 0; i < es->count; i++) {
2468 off = i * es->fvw;
2469
2470 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
2471 continue;
2472
2473 *prof_id = i;
2474 return ICE_SUCCESS;
2475 }
2476
2477 return ICE_ERR_DOES_NOT_EXIST;
2478 }
2479
2480 /**
2481 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
2482 * @blk: the block type
2483 * @rsrc_type: pointer to variable to receive the resource type
2484 */
2485 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2486 {
2487 switch (blk) {
2488 case ICE_BLK_SW:
2489 *rsrc_type = ICE_AQC_RES_TYPE_SWITCH_PROF_BLDR_PROFID;
2490 break;
2491 case ICE_BLK_ACL:
2492 *rsrc_type = ICE_AQC_RES_TYPE_ACL_PROF_BLDR_PROFID;
2493 break;
2494 case ICE_BLK_FD:
2495 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
2496 break;
2497 case ICE_BLK_RSS:
2498 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
2499 break;
2500 case ICE_BLK_PE:
2501 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID;
2502 break;
2503 default:
2504 return false;
2505 }
2506 return true;
2507 }
2508
2509 /**
2510 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
2511 * @blk: the block type
2512 * @rsrc_type: pointer to variable to receive the resource type
2513 */
2514 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2515 {
2516 switch (blk) {
2517 case ICE_BLK_SW:
2518 *rsrc_type = ICE_AQC_RES_TYPE_SWITCH_PROF_BLDR_TCAM;
2519 break;
2520 case ICE_BLK_ACL:
2521 *rsrc_type = ICE_AQC_RES_TYPE_ACL_PROF_BLDR_TCAM;
2522 break;
2523 case ICE_BLK_FD:
2524 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
2525 break;
2526 case ICE_BLK_RSS:
2527 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
2528 break;
2529 case ICE_BLK_PE:
2530 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM;
2531 break;
2532 default:
2533 return false;
2534 }
2535 return true;
2536 }
2537
2538 /**
2539 * ice_alloc_tcam_ent - allocate hardware TCAM entry
2540 * @hw: pointer to the HW struct
2541 * @blk: the block to allocate the TCAM for
2542 * @tcam_idx: pointer to variable to receive the TCAM entry
2543 *
2544 * This function allocates a new entry in a Profile ID TCAM for a specific
2545 * block.
2546 */
2547 static enum ice_status
2548 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 *tcam_idx)
2549 {
2550 u16 res_type;
2551
2552 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2553 return ICE_ERR_PARAM;
2554
2555 return ice_alloc_hw_res(hw, res_type, 1, true, tcam_idx);
2556 }
2557
2558 /**
2559 * ice_free_tcam_ent - free hardware TCAM entry
2560 * @hw: pointer to the HW struct
2561 * @blk: the block from which to free the TCAM entry
2562 * @tcam_idx: the TCAM entry to free
2563 *
2564 * This function frees an entry in a Profile ID TCAM for a specific block.
2565 */
2566 static enum ice_status
2567 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
2568 {
2569 u16 res_type;
2570
2571 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2572 return ICE_ERR_PARAM;
2573
2574 return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
2575 }
2576
2577 /**
2578 * ice_alloc_prof_id - allocate profile ID
2579 * @hw: pointer to the HW struct
2580 * @blk: the block to allocate the profile ID for
2581 * @prof_id: pointer to variable to receive the profile ID
2582 *
2583 * This function allocates a new profile ID, which also corresponds to a Field
2584 * Vector (Extraction Sequence) entry.
2585 */
2586 static enum ice_status
2587 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
2588 {
2589 enum ice_status status;
2590 u16 res_type;
2591 u16 get_prof;
2592
2593 if (!ice_prof_id_rsrc_type(blk, &res_type))
2594 return ICE_ERR_PARAM;
2595
2596 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
2597 if (!status)
2598 *prof_id = (u8)get_prof;
2599
2600 return status;
2601 }
2602
2603 /**
2604 * ice_free_prof_id - free profile ID
2605 * @hw: pointer to the HW struct
2606 * @blk: the block from which to free the profile ID
2607 * @prof_id: the profile ID to free
2608 *
2609 * This function frees a profile ID, which also corresponds to a Field Vector.
2610 */
2611 static enum ice_status
2612 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2613 {
2614 u16 tmp_prof_id = (u16)prof_id;
2615 u16 res_type;
2616
2617 if (!ice_prof_id_rsrc_type(blk, &res_type))
2618 return ICE_ERR_PARAM;
2619
2620 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
2621 }
2622
2623 /**
2624 * ice_prof_inc_ref - increment reference count for profile
2625 * @hw: pointer to the HW struct
2626 * @blk: the block from which to free the profile ID
2627 * @prof_id: the profile ID for which to increment the reference count
2628 */
2629 static enum ice_status
2630 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2631 {
2632 if (prof_id > hw->blk[blk].es.count)
2633 return ICE_ERR_PARAM;
2634
2635 hw->blk[blk].es.ref_count[prof_id]++;
2636
2637 return ICE_SUCCESS;
2638 }
2639
2640 /**
2641 * ice_write_es - write an extraction sequence to hardware
2642 * @hw: pointer to the HW struct
2643 * @blk: the block in which to write the extraction sequence
2644 * @prof_id: the profile ID to write
2645 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
2646 */
2647 static void
2648 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
2649 struct ice_fv_word *fv)
2650 {
2651 u16 off;
2652
2653 off = prof_id * hw->blk[blk].es.fvw;
2654 if (!fv) {
2655 ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw *
2656 sizeof(*fv), ICE_NONDMA_MEM);
2657 hw->blk[blk].es.written[prof_id] = false;
2658 } else {
2659 ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw *
2660 sizeof(*fv), ICE_NONDMA_TO_NONDMA);
2661 }
2662 }
2663
2664 /**
2665 * ice_prof_dec_ref - decrement reference count for profile
2666 * @hw: pointer to the HW struct
2667 * @blk: the block from which to free the profile ID
2668 * @prof_id: the profile ID for which to decrement the reference count
2669 */
2670 static enum ice_status
2671 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2672 {
2673 if (prof_id > hw->blk[blk].es.count)
2674 return ICE_ERR_PARAM;
2675
2676 if (hw->blk[blk].es.ref_count[prof_id] > 0) {
2677 if (!--hw->blk[blk].es.ref_count[prof_id]) {
2678 ice_write_es(hw, blk, prof_id, NULL);
2679 return ice_free_prof_id(hw, blk, prof_id);
2680 }
2681 }
2682
2683 return ICE_SUCCESS;
2684 }
2685
2686 /* Block / table section IDs */
2687 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
2688 /* SWITCH */
2689 { ICE_SID_XLT1_SW,
2690 ICE_SID_XLT2_SW,
2691 ICE_SID_PROFID_TCAM_SW,
2692 ICE_SID_PROFID_REDIR_SW,
2693 ICE_SID_FLD_VEC_SW
2694 },
2695
2696 /* ACL */
2697 { ICE_SID_XLT1_ACL,
2698 ICE_SID_XLT2_ACL,
2699 ICE_SID_PROFID_TCAM_ACL,
2700 ICE_SID_PROFID_REDIR_ACL,
2701 ICE_SID_FLD_VEC_ACL
2702 },
2703
2704 /* FD */
2705 { ICE_SID_XLT1_FD,
2706 ICE_SID_XLT2_FD,
2707 ICE_SID_PROFID_TCAM_FD,
2708 ICE_SID_PROFID_REDIR_FD,
2709 ICE_SID_FLD_VEC_FD
2710 },
2711
2712 /* RSS */
2713 { ICE_SID_XLT1_RSS,
2714 ICE_SID_XLT2_RSS,
2715 ICE_SID_PROFID_TCAM_RSS,
2716 ICE_SID_PROFID_REDIR_RSS,
2717 ICE_SID_FLD_VEC_RSS
2718 },
2719
2720 /* PE */
2721 { ICE_SID_XLT1_PE,
2722 ICE_SID_XLT2_PE,
2723 ICE_SID_PROFID_TCAM_PE,
2724 ICE_SID_PROFID_REDIR_PE,
2725 ICE_SID_FLD_VEC_PE
2726 }
2727 };
2728
2729 /**
2730 * ice_fill_tbl - Reads content of a single table type into database
2731 * @hw: pointer to the hardware structure
2732 * @block_id: Block ID of the table to copy
2733 * @sid: Section ID of the table to copy
2734 *
2735 * Will attempt to read the entire content of a given table of a single block
2736 * into the driver database. We assume that the buffer will always
2737 * be as large or larger than the data contained in the package. If
2738 * this condition is not met, there is most likely an error in the package
2739 * contents.
2740 */
2741 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
2742 {
2743 u32 dst_len, sect_len, offset = 0;
2744 struct ice_prof_redir_section *pr;
2745 struct ice_prof_id_section *pid;
2746 struct ice_xlt1_section *xlt1;
2747 struct ice_xlt2_section *xlt2;
2748 struct ice_sw_fv_section *es;
2749 struct ice_pkg_enum state;
2750 u8 *src, *dst;
2751 void *sect;
2752
2753 /* if the HW segment pointer is null then the first iteration of
2754 * ice_pkg_enum_section() will fail. In this case the Hw tables will
2755 * not be filled and return success.
