]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/ice/ice_rxtx_vec_avx2.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / ice / ice_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2019 Intel Corporation
3 */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 static inline void
14 ice_rxq_rearm(struct ice_rx_queue *rxq)
15 {
16 int i;
17 uint16_t rx_id;
18 volatile union ice_rx_desc *rxdp;
19 struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
20
21 rxdp = rxq->rx_ring + rxq->rxrearm_start;
22
23 /* Pull 'n' more MBUFs into the software ring */
24 if (rte_mempool_get_bulk(rxq->mp,
25 (void *)rxep,
26 ICE_RXQ_REARM_THRESH) < 0) {
27 if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
28 rxq->nb_rx_desc) {
29 __m128i dma_addr0;
30
31 dma_addr0 = _mm_setzero_si128();
32 for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
33 rxep[i].mbuf = &rxq->fake_mbuf;
34 _mm_store_si128((__m128i *)&rxdp[i].read,
35 dma_addr0);
36 }
37 }
38 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
39 ICE_RXQ_REARM_THRESH;
40 return;
41 }
42
43 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
44 struct rte_mbuf *mb0, *mb1;
45 __m128i dma_addr0, dma_addr1;
46 __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
47 RTE_PKTMBUF_HEADROOM);
48 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
49 for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
50 __m128i vaddr0, vaddr1;
51
52 mb0 = rxep[0].mbuf;
53 mb1 = rxep[1].mbuf;
54
55 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
56 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
57 offsetof(struct rte_mbuf, buf_addr) + 8);
58 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
59 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
60
61 /* convert pa to dma_addr hdr/data */
62 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
63 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
64
65 /* add headroom to pa values */
66 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
67 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
68
69 /* flush desc with pa dma_addr */
70 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
71 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
72 }
73 #else
74 struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
75 __m256i dma_addr0_1, dma_addr2_3;
76 __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
77 /* Initialize the mbufs in vector, process 4 mbufs in one loop */
78 for (i = 0; i < ICE_RXQ_REARM_THRESH;
79 i += 4, rxep += 4, rxdp += 4) {
80 __m128i vaddr0, vaddr1, vaddr2, vaddr3;
81 __m256i vaddr0_1, vaddr2_3;
82
83 mb0 = rxep[0].mbuf;
84 mb1 = rxep[1].mbuf;
85 mb2 = rxep[2].mbuf;
86 mb3 = rxep[3].mbuf;
87
88 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
89 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
90 offsetof(struct rte_mbuf, buf_addr) + 8);
91 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
92 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
93 vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
94 vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
95
96 /**
97 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
98 * into the high lanes. Similarly for 2 & 3
99 */
100 vaddr0_1 =
101 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
102 vaddr1, 1);
103 vaddr2_3 =
104 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
105 vaddr3, 1);
106
107 /* convert pa to dma_addr hdr/data */
108 dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
109 dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
110
111 /* add headroom to pa values */
112 dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
113 dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
114
115 /* flush desc with pa dma_addr */
116 _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
117 _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
118 }
119
120 #endif
121
122 rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
123 if (rxq->rxrearm_start >= rxq->nb_rx_desc)
124 rxq->rxrearm_start = 0;
125
126 rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
127
128 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
129 (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
130
131 /* Update the tail pointer on the NIC */
132 ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
133 }
134
135 #define PKTLEN_SHIFT 10
136
137 static inline uint16_t
138 _ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
139 uint16_t nb_pkts, uint8_t *split_packet)
140 {
141 #define ICE_DESCS_PER_LOOP_AVX 8
142
143 const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