2756 */
2757 if (!hw->seg) {
2758 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
2759 return;
2760 }
2761
2762 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
2763
2764 sect = ice_pkg_enum_section(hw->seg, &state, sid);
2765
2766 while (sect) {
2767 switch (sid) {
2768 case ICE_SID_XLT1_SW:
2769 case ICE_SID_XLT1_FD:
2770 case ICE_SID_XLT1_RSS:
2771 case ICE_SID_XLT1_ACL:
2772 case ICE_SID_XLT1_PE:
2773 xlt1 = (struct ice_xlt1_section *)sect;
2774 src = xlt1->value;
2775 sect_len = LE16_TO_CPU(xlt1->count) *
2776 sizeof(*hw->blk[block_id].xlt1.t);
2777 dst = hw->blk[block_id].xlt1.t;
2778 dst_len = hw->blk[block_id].xlt1.count *
2779 sizeof(*hw->blk[block_id].xlt1.t);
2780 break;
2781 case ICE_SID_XLT2_SW:
2782 case ICE_SID_XLT2_FD:
2783 case ICE_SID_XLT2_RSS:
2784 case ICE_SID_XLT2_ACL:
2785 case ICE_SID_XLT2_PE:
2786 xlt2 = (struct ice_xlt2_section *)sect;
2787 src = (u8 *)xlt2->value;
2788 sect_len = LE16_TO_CPU(xlt2->count) *
2789 sizeof(*hw->blk[block_id].xlt2.t);
2790 dst = (u8 *)hw->blk[block_id].xlt2.t;
2791 dst_len = hw->blk[block_id].xlt2.count *
2792 sizeof(*hw->blk[block_id].xlt2.t);
2793 break;
2794 case ICE_SID_PROFID_TCAM_SW:
2795 case ICE_SID_PROFID_TCAM_FD:
2796 case ICE_SID_PROFID_TCAM_RSS:
2797 case ICE_SID_PROFID_TCAM_ACL:
2798 case ICE_SID_PROFID_TCAM_PE:
2799 pid = (struct ice_prof_id_section *)sect;
2800 src = (u8 *)pid->entry;
2801 sect_len = LE16_TO_CPU(pid->count) *
2802 sizeof(*hw->blk[block_id].prof.t);
2803 dst = (u8 *)hw->blk[block_id].prof.t;
2804 dst_len = hw->blk[block_id].prof.count *
2805 sizeof(*hw->blk[block_id].prof.t);
2806 break;
2807 case ICE_SID_PROFID_REDIR_SW:
2808 case ICE_SID_PROFID_REDIR_FD:
2809 case ICE_SID_PROFID_REDIR_RSS:
2810 case ICE_SID_PROFID_REDIR_ACL:
2811 case ICE_SID_PROFID_REDIR_PE:
2812 pr = (struct ice_prof_redir_section *)sect;
2813 src = pr->redir_value;
2814 sect_len = LE16_TO_CPU(pr->count) *
2815 sizeof(*hw->blk[block_id].prof_redir.t);
2816 dst = hw->blk[block_id].prof_redir.t;
2817 dst_len = hw->blk[block_id].prof_redir.count *
2818 sizeof(*hw->blk[block_id].prof_redir.t);
2819 break;
2820 case ICE_SID_FLD_VEC_SW:
2821 case ICE_SID_FLD_VEC_FD:
2822 case ICE_SID_FLD_VEC_RSS:
2823 case ICE_SID_FLD_VEC_ACL:
2824 case ICE_SID_FLD_VEC_PE:
2825 es = (struct ice_sw_fv_section *)sect;
2826 src = (u8 *)es->fv;
2827 sect_len = LE16_TO_CPU(es->count) *
2828 hw->blk[block_id].es.fvw *
2829 sizeof(*hw->blk[block_id].es.t);
2830 dst = (u8 *)hw->blk[block_id].es.t;
2831 dst_len = hw->blk[block_id].es.count *
2832 hw->blk[block_id].es.fvw *
2833 sizeof(*hw->blk[block_id].es.t);
2834 break;
2835 default:
2836 return;
2837 }
2838
2839 /* if the section offset exceeds destination length, terminate
2840 * table fill.
2841 */
2842 if (offset > dst_len)
2843 return;
2844
2845 /* if the sum of section size and offset exceed destination size
2846 * then we are out of bounds of the Hw table size for that PF.
2847 * Changing section length to fill the remaining table space
2848 * of that PF.
2849 */
2850 if ((offset + sect_len) > dst_len)
2851 sect_len = dst_len - offset;
2852
2853 ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA);
2854 offset += sect_len;
2855 sect = ice_pkg_enum_section(NULL, &state, sid);
2856 }
2857 }
2858
2859 /**
2860 * ice_fill_blk_tbls - Read package content for tables of a block
2861 * @hw: pointer to the hardware structure
2862 * @block_id: The block ID which contains the tables to be copied
2863 *
2864 * Reads the current package contents and populates the driver
2865 * database with the data it contains to allow for advanced driver
2866 * features.
2867 */
2868 static void ice_fill_blk_tbls(struct ice_hw *hw, enum ice_block block_id)
2869 {
2870 ice_fill_tbl(hw, block_id, hw->blk[block_id].xlt1.sid);
2871 ice_fill_tbl(hw, block_id, hw->blk[block_id].xlt2.sid);
2872 ice_fill_tbl(hw, block_id, hw->blk[block_id].prof.sid);
2873 ice_fill_tbl(hw, block_id, hw->blk[block_id].prof_redir.sid);
2874 ice_fill_tbl(hw, block_id, hw->blk[block_id].es.sid);
2875 }
2876
2877 /**
2878 * ice_free_flow_profs - free flow profile entries
2879 * @hw: pointer to the hardware structure
2880 */
2881 static void ice_free_flow_profs(struct ice_hw *hw)
2882 {
2883 u8 i;
2884
2885 for (i = 0; i < ICE_BLK_COUNT; i++) {
2886 struct ice_flow_prof *p, *tmp;
2887
2888 if (!&hw->fl_profs[i])
2889 continue;
2890
2891 /* This call is being made as part of resource deallocation
2892 * during unload. Lock acquire and release will not be
2893 * necessary here.
2894 */
2895 LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[i],
2896 ice_flow_prof, l_entry) {
2897 struct ice_flow_entry *e, *t;
2898
2899 LIST_FOR_EACH_ENTRY_SAFE(e, t, &p->entries,
2900 ice_flow_entry, l_entry)
2901 ice_flow_rem_entry(hw, ICE_FLOW_ENTRY_HNDL(e));
2902
2903 LIST_DEL(&p->l_entry);
2904 if (p->acts)
2905 ice_free(hw, p->acts);
2906 ice_free(hw, p);
2907 }
2908
2909 ice_destroy_lock(&hw->fl_profs_locks[i]);
2910 }
2911 }
2912
2913 /**
2914 * ice_free_prof_map - frees the profile map
2915 * @hw: pointer to the hardware structure
2916 * @blk: the HW block which contains the profile map to be freed
2917 */
2918 static void ice_free_prof_map(struct ice_hw *hw, enum ice_block blk)
2919 {
2920 struct ice_prof_map *del, *tmp;
2921
2922 if (LIST_EMPTY(&hw->blk[blk].es.prof_map))
2923 return;
2924
2925 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &hw->blk[blk].es.prof_map,
2926 ice_prof_map, list) {
2927 ice_rem_prof(hw, blk, del->profile_cookie);
2928 }
2929 }
2930
2931 /**
2932 * ice_free_vsig_tbl - free complete VSIG table entries
2933 * @hw: pointer to the hardware structure
2934 * @blk: the HW block on which to free the VSIG table entries
2935 */
2936 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2937 {
2938 u16 i;
2939
2940 if (!hw->blk[blk].xlt2.vsig_tbl)
2941 return;
2942
2943 for (i = 1; i < ICE_MAX_VSIGS; i++)
2944 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2945 ice_vsig_free(hw, blk, i);
2946 }
2947
2948 /**
2949 * ice_free_hw_tbls - free hardware table memory
2950 * @hw: pointer to the hardware structure
2951 */
2952 void ice_free_hw_tbls(struct ice_hw *hw)
2953 {
2954 u8 i;
2955
2956 for (i = 0; i < ICE_BLK_COUNT; i++) {
2957 ice_free_prof_map(hw, (enum ice_block)i);
2958 ice_free_vsig_tbl(hw, (enum ice_block)i);
2959 ice_free(hw, hw->blk[i].xlt1.ptypes);
2960 ice_free(hw, hw->blk[i].xlt1.ptg_tbl);
2961 ice_free(hw, hw->blk[i].xlt1.t);
2962 ice_free(hw, hw->blk[i].xlt2.t);
2963 ice_free(hw, hw->blk[i].xlt2.vsig_tbl);
2964 ice_free(hw, hw->blk[i].xlt2.vsis);
2965 ice_free(hw, hw->blk[i].prof.t);
2966 ice_free(hw, hw->blk[i].prof_redir.t);
2967 ice_free(hw, hw->blk[i].es.t);
2968 ice_free(hw, hw->blk[i].es.ref_count);
2969 ice_free(hw, hw->blk[i].es.written);
2970 }
2971
2972 ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM);
2973
2974 ice_free_flow_profs(hw);
2975 }
2976
2977 /**
2978 * ice_init_flow_profs - init flow profile locks and list heads
2979 * @hw: pointer to the hardware structure
2980 */
2981 static void ice_init_flow_profs(struct ice_hw *hw)
2982 {
2983 u8 i;
2984
2985 for (i = 0; i < ICE_BLK_COUNT; i++) {
2986 ice_init_lock(&hw->fl_profs_locks[i]);
2987 INIT_LIST_HEAD(&hw->fl_profs[i]);
2988 }
2989 }
2990
2991 /**
2992 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
2993 * @hw: pointer to the hardware structure
2994 * @blk: the HW block to initialize
2995 */
2996 static
2997 void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
2998 {
2999 u16 pt;
3000
3001 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3002 u8 ptg;
3003
3004 ptg = hw->blk[blk].xlt1.t[pt];
3005 if (ptg != ICE_DEFAULT_PTG) {
3006 ice_ptg_alloc_val(hw, blk, ptg);
3007 ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3008 }
3009 }
3010 }
3011
3012 /**
3013 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3014 * @hw: pointer to the hardware structure
3015 * @blk: the HW block to initialize
3016 */
3017 static
3018 void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3019 {
3020 u16 vsi;
3021
3022 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3023 u16 vsig;
3024
3025 vsig = hw->blk[blk].xlt2.t[vsi];
3026 if (vsig) {
3027 ice_vsig_alloc_val(hw, blk, vsig);
3028 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3029 /* no changes at this time, since this has been
3030 * initialized from the original package
3031 */
3032 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3033 }
3034 }
3035 }
3036
3037 /**
3038 * ice_init_sw_db - init software database from HW tables
3039 * @hw: pointer to the hardware structure
3040 */
3041 static
3042 void ice_init_sw_db(struct ice_hw *hw)
3043 {
3044 u16 i;
3045
3046 for (i = 0; i < ICE_BLK_COUNT; i++) {
3047 ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3048 ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3049 }
3050 }
3051
3052 /**
3053 * ice_init_hw_tbls - init hardware table memory
3054 * @hw: pointer to the hardware structure
3055 */
3056 enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3057 {
3058 u8 i;
3059
3060 ice_init_flow_profs(hw);
3061
3062 for (i = 0; i < ICE_BLK_COUNT; i++) {
3063 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3064 struct ice_prof_tcam *prof = &hw->blk[i].prof;
3065 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3066 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3067 struct ice_es *es = &hw->blk[i].es;
3068
3069 hw->blk[i].overwrite = blk_sizes[i].overwrite;
3070 es->reverse = blk_sizes[i].reverse;
3071
3072 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3073 xlt1->count = blk_sizes[i].xlt1;
3074
3075 xlt1->ptypes = (struct ice_ptg_ptype *)
3076 ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes));
3077
3078 if (!xlt1->ptypes)
3079 goto err;
3080
3081 xlt1->ptg_tbl = (struct ice_ptg_entry *)
3082 ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl));
3083
3084 if (!xlt1->ptg_tbl)
3085 goto err;
3086
3087 xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t));
3088 if (!xlt1->t)
3089 goto err;
3090
3091 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3092 xlt2->count = blk_sizes[i].xlt2;
3093
3094 xlt2->vsis = (struct ice_vsig_vsi *)
3095 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis));
3096
3097 if (!xlt2->vsis)
3098 goto err;
3099
3100 xlt2->vsig_tbl = (struct ice_vsig_entry *)
3101 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl));
3102 if (!xlt2->vsig_tbl)
3103 goto err;
3104
3105 xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t));
3106 if (!xlt2->t)
3107 goto err;
3108
3109 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3110 prof->count = blk_sizes[i].prof_tcam;
3111 prof->max_prof_id = blk_sizes[i].prof_id;
3112 prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3113 prof->t = (struct ice_prof_tcam_entry *)
3114 ice_calloc(hw, prof->count, sizeof(*prof->t));
3115
3116 if (!prof->t)
3117 goto err;
3118
3119 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3120 prof_redir->count = blk_sizes[i].prof_redir;
3121 prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count,
3122 sizeof(*prof_redir->t));
3123
3124 if (!prof_redir->t)
3125 goto err;
3126
3127 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3128 es->count = blk_sizes[i].es;
3129 es->fvw = blk_sizes[i].fvw;
3130 es->t = (struct ice_fv_word *)
3131 ice_calloc(hw, es->count * es->fvw, sizeof(*es->t));
3132
3133 if (!es->t)
3134 goto err;
3135
3136 es->ref_count = (u16 *)
3137 ice_calloc(hw, es->count, sizeof(*es->ref_count));
3138
3139 es->written = (u8 *)
3140 ice_calloc(hw, es->count, sizeof(*es->written));
3141
3142 if (!es->ref_count)
3143 goto err;
3144
3145 INIT_LIST_HEAD(&es->prof_map);
3146
3147 /* Now that tables are allocated, read in package data */
3148 ice_fill_blk_tbls(hw, (enum ice_block)i);
3149 }
3150
3151 ice_init_sw_db(hw);
3152
3153 return ICE_SUCCESS;
3154
3155 err:
3156 ice_free_hw_tbls(hw);
3157 return ICE_ERR_NO_MEMORY;
3158 }
3159
3160 /**
3161 * ice_prof_gen_key - generate profile ID key
3162 * @hw: pointer to the HW struct
3163 * @blk: the block in which to write profile ID to
3164 * @ptg: packet type group (PTG) portion of key
3165 * @vsig: VSIG portion of key
3166 * @cdid: cdid portion of key
3167 * @flags: flag portion of key
3168 * @vl_msk: valid mask
3169 * @dc_msk: don't care mask
3170 * @nm_msk: never match mask
3171 * @key: output of profile ID key
3172 */
3173 static enum ice_status
3174 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3175 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3176 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3177 u8 key[ICE_TCAM_KEY_SZ])
3178 {
3179 struct ice_prof_id_key inkey;
3180
3181 inkey.xlt1 = ptg;
3182 inkey.xlt2_cdid = CPU_TO_LE16(vsig);
3183 inkey.flags = CPU_TO_LE16(flags);
3184
3185 switch (hw->blk[blk].prof.cdid_bits) {
3186 case 0:
3187 break;
3188 case 2:
3189 #define ICE_CD_2_M 0xC000U
3190 #define ICE_CD_2_S 14
3191 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M);
3192 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S);
3193 break;
3194 case 4:
3195 #define ICE_CD_4_M 0xF000U
3196 #define ICE_CD_4_S 12
3197 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M);
3198 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S);
3199 break;
3200 case 8:
3201 #define ICE_CD_8_M 0xFF00U
3202 #define ICE_CD_8_S 16
3203 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M);
3204 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S);
3205 break;
3206 default:
3207 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3208 break;
3209 };
3210
3211 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3212 nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3213 }
3214
3215 /**
3216 * ice_tcam_write_entry - write TCAM entry
3217 * @hw: pointer to the HW struct
3218 * @blk: the block in which to write profile ID to
3219 * @idx: the entry index to write to
3220 * @prof_id: profile ID
3221 * @ptg: packet type group (PTG) portion of key
3222 * @vsig: VSIG portion of key
3223 * @cdid: cdid portion of key
3224 * @flags: flag portion of key
3225 * @vl_msk: valid mask
3226 * @dc_msk: don't care mask
3227 * @nm_msk: never match mask
3228 */
3229 static enum ice_status
3230 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
3231 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
3232 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3233 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
3234 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
3235 {
3236 struct ice_prof_tcam_entry;
3237 enum ice_status status;
3238
3239 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
3240 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
3241 if (!status) {
3242 hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx);
3243 hw->blk[blk].prof.t[idx].prof_id = prof_id;
3244 }
3245
3246 return status;
3247 }
3248
3249 /**
3250 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
3251 * @hw: pointer to the hardware structure
3252 * @blk: HW block
3253 * @vsig: VSIG to query
3254 * @refs: pointer to variable to receive the reference count
3255 */
3256 static enum ice_status
3257 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
3258 {
3259 u16 idx = vsig & ICE_VSIG_IDX_M;
3260 struct ice_vsig_vsi *ptr;
3261 *refs = 0;
3262
3263 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3264 return ICE_ERR_DOES_NOT_EXIST;
3265
3266 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3267 while (ptr) {
3268 (*refs)++;
3269 ptr = ptr->next_vsi;
3270 }
3271
3272 return ICE_SUCCESS;
3273 }
3274
3275 /**
3276 * ice_get_ptg - get or allocate a ptg for a ptype
3277 * @hw: pointer to the hardware structure
3278 * @blk: HW block
3279 * @ptype: the ptype to retrieve the PTG for
3280 * @ptg: receives the PTG of the ptype
3281 * @add: receive boolean indicating whether PTG was added or not
3282 */
3283 static enum ice_status
3284 ice_get_ptg(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg,
3285 bool *add)
3286 {
3287 enum ice_status status;
3288
3289 *ptg = ICE_DEFAULT_PTG;
3290 *add = false;
3291
3292 status = ice_ptg_find_ptype(hw, blk, ptype, ptg);
3293 if (status)
3294 return status;
3295
3296 if (*ptg == ICE_DEFAULT_PTG) {
3297 /* need to allocate a PTG, and add ptype to it */
3298 *ptg = ice_ptg_alloc(hw, blk);
3299 if (*ptg == ICE_DEFAULT_PTG)
3300 return ICE_ERR_HW_TABLE;
3301
3302 status = ice_ptg_add_mv_ptype(hw, blk, ptype, *ptg);
3303 if (status)
3304 return ICE_ERR_HW_TABLE;
3305
3306 *add = true;
3307 }
3308
3309 return ICE_SUCCESS;
3310 };
3311
3312 /**
3313 * ice_has_prof_vsig - check to see if VSIG has a specific profile
3314 * @hw: pointer to the hardware structure
3315 * @blk: HW block
3316 * @vsig: VSIG to check against
3317 * @hdl: profile handle
3318 */
3319 static bool
3320 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
3321 {
3322 u16 idx = vsig & ICE_VSIG_IDX_M;
3323 struct ice_vsig_prof *ent;
3324
3325 LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3326 ice_vsig_prof, list) {
3327 if (ent->profile_cookie == hdl)
3328 return true;
3329 }
3330
3331 ice_debug(hw, ICE_DBG_INIT,
3332 "Characteristic list for VSI group %d not found.\n",
3333 vsig);
3334 return false;
3335 }
3336
3337 /**
3338 * ice_prof_bld_es - build profile ID extraction sequence changes
3339 * @hw: pointer to the HW struct
3340 * @blk: hardware block
3341 * @bld: the update package buffer build to add to
3342 * @chgs: the list of changes to make in hardware
3343 */
3344 static enum ice_status
3345 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
3346 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
3347 {
3348 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
3349 struct ice_chs_chg *tmp;
3350
3351 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