144 const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
145 0, rxq->mbuf_initializer);
146 struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
147 volatile union ice_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
148 const int avx_aligned = ((rxq->rx_tail & 1) == 0);
149
150 rte_prefetch0(rxdp);
151
152 /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
153 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
154
155 /* See if we need to rearm the RX queue - gives the prefetch a bit
156 * of time to act
157 */
158 if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
159 ice_rxq_rearm(rxq);
160
161 /* Before we start moving massive data around, check to see if
162 * there is actually a packet available
163 */
164 if (!(rxdp->wb.qword1.status_error_len &
165 rte_cpu_to_le_32(1 << ICE_RX_DESC_STATUS_DD_S)))
166 return 0;
167
168 /* constants used in processing loop */
169 const __m256i crc_adjust =
170 _mm256_set_epi16
171 (/* first descriptor */
172 0, 0, 0, /* ignore non-length fields */
173 -rxq->crc_len, /* sub crc on data_len */
174 0, /* ignore high-16bits of pkt_len */
175 -rxq->crc_len, /* sub crc on pkt_len */
176 0, 0, /* ignore pkt_type field */
177 /* second descriptor */
178 0, 0, 0, /* ignore non-length fields */
179 -rxq->crc_len, /* sub crc on data_len */
180 0, /* ignore high-16bits of pkt_len */
181 -rxq->crc_len, /* sub crc on pkt_len */
182 0, 0 /* ignore pkt_type field */
183 );
184
185 /* 8 packets DD mask, LSB in each 32-bit value */
186 const __m256i dd_check = _mm256_set1_epi32(1);
187
188 /* 8 packets EOP mask, second-LSB in each 32-bit value */
189 const __m256i eop_check = _mm256_slli_epi32(dd_check,
190 ICE_RX_DESC_STATUS_EOF_S);
191
192 /* mask to shuffle from desc. to mbuf (2 descriptors)*/
193 const __m256i shuf_msk =
194 _mm256_set_epi8
195 (/* first descriptor */
196 7, 6, 5, 4, /* octet 4~7, 32bits rss */
197 3, 2, /* octet 2~3, low 16 bits vlan_macip */
198 15, 14, /* octet 15~14, 16 bits data_len */
199 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
200 15, 14, /* octet 15~14, low 16 bits pkt_len */
201 0xFF, 0xFF, /* pkt_type set as unknown */
202 0xFF, 0xFF, /*pkt_type set as unknown */
203 /* second descriptor */
204 7, 6, 5, 4, /* octet 4~7, 32bits rss */
205 3, 2, /* octet 2~3, low 16 bits vlan_macip */
206 15, 14, /* octet 15~14, 16 bits data_len */
207 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
208 15, 14, /* octet 15~14, low 16 bits pkt_len */
209 0xFF, 0xFF, /* pkt_type set as unknown */
210 0xFF, 0xFF /*pkt_type set as unknown */
211 );
212 /**
213 * compile-time check the above crc and shuffle layout is correct.
214 * NOTE: the first field (lowest address) is given last in set_epi
215 * calls above.
216 */
217 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
218 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
219 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
220 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
221 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
222 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
223 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
224 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
225
226 /* Status/Error flag masks */
227 /**
228 * mask everything except RSS, flow director and VLAN flags
229 * bit2 is for VLAN tag, bit11 for flow director indication
230 * bit13:12 for RSS indication. Bits 3-5 of error
231 * field (bits 22-24) are for IP/L4 checksum errors
232 */
233 const __m256i flags_mask =
234 _mm256_set1_epi32((1 << 2) | (1 << 11) |
235 (3 << 12) | (7 << 22));
236 /**
237 * data to be shuffled by result of flag mask. If VLAN bit is set,
238 * (bit 2), then position 4 in this array will be used in the
239 * destination
240 */
241 const __m256i vlan_flags_shuf =
242 _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
243 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
244 /**
245 * data to be shuffled by result of flag mask, shifted down 11.
246 * If RSS/FDIR bits are set, shuffle moves appropriate flags in
247 * place.
248 */
249 const __m256i rss_flags_shuf =
250 _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
251 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
252 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
253 0, 0, 0, 0, 0, 0, 0, 0,
254 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
255 0, 0, 0, 0, PKT_RX_FDIR, 0);
256
257 /**
258 * data to be shuffled by the result of the flags mask shifted by 22
259 * bits. This gives use the l3_l4 flags.