3352 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
3353 u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
3354 struct ice_pkg_es *p;
3355 u32 id;
3356
3357 id = ice_sect_id(blk, ICE_VEC_TBL);
3358 p = (struct ice_pkg_es *)
3359 ice_pkg_buf_alloc_section(bld, id, sizeof(*p) +
3360 vec_size -
3361 sizeof(p->es[0]));
3362
3363 if (!p)
3364 return ICE_ERR_MAX_LIMIT;
3365
3366 p->count = CPU_TO_LE16(1);
3367 p->offset = CPU_TO_LE16(tmp->prof_id);
3368
3369 ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size,
3370 ICE_NONDMA_TO_NONDMA);
3371 }
3372 }
3373
3374 return ICE_SUCCESS;
3375 }
3376
3377 /**
3378 * ice_prof_bld_tcam - build profile ID TCAM changes
3379 * @hw: pointer to the HW struct
3380 * @blk: hardware block
3381 * @bld: the update package buffer build to add to
3382 * @chgs: the list of changes to make in hardware
3383 */
3384 static enum ice_status
3385 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
3386 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
3387 {
3388 struct ice_chs_chg *tmp;
3389
3390 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
3391 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
3392 struct ice_prof_id_section *p;
3393 u32 id;
3394
3395 id = ice_sect_id(blk, ICE_PROF_TCAM);
3396 p = (struct ice_prof_id_section *)
3397 ice_pkg_buf_alloc_section(bld, id, sizeof(*p));
3398
3399 if (!p)
3400 return ICE_ERR_MAX_LIMIT;
3401
3402 p->count = CPU_TO_LE16(1);
3403 p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx);
3404 p->entry[0].prof_id = tmp->prof_id;
3405
3406 ice_memcpy(p->entry[0].key,
3407 &hw->blk[blk].prof.t[tmp->tcam_idx].key,
3408 sizeof(hw->blk[blk].prof.t->key),
3409 ICE_NONDMA_TO_NONDMA);
3410 }
3411 }
3412
3413 return ICE_SUCCESS;
3414 }
3415
3416 /**
3417 * ice_prof_bld_xlt1 - build XLT1 changes
3418 * @blk: hardware block
3419 * @bld: the update package buffer build to add to
3420 * @chgs: the list of changes to make in hardware
3421 */
3422 static enum ice_status
3423 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
3424 struct LIST_HEAD_TYPE *chgs)
3425 {
3426 struct ice_chs_chg *tmp;
3427
3428 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
3429 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
3430 struct ice_xlt1_section *p;
3431 u32 id;
3432
3433 id = ice_sect_id(blk, ICE_XLT1);
3434 p = (struct ice_xlt1_section *)
3435 ice_pkg_buf_alloc_section(bld, id, sizeof(*p));
3436
3437 if (!p)
3438 return ICE_ERR_MAX_LIMIT;
3439
3440 p->count = CPU_TO_LE16(1);
3441 p->offset = CPU_TO_LE16(tmp->ptype);
3442 p->value[0] = tmp->ptg;
3443 }
3444 }
3445
3446 return ICE_SUCCESS;
3447 }
3448
3449 /**
3450 * ice_prof_bld_xlt2 - build XLT2 changes
3451 * @blk: hardware block
3452 * @bld: the update package buffer build to add to
3453 * @chgs: the list of changes to make in hardware
3454 */
3455 static enum ice_status
3456 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
3457 struct LIST_HEAD_TYPE *chgs)
3458 {
3459 struct ice_chs_chg *tmp;
3460
3461 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
3462 bool found = false;
3463
3464 if (tmp->type == ICE_VSIG_ADD)
3465 found = true;
3466 else if (tmp->type == ICE_VSI_MOVE)
3467 found = true;
3468 else if (tmp->type == ICE_VSIG_REM)
3469 found = true;
3470
3471 if (found) {
3472 struct ice_xlt2_section *p;
3473 u32 id;
3474
3475 id = ice_sect_id(blk, ICE_XLT2);
3476 p = (struct ice_xlt2_section *)
3477 ice_pkg_buf_alloc_section(bld, id, sizeof(*p));
3478
3479 if (!p)
3480 return ICE_ERR_MAX_LIMIT;
3481
3482 p->count = CPU_TO_LE16(1);
3483 p->offset = CPU_TO_LE16(tmp->vsi);
3484 p->value[0] = CPU_TO_LE16(tmp->vsig);
3485 }
3486 }
3487
3488 return ICE_SUCCESS;
3489 }
3490
3491 /**
3492 * ice_upd_prof_hw - update hardware using the change list
3493 * @hw: pointer to the HW struct
3494 * @blk: hardware block
3495 * @chgs: the list of changes to make in hardware
3496 */
3497 static enum ice_status
3498 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
3499 struct LIST_HEAD_TYPE *chgs)
3500 {
3501 struct ice_buf_build *b;
3502 struct ice_chs_chg *tmp;
3503 enum ice_status status;
3504 u16 pkg_sects = 0;
3505 u16 sects = 0;
3506 u16 xlt1 = 0;
3507 u16 xlt2 = 0;
3508 u16 tcam = 0;
3509 u16 es = 0;
3510
3511 /* count number of sections we need */
3512 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
3513 switch (tmp->type) {
3514 case ICE_PTG_ES_ADD:
3515 if (tmp->add_ptg)
3516 xlt1++;
3517 if (tmp->add_prof)
3518 es++;
3519 break;
3520 case ICE_TCAM_ADD:
3521 tcam++;
3522 break;
3523 case ICE_VSIG_ADD:
3524 case ICE_VSI_MOVE:
3525 case ICE_VSIG_REM:
3526 xlt2++;
3527 break;
3528 default:
3529 break;
3530 }
3531 }
3532 sects = xlt1 + xlt2 + tcam + es;
3533
3534 if (!sects)
3535 return ICE_SUCCESS;
3536
3537 /* Build update package buffer */
3538 b = ice_pkg_buf_alloc(hw);
3539 if (!b)
3540 return ICE_ERR_NO_MEMORY;
3541
3542 status = ice_pkg_buf_reserve_section(b, sects);
3543 if (status)
3544 goto error_tmp;
3545
3546 /* Preserve order of table update: ES, TCAM, PTG, VSIG */
3547 if (es) {
3548 status = ice_prof_bld_es(hw, blk, b, chgs);
3549 if (status)
3550 goto error_tmp;
3551 }
3552
3553 if (tcam) {
3554 status = ice_prof_bld_tcam(hw, blk, b, chgs);
3555 if (status)
3556 goto error_tmp;
3557 }
3558
3559 if (xlt1) {
3560 status = ice_prof_bld_xlt1(blk, b, chgs);
3561 if (status)
3562 goto error_tmp;
3563 }
3564
3565 if (xlt2) {
3566 status = ice_prof_bld_xlt2(blk, b, chgs);
3567 if (status)
3568 goto error_tmp;
3569 }
3570
3571 /* After package buffer build check if the section count in buffer is
3572 * non-zero and matches the number of sections detected for package
3573 * update.
3574 */
3575 pkg_sects = ice_pkg_buf_get_active_sections(b);
3576 if (!pkg_sects || pkg_sects != sects) {
3577 status = ICE_ERR_INVAL_SIZE;
3578 goto error_tmp;
3579 }
3580
3581 /* update package */
3582 status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
3583 if (status == ICE_ERR_AQ_ERROR)
3584 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile.");
3585
3586 error_tmp:
3587 ice_pkg_buf_free(hw, b);
3588 return status;
3589 }
3590
3591 /**
3592 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
3593 * @hw: pointer to the HW struct
3594 * @prof_id: profile ID
3595 * @mask_sel: mask select
3596 *
3597 * This function enable any of the masks selected by the mask select parameter
3598 * for the profile specified.
3599 */
3600 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
3601 {
3602 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
3603
3604 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
3605 GLQF_FDMASK_SEL(prof_id), mask_sel);
3606 }
3607
3608 #define ICE_SRC_DST_MAX_COUNT 8
3609
3610 struct ice_fd_src_dst_pair {
3611 u8 prot_id;
3612 u8 count;
3613 u16 off;
3614 };
3615
3616 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
3617 /* These are defined in pairs */
3618 { ICE_PROT_IPV4_OF_OR_S, 2, 12 },
3619 { ICE_PROT_IPV4_OF_OR_S, 2, 16 },
3620
3621 { ICE_PROT_IPV4_IL, 2, 12 },
3622 { ICE_PROT_IPV4_IL, 2, 16 },
3623
3624 { ICE_PROT_IPV6_OF_OR_S, 8, 8 },
3625 { ICE_PROT_IPV6_OF_OR_S, 8, 24 },
3626
3627 { ICE_PROT_IPV6_IL, 8, 8 },
3628 { ICE_PROT_IPV6_IL, 8, 24 },
3629
3630 { ICE_PROT_TCP_IL, 1, 0 },
3631 { ICE_PROT_TCP_IL, 1, 2 },
3632
3633 { ICE_PROT_UDP_OF, 1, 0 },
3634 { ICE_PROT_UDP_OF, 1, 2 },
3635
3636 { ICE_PROT_UDP_IL_OR_S, 1, 0 },
3637 { ICE_PROT_UDP_IL_OR_S, 1, 2 },
3638
3639 { ICE_PROT_SCTP_IL, 1, 0 },
3640 { ICE_PROT_SCTP_IL, 1, 2 }
3641 };
3642
3643 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs)
3644
3645 /**
3646 * ice_update_fd_swap - set register appropriately for a FD FV extraction
3647 * @hw: pointer to the HW struct
3648 * @prof_id: profile ID
3649 * @es: extraction sequence (length of array is determined by the block)
3650 */
3651 static enum ice_status
3652 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
3653 {
3654 ice_declare_bitmap(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3655 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
3656 #define ICE_FD_FV_NOT_FOUND (-2)
3657 s8 first_free = ICE_FD_FV_NOT_FOUND;
3658 u8 used[ICE_MAX_FV_WORDS] = { 0 };
3659 s8 orig_free, si;
3660 u32 mask_sel = 0;
3661 u8 i, j, k;
3662
3663 ice_memset(pair_list, 0, sizeof(pair_list), ICE_NONDMA_MEM);
3664
3665 ice_init_fd_mask_regs(hw);
3666
3667 /* This code assumes that the Flow Director field vectors are assigned
3668 * from the end of the FV indexes working towards the zero index, that
3669 * only complete fields will be included and will be consecutive, and
3670 * that there are no gaps between valid indexes.
3671 */
3672
3673 /* Determine swap fields present */
3674 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
3675 /* Find the first free entry, assuming right to left population.
3676 * This is where we can start adding additional pairs if needed.
3677 */
3678 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
3679 ICE_PROT_INVALID)
3680 first_free = i - 1;
3681
3682 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) {
3683 if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
3684 es[i].off == ice_fd_pairs[j].off) {
3685 ice_set_bit(j, pair_list);
3686 pair_start[j] = i;
3687 }
3688 }
3689 }
3690
3691 orig_free = first_free;
3692
3693 /* determine missing swap fields that need to be added */
3694 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
3695 u8 bit1 = ice_is_bit_set(pair_list, i + 1);
3696 u8 bit0 = ice_is_bit_set(pair_list, i);
3697
3698 if (bit0 ^ bit1) {
3699 u8 index;
3700
3701 /* add the appropriate 'paired' entry */
3702 if (!bit0)
3703 index = i;
3704 else
3705 index = i + 1;
3706
3707 /* check for room */
3708 if (first_free + 1 < ice_fd_pairs[index].count)
3709 return ICE_ERR_MAX_LIMIT;
3710
3711 /* place in extraction sequence */
3712 for (k = 0; k < ice_fd_pairs[index].count; k++) {
3713 es[first_free - k].prot_id =
3714 ice_fd_pairs[index].prot_id;
3715 es[first_free - k].off =
3716 ice_fd_pairs[index].off + (k * 2);
3717
3718 /* keep track of non-relevant fields */
3719 mask_sel |= 1 << (first_free - k);
3720 }
3721
3722 pair_start[index] = first_free;
3723 first_free -= ice_fd_pairs[index].count;
3724 }
3725 }
3726
3727 /* fill in the swap array */
3728 si = hw->blk[ICE_BLK_FD].es.fvw - 1;
3729 do {
3730 u8 indexes_used = 1;
3731
3732 /* assume flat at this index */
3733 #define ICE_SWAP_VALID 0x80
3734 used[si] = si | ICE_SWAP_VALID;
3735
3736 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
3737 si -= indexes_used;
3738 continue;
3739 }
3740
3741 /* check for a swap location */
3742 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) {
3743 if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
3744 es[si].off == ice_fd_pairs[j].off) {
3745 u8 idx;
3746
3747 /* determine the appropriate matching field */
3748 idx = j + ((j % 2) ? -1 : 1);
3749
3750 indexes_used = ice_fd_pairs[idx].count;
3751 for (k = 0; k < indexes_used; k++) {
3752 used[si - k] = (pair_start[idx] - k) |
3753 ICE_SWAP_VALID;
3754 }
3755
3756 break;
3757 }
3758 }
3759
3760 si -= indexes_used;
3761 } while (si >= 0);
3762
3763 /* for each set of 4 swap indexes, write the appropriate register */
3764 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
3765 u32 raw_entry = 0;
3766
3767 for (k = 0; k < 4; k++) {
3768 u8 idx;
3769
3770 idx = (j * 4) + k;
3771 if (used[idx])
3772 raw_entry |= used[idx] << (k * 8);
3773 }
3774
3775 /* write the appropriate register set, based on HW block */
3776 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_entry);
3777
3778 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %x\n",
3779 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_entry);
3780 }
3781
3782 /* update the masks for this profile to be sure we ignore fields that
3783 * are not relevant to our match criteria
3784 */
3785 ice_update_fd_mask(hw, prof_id, mask_sel);
3786
3787 return ICE_SUCCESS;
3788 }
3789
3790 /**
3791 * ice_add_prof - add profile
3792 * @hw: pointer to the HW struct
3793 * @blk: hardware block
3794 * @id: profile tracking ID
3795 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
3796 * @es: extraction sequence (length of array is determined by the block)
3797 *
3798 * This function registers a profile, which matches a set of PTYPES with a
3799 * particular extraction sequence. While the hardware profile is allocated
3800 * it will not be written until the first call to ice_add_flow that specifies
3801 * the ID value used here.
3802 */
3803 enum ice_status
3804 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
3805 struct ice_fv_word *es)
3806 {
3807 u32 bytes = DIVIDE_AND_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
3808 struct ice_prof_map *prof;
3809 enum ice_status status;
3810 u32 byte = 0;
3811 u8 prof_id;
3812
3813 /* search for existing profile */
3814 status = ice_find_prof_id(hw, blk, es, &prof_id);
3815 if (status) {
3816 /* allocate profile ID */
3817 status = ice_alloc_prof_id(hw, blk, &prof_id);
3818 if (status)
3819 goto err_ice_add_prof;
3820 if (blk == ICE_BLK_FD) {
3821 /* For Flow Director block, the extraction sequence may
3822 * need to be altered in the case where there are paired
3823 * fields that have no match. This is necessary because
3824 * for Flow Director, src and dest fields need to paired
3825 * for filter programming and these values are swapped
3826 * during Tx.
3827 */
3828 status = ice_update_fd_swap(hw, prof_id, es);
3829 if (status)
3830 goto err_ice_add_prof;
3831 }
3832
3833 /* and write new es */
3834 ice_write_es(hw, blk, prof_id, es);
3835 }
3836
3837 ice_prof_inc_ref(hw, blk, prof_id);
3838
3839 /* add profile info */
3840
3841 prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof));
3842 if (!prof)
3843 goto err_ice_add_prof;
3844
3845 prof->profile_cookie = id;
3846 prof->prof_id = prof_id;
3847 prof->ptype_count = 0;
3848 prof->context = 0;
3849
3850 /* build list of ptgs */
3851 while (bytes && prof->ptype_count < ICE_MAX_PTYPE_PER_PROFILE) {
3852 u32 bit;
3853
3854 if (!ptypes[byte]) {
3855 bytes--;
3856 byte++;
3857 continue;
3858 }
3859 /* Examine 8 bits per byte */
3860 for (bit = 0; bit < 8; bit++) {
3861 if (ptypes[byte] & 1 << bit) {
3862 u16 ptype;
3863 u8 m;
3864
3865 ptype = byte * 8 + bit;
3866 if (ptype < ICE_FLOW_PTYPE_MAX) {
3867 prof->ptype[prof->ptype_count] = ptype;
3868
3869 if (++prof->ptype_count >=
3870 ICE_MAX_PTYPE_PER_PROFILE)
3871 break;
3872 }
3873
3874 /* nothing left in byte, then exit */
3875 m = ~((1 << (bit + 1)) - 1);
3876 if (!(ptypes[byte] & m))
3877 break;
3878 }
3879 }
3880
3881 bytes--;
3882 byte++;
3883 }
3884 LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map);
3885
3886 return ICE_SUCCESS;
3887
3888 err_ice_add_prof:
3889 return status;
3890 }
3891
3892 /**
3893 * ice_search_prof_id - Search for a profile tracking ID
3894 * @hw: pointer to the HW struct
3895 * @blk: hardware block
3896 * @id: profile tracking ID
3897 *
3898 * This will search for a profile tracking ID which was previously added.
3899 */
3900 struct ice_prof_map *
3901 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3902 {
3903 struct ice_prof_map *entry = NULL;
3904 struct ice_prof_map *map;
3905
3906 LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map,
3907 list) {
3908 if (map->profile_cookie == id) {
3909 entry = map;
3910 break;
3911 }
3912 }
3913
3914 return entry;
3915 }
3916
3917 /**
3918 * ice_set_prof_context - Set context for a given profile
3919 * @hw: pointer to the HW struct
3920 * @blk: hardware block
3921 * @id: profile tracking ID
3922 * @cntxt: context
3923 */
3924 struct ice_prof_map *
3925 ice_set_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 cntxt)
3926 {
3927 struct ice_prof_map *entry;
3928
3929 entry = ice_search_prof_id(hw, blk, id);
3930 if (entry)
3931 entry->context = cntxt;
3932
3933 return entry;
3934 }
3935
3936 /**
3937 * ice_get_prof_context - Get context for a given profile
3938 * @hw: pointer to the HW struct
3939 * @blk: hardware block
3940 * @id: profile tracking ID
3941 * @cntxt: pointer to variable to receive the context
3942 */
3943 struct ice_prof_map *
3944 ice_get_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 *cntxt)
3945 {
3946 struct ice_prof_map *entry;
3947
3948 entry = ice_search_prof_id(hw, blk, id);
3949 if (entry)
3950 *cntxt = entry->context;
3951
3952 return entry;
3953 }
3954
3955 /**
3956 * ice_vsig_prof_id_count - count profiles in a VSIG
3957 * @hw: pointer to the HW struct
3958 * @blk: hardware block
3959 * @vsig: VSIG to remove the profile from
3960 */
3961 static u16
3962 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3963 {
3964 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3965 struct ice_vsig_prof *p;
3966
3967 LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3968 ice_vsig_prof, list) {
3969 count++;
3970 }
3971
3972 return count;
3973 }
3974
3975 /**
3976 * ice_rel_tcam_idx - release a TCAM index
3977 * @hw: pointer to the HW struct
3978 * @blk: hardware block
3979 * @idx: the index to release
3980 */
3981 static enum ice_status
3982 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3983 {
3984 /* Masks to invoke a never match entry */
3985 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3986 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3987 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3988 enum ice_status status;
3989
3990 /* write the TCAM entry */
3991 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3992 dc_msk, nm_msk);
3993 if (status)
3994 return status;
3995
3996 /* release the TCAM entry */
3997 status = ice_free_tcam_ent(hw, blk, idx);
3998
3999 return status;
4000 }
4001
4002 /**
4003 * ice_rem_prof_id - remove one profile from a VSIG
4004 * @hw: pointer to the HW struct
4005 * @blk: hardware block
4006 * @prof: pointer to profile structure to remove
4007 */
4008 static enum ice_status
4009 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
4010 struct ice_vsig_prof *prof)
4011 {
4012 enum ice_status status;
4013 u16 i;
4014
4015 for (i = 0; i < prof->tcam_count; i++) {
4016 prof->tcam[i].in_use = false;
4017 status = ice_rel_tcam_idx(hw, blk, prof->tcam[i].tcam_idx);
4018 if (status)
4019 return ICE_ERR_HW_TABLE;
4020 }
4021
4022 return ICE_SUCCESS;
4023 }
4024
4025 /**
4026 * ice_rem_vsig - remove VSIG
4027 * @hw: pointer to the HW struct
4028 * @blk: hardware block
4029 * @vsig: the VSIG to remove
4030 * @chg: the change list
4031 */
4032 static enum ice_status
4033 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4034 struct LIST_HEAD_TYPE *chg)
4035 {
4036 u16 idx = vsig & ICE_VSIG_IDX_M;
4037 struct ice_vsig_vsi *vsi_cur;
4038 struct ice_vsig_prof *d, *t;
4039 enum ice_status status;
4040
4041 /* remove TCAM entries */
4042 LIST_FOR_EACH_ENTRY_SAFE(d, t,
4043 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4044 ice_vsig_prof, list) {
4045 status = ice_rem_prof_id(hw, blk, d);
4046 if (status)
4047 return status;
4048
4049 LIST_DEL(&d->list);
4050 ice_free(hw, d);
4051 }
4052
4053 /* Move all VSIS associated with this VSIG to the default VSIG */
4054 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4055 /* If the VSIG has at least 1 VSI then iterate through the list
4056 * and remove the VSIs before deleting the group.