260 */
261 const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
262 /* shift right 1 bit to make sure it not exceed 255 */
263 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
264 PKT_RX_IP_CKSUM_BAD) >> 1,
265 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
266 PKT_RX_L4_CKSUM_BAD) >> 1,
267 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
268 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
269 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
270 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
271 PKT_RX_IP_CKSUM_BAD >> 1,
272 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
273 /* second 128-bits */
274 0, 0, 0, 0, 0, 0, 0, 0,
275 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
276 PKT_RX_IP_CKSUM_BAD) >> 1,
277 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
278 PKT_RX_L4_CKSUM_BAD) >> 1,
279 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
280 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
281 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
282 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
283 PKT_RX_IP_CKSUM_BAD >> 1,
284 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
285
286 const __m256i cksum_mask =
287 _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
288 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
289 PKT_RX_EIP_CKSUM_BAD);
290
291 RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
292
293 uint16_t i, received;
294
295 for (i = 0, received = 0; i < nb_pkts;
296 i += ICE_DESCS_PER_LOOP_AVX,
297 rxdp += ICE_DESCS_PER_LOOP_AVX) {
298 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
299 _mm256_storeu_si256((void *)&rx_pkts[i],
300 _mm256_loadu_si256((void *)&sw_ring[i]));
301 #ifdef RTE_ARCH_X86_64
302 _mm256_storeu_si256
303 ((void *)&rx_pkts[i + 4],
304 _mm256_loadu_si256((void *)&sw_ring[i + 4]));
305 #endif
306
307 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
308 #ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC
309 /* for AVX we need alignment otherwise loads are not atomic */
310 if (avx_aligned) {
311 /* load in descriptors, 2 at a time, in reverse order */
312 raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
313 rte_compiler_barrier();
314 raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
315 rte_compiler_barrier();
316 raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
317 rte_compiler_barrier();
318 raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
319 } else
320 #endif
321 {
322 const __m128i raw_desc7 =
323 _mm_load_si128((void *)(rxdp + 7));
324 rte_compiler_barrier();
325 const __m128i raw_desc6 =
326 _mm_load_si128((void *)(rxdp + 6));
327 rte_compiler_barrier();
328 const __m128i raw_desc5 =
329 _mm_load_si128((void *)(rxdp + 5));
330 rte_compiler_barrier();
331 const __m128i raw_desc4 =
332 _mm_load_si128((void *)(rxdp + 4));
333 rte_compiler_barrier();
334 const __m128i raw_desc3 =
335 _mm_load_si128((void *)(rxdp + 3));
336 rte_compiler_barrier();
337 const __m128i raw_desc2 =
338 _mm_load_si128((void *)(rxdp + 2));
339 rte_compiler_barrier();
340 const __m128i raw_desc1 =
341 _mm_load_si128((void *)(rxdp + 1));
342 rte_compiler_barrier();
343 const __m128i raw_desc0 =
344 _mm_load_si128((void *)(rxdp + 0));
345
346 raw_desc6_7 =
347 _mm256_inserti128_si256
348 (_mm256_castsi128_si256(raw_desc6),
349 raw_desc7, 1);
350 raw_desc4_5 =
351 _mm256_inserti128_si256
352 (_mm256_castsi128_si256(raw_desc4),
353 raw_desc5, 1);
354 raw_desc2_3 =
355 _mm256_inserti128_si256
356 (_mm256_castsi128_si256(raw_desc2),
357 raw_desc3, 1);
358 raw_desc0_1 =
359 _mm256_inserti128_si256
360 (_mm256_castsi128_si256(raw_desc0),
361 raw_desc1, 1);
362 }
363
364 if (split_packet) {
365 int j;
366
367 for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
368 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
369 }
370
371 /**
372 * convert descriptors 4-7 into mbufs, adjusting length and
373 * re-arranging fields. Then write into the mbuf
374 */
375 const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
376 PKTLEN_SHIFT);
377 const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
378 PKTLEN_SHIFT);
379 const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
380 len6_7, 0x80);
381 const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
382 len4_5, 0x80);
383 __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
384 __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
385
386 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
387 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
388 /**
389 * to get packet types, shift 64-bit values down 30 bits
390 * and so ptype is in lower 8-bits in each
391 */
392 const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
393 const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
394 const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
395 const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
396 const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
397 const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
398
399 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
400 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
401 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
402 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
403 /* merge the status bits into one register */
404 const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
405 desc4_5);
406
407 /**
408 * convert descriptors 0-3 into mbufs, adjusting length and
409 * re-arranging fields. Then write into the mbuf
410 */
411 const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
412 PKTLEN_SHIFT);
413 const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
414 PKTLEN_SHIFT);
415 const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
416 len2_3, 0x80);
417 const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
418 len0_1, 0x80);
419 __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
420 __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
421
422 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
423 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
424 /* get the packet types */
425 const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
426 const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
427 const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
428 const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
429 const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
430 const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
431
432 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
433 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
434 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
435 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
436 /* merge the status bits into one register */
437 const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
438 desc0_1);
439
440 /**
441 * take the two sets of status bits and merge to one
442 * After merge, the packets status flags are in the
443 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
444 */
445 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
446 status0_3);
447
448 /* now do flag manipulation */
449
450 /* get only flag/error bits we want */
451 const __m256i flag_bits =
452 _mm256_and_si256(status0_7, flags_mask);
453 /* set vlan and rss flags */
454 const __m256i vlan_flags =
455 _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
456 const __m256i rss_flags =
457 _mm256_shuffle_epi8(rss_flags_shuf,
458 _mm256_srli_epi32(flag_bits, 11));
459 /**
460 * l3_l4_error flags, shuffle, then shift to correct adjustment
461 * of flags in flags_shuf, and finally mask out extra bits
462 */
463 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
464 _mm256_srli_epi32(flag_bits, 22));
465 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
466 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
467
468 /* merge flags */
469 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
470 _mm256_or_si256(rss_flags, vlan_flags));
471 /**
472 * At this point, we have the 8 sets of flags in the low 16-bits
473 * of each 32-bit value in vlan0.