4057 */
4058 if (vsi_cur) {
4059 do {
4060 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
4061 struct ice_chs_chg *p;
4062
4063 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4064 if (!p)
4065 return ICE_ERR_NO_MEMORY;
4066
4067 p->type = ICE_VSIG_REM;
4068 p->orig_vsig = vsig;
4069 p->vsig = ICE_DEFAULT_VSIG;
4070 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
4071
4072 LIST_ADD(&p->list_entry, chg);
4073
4074 vsi_cur = tmp;
4075 } while (vsi_cur);
4076 }
4077
4078 status = ice_vsig_free(hw, blk, vsig);
4079
4080 return status;
4081 }
4082
4083 /**
4084 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
4085 * @hw: pointer to the HW struct
4086 * @blk: hardware block
4087 * @vsig: VSIG to remove the profile from
4088 * @hdl: profile handle indicating which profile to remove
4089 * @chg: list to receive a record of changes
4090 */
4091 static enum ice_status
4092 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4093 struct LIST_HEAD_TYPE *chg)
4094 {
4095 u16 idx = vsig & ICE_VSIG_IDX_M;
4096 struct ice_vsig_prof *p, *t;
4097 enum ice_status status;
4098
4099 LIST_FOR_EACH_ENTRY_SAFE(p, t,
4100 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4101 ice_vsig_prof, list) {
4102 if (p->profile_cookie == hdl) {
4103 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
4104 /* this is the last profile, remove the VSIG */
4105 return ice_rem_vsig(hw, blk, vsig, chg);
4106
4107 status = ice_rem_prof_id(hw, blk, p);
4108 if (!status) {
4109 LIST_DEL(&p->list);
4110 ice_free(hw, p);
4111 }
4112 return status;
4113 }
4114 }
4115
4116 return ICE_ERR_DOES_NOT_EXIST;
4117 }
4118
4119 /**
4120 * ice_rem_flow_all - remove all flows with a particular profile
4121 * @hw: pointer to the HW struct
4122 * @blk: hardware block
4123 * @id: profile tracking ID
4124 */
4125 static enum ice_status
4126 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
4127 {
4128 struct ice_chs_chg *del, *tmp;
4129 struct LIST_HEAD_TYPE chg;
4130 enum ice_status status;
4131 u16 i;
4132
4133 INIT_LIST_HEAD(&chg);
4134
4135 for (i = 1; i < ICE_MAX_VSIGS; i++) {
4136 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
4137 if (ice_has_prof_vsig(hw, blk, i, id)) {
4138 status = ice_rem_prof_id_vsig(hw, blk, i, id,
4139 &chg);
4140 if (status)
4141 goto err_ice_rem_flow_all;
4142 }
4143 }
4144 }
4145
4146 status = ice_upd_prof_hw(hw, blk, &chg);
4147
4148 err_ice_rem_flow_all:
4149 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
4150 LIST_DEL(&del->list_entry);
4151 ice_free(hw, del);
4152 }
4153
4154 return status;
4155 }
4156
4157 /**
4158 * ice_rem_prof - remove profile
4159 * @hw: pointer to the HW struct
4160 * @blk: hardware block
4161 * @id: profile tracking ID
4162 *
4163 * This will remove the profile specified by the ID parameter, which was
4164 * previously created through ice_add_prof. If any existing entries
4165 * are associated with this profile, they will be removed as well.
4166 */
4167 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
4168 {
4169 enum ice_status status;
4170 struct ice_prof_map *pmap;
4171
4172 pmap = ice_search_prof_id(hw, blk, id);
4173 if (!pmap)
4174 return ICE_ERR_DOES_NOT_EXIST;
4175
4176 /* remove all flows with this profile */
4177 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
4178 if (status)
4179 return status;
4180
4181 /* remove profile */
4182 status = ice_free_prof_id(hw, blk, pmap->prof_id);
4183 if (status)
4184 return status;
4185 /* dereference profile, and possibly remove */
4186 ice_prof_dec_ref(hw, blk, pmap->prof_id);
4187
4188 LIST_DEL(&pmap->list);
4189 ice_free(hw, pmap);
4190
4191 return ICE_SUCCESS;
4192 }
4193
4194 /**
4195 * ice_get_prof_ptgs - get ptgs for profile
4196 * @hw: pointer to the HW struct
4197 * @blk: hardware block
4198 * @hdl: profile handle
4199 * @chg: change list
4200 */
4201 static enum ice_status
4202 ice_get_prof_ptgs(struct ice_hw *hw, enum ice_block blk, u64 hdl,
4203 struct LIST_HEAD_TYPE *chg)
4204 {
4205 struct ice_prof_map *map;
4206 struct ice_chs_chg *p;
4207 u16 i;
4208
4209 /* Get the details on the profile specified by the handle ID */
4210 map = ice_search_prof_id(hw, blk, hdl);
4211 if (!map)
4212 return ICE_ERR_DOES_NOT_EXIST;
4213
4214 for (i = 0; i < map->ptype_count; i++) {
4215 enum ice_status status;
4216 bool add;
4217 u8 ptg;
4218
4219 status = ice_get_ptg(hw, blk, map->ptype[i], &ptg, &add);
4220 if (status)
4221 goto err_ice_get_prof_ptgs;
4222
4223 if (add || !hw->blk[blk].es.written[map->prof_id]) {
4224 /* add PTG to change list */
4225 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4226 if (!p)
4227 goto err_ice_get_prof_ptgs;
4228
4229 p->type = ICE_PTG_ES_ADD;
4230 p->ptype = map->ptype[i];
4231 p->ptg = ptg;
4232 p->add_ptg = add;
4233
4234 p->add_prof = !hw->blk[blk].es.written[map->prof_id];
4235 p->prof_id = map->prof_id;
4236
4237 hw->blk[blk].es.written[map->prof_id] = true;
4238
4239 LIST_ADD(&p->list_entry, chg);
4240 }
4241 }
4242
4243 return ICE_SUCCESS;
4244
4245 err_ice_get_prof_ptgs:
4246 /* let caller clean up the change list */
4247 return ICE_ERR_NO_MEMORY;
4248 }
4249
4250 /**
4251 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
4252 * @hw: pointer to the HW struct
4253 * @blk: hardware block
4254 * @vsig: VSIG from which to copy the list
4255 * @lst: output list
4256 *
4257 * This routine makes a copy of the list of profiles in the specified VSIG.
4258 */
4259 static enum ice_status
4260 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4261 struct LIST_HEAD_TYPE *lst)
4262 {
4263 struct ice_vsig_prof *ent1, *ent2;
4264 u16 idx = vsig & ICE_VSIG_IDX_M;
4265
4266 LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4267 ice_vsig_prof, list) {
4268 struct ice_vsig_prof *p;
4269
4270 /* copy to the input list */
4271 p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p));
4272 if (!p)
4273 goto err_ice_get_profs_vsig;
4274
4275 ice_memcpy(p, ent1, sizeof(*p), ICE_NONDMA_TO_NONDMA);
4276
4277 LIST_ADD_TAIL(&p->list, lst);
4278 }
4279
4280 return ICE_SUCCESS;
4281
4282 err_ice_get_profs_vsig:
4283 LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) {
4284 LIST_DEL(&ent1->list);
4285 ice_free(hw, ent1);
4286 }
4287
4288 return ICE_ERR_NO_MEMORY;
4289 }
4290
4291 /**
4292 * ice_add_prof_to_lst - add profile entry to a list
4293 * @hw: pointer to the HW struct
4294 * @blk: hardware block
4295 * @lst: the list to be added to
4296 * @hdl: profile handle of entry to add
4297 */
4298 static enum ice_status
4299 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
4300 struct LIST_HEAD_TYPE *lst, u64 hdl)
4301 {
4302 struct ice_vsig_prof *p;
4303 struct ice_prof_map *map;
4304 u16 i;
4305
4306 map = ice_search_prof_id(hw, blk, hdl);
4307 if (!map)
4308 return ICE_ERR_DOES_NOT_EXIST;
4309
4310 p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p));
4311 if (!p)
4312 return ICE_ERR_NO_MEMORY;
4313
4314 p->profile_cookie = map->profile_cookie;
4315 p->prof_id = map->prof_id;
4316 p->tcam_count = map->ptype_count;
4317
4318 for (i = 0; i < map->ptype_count; i++) {
4319 u8 ptg;
4320
4321 p->tcam[i].prof_id = map->prof_id;
4322 p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
4323
4324 ice_ptg_find_ptype(hw, blk, map->ptype[i], &ptg);
4325
4326 p->tcam[i].ptg = ptg;
4327 }
4328
4329 LIST_ADD(&p->list, lst);
4330
4331 return ICE_SUCCESS;
4332 }
4333
4334 /**
4335 * ice_move_vsi - move VSI to another VSIG
4336 * @hw: pointer to the HW struct
4337 * @blk: hardware block
4338 * @vsi: the VSI to move
4339 * @vsig: the VSIG to move the VSI to
4340 * @chg: the change list
4341 */
4342 static enum ice_status
4343 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
4344 struct LIST_HEAD_TYPE *chg)
4345 {
4346 enum ice_status status;
4347 struct ice_chs_chg *p;
4348 u16 orig_vsig;
4349
4350 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4351 if (!p)
4352 return ICE_ERR_NO_MEMORY;
4353
4354 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
4355 if (!status)
4356 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
4357 if (status) {
4358 ice_free(hw, p);
4359 return status;
4360 }
4361
4362 p->type = ICE_VSI_MOVE;
4363 p->vsi = vsi;
4364 p->orig_vsig = orig_vsig;
4365 p->vsig = vsig;
4366
4367 LIST_ADD(&p->list_entry, chg);
4368
4369 return ICE_SUCCESS;
4370 }
4371
4372 /**
4373 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
4374 * @hw: pointer to the HW struct
4375 * @blk: hardware block
4376 * @enable: true to enable, false to disable
4377 * @vsig: the vsig of the TCAM entry
4378 * @tcam: pointer the TCAM info structure of the TCAM to disable
4379 * @chg: the change list
4380 *
4381 * This function appends an enable or disable TCAM entry in the change log
4382 */
4383 static enum ice_status
4384 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
4385 u16 vsig, struct ice_tcam_inf *tcam,
4386 struct LIST_HEAD_TYPE *chg)
4387 {
4388 enum ice_status status;
4389 struct ice_chs_chg *p;
4390
4391 /* Default: enable means change the low flag bit to don't care */
4392 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
4393 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4394 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
4395
4396 /* If disabled, change the low flag bit to never match */
4397 if (!enable) {
4398 dc_msk[0] = 0x00;
4399 nm_msk[0] = 0x01;
4400 }
4401
4402 /* add TCAM to change list */
4403 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4404 if (!p)
4405 return ICE_ERR_NO_MEMORY;
4406
4407 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
4408 tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
4409 nm_msk);
4410 if (status)
4411 goto err_ice_prof_tcam_ena_dis;
4412
4413 tcam->in_use = enable;
4414
4415 p->type = ICE_TCAM_ADD;
4416 p->add_tcam_idx = true;
4417 p->prof_id = tcam->prof_id;
4418 p->ptg = tcam->ptg;
4419 p->vsig = 0;
4420 p->tcam_idx = tcam->tcam_idx;
4421
4422 /* log change */
4423 LIST_ADD(&p->list_entry, chg);
4424
4425 return ICE_SUCCESS;
4426
4427 err_ice_prof_tcam_ena_dis:
4428 ice_free(hw, p);
4429 return status;
4430 }
4431
4432 /**
4433 * ice_adj_prof_priorities - adjust profile based on priorities
4434 * @hw: pointer to the HW struct
4435 * @blk: hardware block
4436 * @vsig: the VSIG for which to adjust profile priorities
4437 * @chg: the change list
4438 */
4439 static enum ice_status
4440 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4441 struct LIST_HEAD_TYPE *chg)
4442 {
4443 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
4444 struct ice_vsig_prof *t;
4445 enum ice_status status;
4446 u16 idx;
4447
4448 ice_memset(ptgs_used, 0, sizeof(ptgs_used), ICE_NONDMA_MEM);
4449 idx = vsig & ICE_VSIG_IDX_M;
4450
4451 /* Priority is based on the order in which the profiles are added. The
4452 * newest added profile has highest priority and the oldest added
4453 * profile has the lowest priority. Since the profile property list for
4454 * a VSIG is sorted from newest to oldest, this code traverses the list
4455 * in order and enables the first of each PTG that it finds (that is not
4456 * already enabled); it also disables any duplicate PTGs that it finds
4457 * in the older profiles (that are currently enabled).
4458 */
4459
4460 LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4461 ice_vsig_prof, list) {
4462 u16 i;
4463
4464 for (i = 0; i < t->tcam_count; i++) {
4465 /* Scan the priorities from newest to oldest.
4466 * Make sure that the newest profiles take priority.
4467 */
4468 if (ice_is_bit_set(ptgs_used, t->tcam[i].ptg) &&
4469 t->tcam[i].in_use) {
4470 /* need to mark this PTG as never match, as it
4471 * was already in use and therefore duplicate
4472 * (and lower priority)
4473 */
4474 status = ice_prof_tcam_ena_dis(hw, blk, false,
4475 vsig,
4476 &t->tcam[i],
4477 chg);
4478 if (status)
4479 return status;
4480 } else if (!ice_is_bit_set(ptgs_used, t->tcam[i].ptg) &&
4481 !t->tcam[i].in_use) {
4482 /* need to enable this PTG, as it in not in use
4483 * and not enabled (highest priority)
4484 */
4485 status = ice_prof_tcam_ena_dis(hw, blk, true,
4486 vsig,
4487 &t->tcam[i],
4488 chg);
4489 if (status)
4490 return status;
4491 }
4492
4493 /* keep track of used ptgs */
4494 ice_set_bit(t->tcam[i].ptg, ptgs_used);
4495 }
4496 }
4497
4498 return ICE_SUCCESS;
4499 }
4500
4501 /**
4502 * ice_add_prof_id_vsig - add profile to VSIG
4503 * @hw: pointer to the HW struct
4504 * @blk: hardware block
4505 * @vsig: the VSIG to which this profile is to be added
4506 * @hdl: the profile handle indicating the profile to add
4507 * @chg: the change list
4508 */
4509 static enum ice_status
4510 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4511 struct LIST_HEAD_TYPE *chg)
4512 {
4513 /* Masks that ignore flags */
4514 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4515 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4516 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4517 struct ice_prof_map *map;
4518 struct ice_vsig_prof *t;
4519 struct ice_chs_chg *p;
4520 u16 i;
4521
4522 /* Get the details on the profile specified by the handle ID */
4523 map = ice_search_prof_id(hw, blk, hdl);
4524 if (!map)
4525 return ICE_ERR_DOES_NOT_EXIST;
4526
4527 /* Error, if this VSIG already has this profile */
4528 if (ice_has_prof_vsig(hw, blk, vsig, hdl))
4529 return ICE_ERR_ALREADY_EXISTS;
4530
4531 /* new VSIG profile structure */
4532 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
4533 if (!t)
4534 goto err_ice_add_prof_id_vsig;
4535
4536 t->profile_cookie = map->profile_cookie;
4537 t->prof_id = map->prof_id;
4538 t->tcam_count = map->ptype_count;
4539
4540 /* create TCAM entries */
4541 for (i = 0; i < map->ptype_count; i++) {
4542 enum ice_status status;
4543 u16 tcam_idx;
4544 bool add;
4545 u8 ptg;
4546
4547 /* If properly sequenced, we should never have to allocate new
4548 * PTGs
4549 */
4550 status = ice_get_ptg(hw, blk, map->ptype[i], &ptg, &add);
4551 if (status)
4552 goto err_ice_add_prof_id_vsig;
4553
4554 /* add TCAM to change list */
4555 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4556 if (!p)
4557 goto err_ice_add_prof_id_vsig;
4558
4559 /* allocate the TCAM entry index */
4560 status = ice_alloc_tcam_ent(hw, blk, &tcam_idx);
4561 if (status) {
4562 ice_free(hw, p);
4563 goto err_ice_add_prof_id_vsig;
4564 }
4565
4566 t->tcam[i].ptg = ptg;
4567 t->tcam[i].prof_id = map->prof_id;
4568 t->tcam[i].tcam_idx = tcam_idx;
4569 t->tcam[i].in_use = true;
4570
4571 p->type = ICE_TCAM_ADD;
4572 p->add_tcam_idx = true;
4573 p->prof_id = t->tcam[i].prof_id;
4574 p->ptg = t->tcam[i].ptg;
4575 p->vsig = vsig;
4576 p->tcam_idx = t->tcam[i].tcam_idx;
4577
4578 /* write the TCAM entry */
4579 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
4580 t->tcam[i].prof_id,
4581 t->tcam[i].ptg, vsig, 0, 0,
4582 vl_msk, dc_msk, nm_msk);
4583 if (status)
4584 goto err_ice_add_prof_id_vsig;
4585
4586 /* log change */
4587 LIST_ADD(&p->list_entry, chg);
4588 }
4589
4590 /* add profile to VSIG */
4591 LIST_ADD(&t->list,
4592 &hw->blk[blk].xlt2.vsig_tbl[(vsig & ICE_VSIG_IDX_M)].prop_lst);
4593
4594 return ICE_SUCCESS;
4595
4596 err_ice_add_prof_id_vsig:
4597 /* let caller clean up the change list */
4598 ice_free(hw, t);
4599 return ICE_ERR_NO_MEMORY;
4600 }
4601
4602 /**
4603 * ice_create_prof_id_vsig - add a new VSIG with a single profile
4604 * @hw: pointer to the HW struct
4605 * @blk: hardware block
4606 * @vsi: the initial VSI that will be in VSIG
4607 * @hdl: the profile handle of the profile that will be added to the VSIG
4608 * @chg: the change list
4609 */
4610 static enum ice_status
4611 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
4612 struct LIST_HEAD_TYPE *chg)
4613 {
4614 enum ice_status status;
4615 struct ice_chs_chg *p;
4616 u16 new_vsig;
4617
4618 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4619 if (!p)
4620 return ICE_ERR_NO_MEMORY;
4621
4622 new_vsig = ice_vsig_alloc(hw, blk);
4623 if (!new_vsig) {
4624 status = ICE_ERR_HW_TABLE;
4625 goto err_ice_create_prof_id_vsig;
4626 }
4627
4628 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
4629 if (status)
4630 goto err_ice_create_prof_id_vsig;
4631
4632 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, chg);
4633 if (status)
4634 goto err_ice_create_prof_id_vsig;
4635
4636 p->type = ICE_VSIG_ADD;
4637 p->vsi = vsi;
4638 p->orig_vsig = ICE_DEFAULT_VSIG;
4639 p->vsig = new_vsig;
4640
4641 LIST_ADD(&p->list_entry, chg);
4642
4643 return ICE_SUCCESS;
4644
4645 err_ice_create_prof_id_vsig:
4646 /* let caller clean up the change list */
4647 ice_free(hw, p);
4648 return status;
4649 }
4650
4651 /**
4652 * ice_create_vsig_from_list - create a new VSIG with a list of profiles
4653 * @hw: pointer to the HW struct
4654 * @blk: hardware block
4655 * @vsi: the initial VSI that will be in VSIG
4656 * @lst: the list of profile that will be added to the VSIG
4657 * @chg: the change list
4658 */
4659 static enum ice_status
4660 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
4661 struct LIST_HEAD_TYPE *lst, struct LIST_HEAD_TYPE *chg)
4662 {
4663 struct ice_vsig_prof *t;
4664 enum ice_status status;
4665 u16 vsig;
4666
4667 vsig = ice_vsig_alloc(hw, blk);
4668 if (!vsig)
4669 return ICE_ERR_HW_TABLE;
4670
4671 status = ice_move_vsi(hw, blk, vsi, vsig, chg);
4672 if (status)
4673 return status;
4674
4675 LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) {
4676 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
4677 chg);
4678 if (status)
4679 return status;
4680 }
4681
4682 return ICE_SUCCESS;
4683 }
4684
4685 /**
4686 * ice_find_prof_vsig - find a VSIG with a specific profile handle
4687 * @hw: pointer to the HW struct
4688 * @blk: hardware block
4689 * @hdl: the profile handle of the profile to search for
4690 * @vsig: returns the VSIG with the matching profile
4691 */
4692 static bool
4693 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
4694 {
4695 struct ice_vsig_prof *t;
4696 struct LIST_HEAD_TYPE lst;
4697 enum ice_status status;
4698
4699 INIT_LIST_HEAD(&lst);
4700
4701 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
4702 if (!t)
4703 return false;
4704
4705 t->profile_cookie = hdl;
4706 LIST_ADD(&t->list, &lst);
4707
4708 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
4709
4710 LIST_DEL(&t->list);
4711 ice_free(hw, t);
4712
4713 return status == ICE_SUCCESS;
4714 }
4715
4716 /**
4717 * ice_add_prof_id_flow - add profile flow
4718 * @hw: pointer to the HW struct
4719 * @blk: hardware block
4720 * @vsi: the VSI to enable with the profile specified by ID
4721 * @hdl: profile handle
4722 *
4723 * Calling this function will update the hardware tables to enable the
4724 * profile indicated by the ID parameter for the VSIs specified in the VSI
4725 * array. Once successfully called, the flow will be enabled.
4726 */
4727 enum ice_status
4728 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4729 {
4730 struct ice_vsig_prof *tmp1, *del1;
4731 struct LIST_HEAD_TYPE union_lst;
4732 struct ice_chs_chg *tmp, *del;
4733 struct LIST_HEAD_TYPE chrs;
4734 struct LIST_HEAD_TYPE chg;
4735 enum ice_status status;
4736 u16 vsig, or_vsig = 0;
4737
4738 INIT_LIST_HEAD(&union_lst);
4739 INIT_LIST_HEAD(&chrs);
4740 INIT_LIST_HEAD(&chg);
4741
4742 status = ice_get_prof_ptgs(hw, blk, hdl, &chg);
4743 if (status)
4744 return status;
4745
4746 /* determine if VSI is already part of a VSIG */
4747 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4748 if (!status && vsig) {
4749 bool only_vsi;
4750 u16 ref;
4751
4752 /* found in vsig */
4753 or_vsig = vsig;
4754
4755 /* make sure that there is no overlap/conflict between the new
4756 * characteristics and the existing ones; we don't support that
4757 * scenario
4758 */
4759 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
4760 status = ICE_ERR_ALREADY_EXISTS;
4761 goto err_ice_add_prof_id_flow;
4762 }
4763
4764 /* last VSI in the VSIG? */
4765 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4766 if (status)
4767 goto err_ice_add_prof_id_flow;
4768 only_vsi = (ref == 1);
4769
4770 /* create a union of the current profiles and the one being
4771 * added
4772 */
4773 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
4774 if (status)
4775 goto err_ice_add_prof_id_flow;
4776
4777 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
4778 if (status)
4779 goto err_ice_add_prof_id_flow;
4780
4781 /* search for an existing VSIG with an exact charc match */
4782 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
4783 if (!status) {
4784 /* move VSI to the VSIG that matches */
4785 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4786 if (status)
4787 goto err_ice_add_prof_id_flow;
4788
4789 /* VSI has been moved out of or_vsig. If the or_vsig had
4790 * only that VSI it is now empty and can be removed.
4791 */
4792 if (only_vsi) {
4793 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
4794 if (status)
4795 goto err_ice_add_prof_id_flow;
4796 }
4797 } else if (only_vsi) {
4798 /* If the original VSIG only contains one VSI, then it
4799 * will be the requesting VSI. In this case the VSI is
4800 * not sharing entries and we can simply add the new
4801 * profile to the VSIG.
4802 */
4803 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, &chg);
4804 if (status)
4805 goto err_ice_add_prof_id_flow;
4806
4807 /* Adjust priorities */
4808 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4809 if (status)
4810 goto err_ice_add_prof_id_flow;
4811 } else {
4812 /* No match, so we need a new VSIG */
4813 status = ice_create_vsig_from_lst(hw, blk, vsi,
4814 &union_lst, &chg);
4815 if (status)
4816 goto err_ice_add_prof_id_flow;
4817
4818 /* Adjust priorities */
4819 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4820 if (status)
4821 goto err_ice_add_prof_id_flow;
4822 }
4823 } else {
4824 /* need to find or add a VSIG */
4825 /* search for an existing VSIG with an exact charc match */
4826 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
4827 /* found an exact match */
4828 /* add or move VSI to the VSIG that matches */
4829 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4830 if (status)
4831 goto err_ice_add_prof_id_flow;
4832 } else {
4833 /* we did not find an exact match */
4834 /* we need to add a VSIG */
4835 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
4836 &chg);
4837 if (status)
4838 goto err_ice_add_prof_id_flow;
4839 }
4840 }
4841
4842 /* update hardware */
4843 if (!status)
4844 status = ice_upd_prof_hw(hw, blk, &chg);
4845
4846 err_ice_add_prof_id_flow:
4847 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
4848 LIST_DEL(&del->list_entry);
4849 ice_free(hw, del);
4850 }
4851
4852 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) {
4853 LIST_DEL(&del1->list);
4854 ice_free(hw, del1);
4855 }
4856
4857 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &chrs, ice_vsig_prof, list) {
4858 LIST_DEL(&del1->list);
4859 ice_free(hw, del1);
4860 }
4861
4862 return status;
4863 }
4864
4865 /**
4866 * ice_add_flow - add flow
4867 * @hw: pointer to the HW struct
4868 * @blk: hardware block
4869 * @vsi: array of VSIs to enable with the profile specified by ID
4870 * @count: number of elements in the VSI array
4871 * @id: profile tracking ID
4872 *
4873 * Calling this function will update the hardware tables to enable the
4874 * profile indicated by the ID parameter for the VSIs specified in the VSI
4875 * array. Once successfully called, the flow will be enabled.
4876 */
4877 enum ice_status
4878 ice_add_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
4879 u64 id)
4880 {
4881 enum ice_status status;
4882 u16 i;
4883
4884 for (i = 0; i < count; i++) {
4885 status = ice_add_prof_id_flow(hw, blk, vsi[i], id);
4886 if (status)
4887 return status;
4888 }
4889
4890 return ICE_SUCCESS;
4891 }
4892
4893 /**
4894 * ice_rem_prof_from_list - remove a profile from list
4895 * @hw: pointer to the HW struct
4896 * @lst: list to remove the profile from
4897 * @hdl: the profile handle indicating the profile to remove
4898 */
4899 static enum ice_status
4900 ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl)
4901 {
4902 struct ice_vsig_prof *ent, *tmp;
4903
4904 LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list) {
4905 if (ent->profile_cookie == hdl) {
4906 LIST_DEL(&ent->list);
4907 ice_free(hw, ent);
4908 return ICE_SUCCESS;
4909 }
4910 }
4911
4912 return ICE_ERR_DOES_NOT_EXIST;
4913 }
4914
4915 /**
4916 * ice_rem_prof_id_flow - remove flow
4917 * @hw: pointer to the HW struct
4918 * @blk: hardware block
4919 * @vsi: the VSI from which to remove the profile specified by ID
4920 * @hdl: profile tracking handle
4921 *
4922 * Calling this function will update the hardware tables to remove the
4923 * profile indicated by the ID parameter for the VSIs specified in the VSI
4924 * array. Once successfully called, the flow will be disabled.
4925 */
4926 enum ice_status
4927 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4928 {
4929 struct ice_vsig_prof *tmp1, *del1;
4930 struct LIST_HEAD_TYPE chg, copy;
4931 struct ice_chs_chg *tmp, *del;
4932 enum ice_status status;
4933 u16 vsig;
4934
4935 INIT_LIST_HEAD(&copy);
4936 INIT_LIST_HEAD(&chg);
4937
4938 /* determine if VSI is already part of a VSIG */
4939 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4940 if (!status && vsig) {
4941 bool last_profile;
4942 bool only_vsi;
4943 u16 ref;
4944
4945 /* found in VSIG */
4946 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4947 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4948 if (status)
4949 goto err_ice_rem_prof_id_flow;
4950 only_vsi = (ref == 1);
4951
4952 if (only_vsi) {
4953 /* If the original VSIG only contains one reference,
4954 * which will be the requesting VSI, then the VSI is not
4955 * sharing entries and we can simply remove the specific
4956 * characteristics from the VSIG.
4957 */
4958
4959 if (last_profile) {
4960 /* If there are no profiles left for this VSIG,
4961 * then simply remove the the VSIG.
4962 */
4963 status = ice_rem_vsig(hw, blk, vsig, &chg);
4964 if (status)
4965 goto err_ice_rem_prof_id_flow;
4966 } else {
4967 status = ice_rem_prof_id_vsig(hw, blk, vsig,
4968 hdl, &chg);
4969 if (status)
4970 goto err_ice_rem_prof_id_flow;
4971
4972 /* Adjust priorities */
4973 status = ice_adj_prof_priorities(hw, blk, vsig,
4974 &chg);
4975 if (status)
4976 goto err_ice_rem_prof_id_flow;
4977 }
4978
4979 } else {
4980 /* Make a copy of the VSIG's list of Profiles */
4981 status = ice_get_profs_vsig(hw, blk, vsig, &copy);
4982 if (status)
4983 goto err_ice_rem_prof_id_flow;
4984
4985 /* Remove specified profile entry from the list */
4986 status = ice_rem_prof_from_list(hw, &copy, hdl);
4987 if (status)
4988 goto err_ice_rem_prof_id_flow;
4989
4990 if (LIST_EMPTY(&copy)) {
4991 status = ice_move_vsi(hw, blk, vsi,
4992 ICE_DEFAULT_VSIG, &chg);
4993 if (status)
4994 goto err_ice_rem_prof_id_flow;
4995
4996 } else if (!ice_find_dup_props_vsig(hw, blk, &copy,
4997 &vsig)) {
4998 /* found an exact match */
4999 /* add or move VSI to the VSIG that matches */
5000 /* Search for a VSIG with a matching profile
5001 * list
5002 */
5003
5004 /* Found match, move VSI to the matching VSIG */
5005 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5006 if (status)
5007 goto err_ice_rem_prof_id_flow;
5008 } else {
5009 /* since no existing VSIG supports this
5010 * characteristic pattern, we need to create a
5011 * new VSIG and TCAM entries
5012 */
5013 status = ice_create_vsig_from_lst(hw, blk, vsi,
5014 &copy, &chg);
5015 if (status)
5016 goto err_ice_rem_prof_id_flow;
5017
5018 /* Adjust priorities */
5019 status = ice_adj_prof_priorities(hw, blk, vsig,
5020 &chg);
5021 if (status)
5022 goto err_ice_rem_prof_id_flow;
5023 }
5024 }
5025 } else {
5026 status = ICE_ERR_DOES_NOT_EXIST;
5027 }
5028
5029 /* update hardware tables */
5030 if (!status)
5031 status = ice_upd_prof_hw(hw, blk, &chg);
5032
5033 err_ice_rem_prof_id_flow:
5034 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5035 LIST_DEL(&del->list_entry);
5036 ice_free(hw, del);
5037 }
5038
5039 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &copy, ice_vsig_prof, list) {
5040 LIST_DEL(&del1->list);
5041 ice_free(hw, del1);
5042 }
5043
5044 return status;
5045 }
5046
5047 /**
5048 * ice_rem_flow - remove flow
5049 * @hw: pointer to the HW struct
5050 * @blk: hardware block
5051 * @vsi: array of VSIs from which to remove the profile specified by ID
5052 * @count: number of elements in the VSI array
5053 * @id: profile tracking ID
5054 *
5055 * The function will remove flows from the specified VSIs that were enabled
5056 * using ice_add_flow. The ID value will indicated which profile will be
5057 * removed. Once successfully called, the flow will be disabled.
5058 */
5059 enum ice_status
5060 ice_rem_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
5061 u64 id)
5062 {
5063 enum ice_status status;
5064 u16 i;
5065
5066 for (i = 0; i < count; i++) {
5067 status = ice_rem_prof_id_flow(hw, blk, vsi[i], id);
5068 if (status)
5069 return status;
5070 }
5071
5072 return ICE_SUCCESS;
5073 }