474 * We want to extract these, and merge them with the mbuf init
475 * data so we can do a single write to the mbuf to set the flags
476 * and all the other initialization fields. Extracting the
477 * appropriate flags means that we have to do a shift and blend
478 * for each mbuf before we do the write. However, we can also
479 * add in the previously computed rx_descriptor fields to
480 * make a single 256-bit write per mbuf
481 */
482 /* check the structure matches expectations */
483 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
484 offsetof(struct rte_mbuf, rearm_data) + 8);
485 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
486 RTE_ALIGN(offsetof(struct rte_mbuf,
487 rearm_data),
488 16));
489 /* build up data and do writes */
490 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
491 rearm6, rearm7;
492 rearm6 = _mm256_blend_epi32(mbuf_init,
493 _mm256_slli_si256(mbuf_flags, 8),
494 0x04);
495 rearm4 = _mm256_blend_epi32(mbuf_init,
496 _mm256_slli_si256(mbuf_flags, 4),
497 0x04);
498 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
499 rearm0 = _mm256_blend_epi32(mbuf_init,
500 _mm256_srli_si256(mbuf_flags, 4),
501 0x04);
502 /* permute to add in the rx_descriptor e.g. rss fields */
503 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
504 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
505 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
506 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
507 /* write to mbuf */
508 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
509 rearm6);
510 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
511 rearm4);
512 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
513 rearm2);
514 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
515 rearm0);
516
517 /* repeat for the odd mbufs */
518 const __m256i odd_flags =
519 _mm256_castsi128_si256
520 (_mm256_extracti128_si256(mbuf_flags, 1));
521 rearm7 = _mm256_blend_epi32(mbuf_init,
522 _mm256_slli_si256(odd_flags, 8),
523 0x04);
524 rearm5 = _mm256_blend_epi32(mbuf_init,
525 _mm256_slli_si256(odd_flags, 4),
526 0x04);
527 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
528 rearm1 = _mm256_blend_epi32(mbuf_init,
529 _mm256_srli_si256(odd_flags, 4),
530 0x04);
531 /* since odd mbufs are already in hi 128-bits use blend */
532 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
533 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
534 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
535 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
536 /* again write to mbufs */
537 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
538 rearm7);
539 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
540 rearm5);
541 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
542 rearm3);
543 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
544 rearm1);
545
546 /* extract and record EOP bit */
547 if (split_packet) {
548 const __m128i eop_mask =
549 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
550 const __m256i eop_bits256 = _mm256_and_si256(status0_7,
551 eop_check);
552 /* pack status bits into a single 128-bit register */
553 const __m128i eop_bits =
554 _mm_packus_epi32
555 (_mm256_castsi256_si128(eop_bits256),
556 _mm256_extractf128_si256(eop_bits256,
557 1));
558 /**
559 * flip bits, and mask out the EOP bit, which is now
560 * a split-packet bit i.e. !EOP, rather than EOP one.
561 */
562 __m128i split_bits = _mm_andnot_si128(eop_bits,
563 eop_mask);
564 /**
565 * eop bits are out of order, so we need to shuffle them
566 * back into order again. In doing so, only use low 8
567 * bits, which acts like another pack instruction
568 * The original order is (hi->lo): 1,3,5,7,0,2,4,6
569 * [Since we use epi8, the 16-bit positions are
570 * multiplied by 2 in the eop_shuffle value.]
571 */
572 __m128i eop_shuffle =
573 _mm_set_epi8(/* zero hi 64b */
574 0xFF, 0xFF, 0xFF, 0xFF,
575 0xFF, 0xFF, 0xFF, 0xFF,
576 /* move values to lo 64b */
577 8, 0, 10, 2,
578 12, 4, 14, 6);
579 split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
580 *(uint64_t *)split_packet =
581 _mm_cvtsi128_si64(split_bits);
582 split_packet += ICE_DESCS_PER_LOOP_AVX;
583 }
584
585 /* perform dd_check */
586 status0_7 = _mm256_and_si256(status0_7, dd_check);
587 status0_7 = _mm256_packs_epi32(status0_7,
588 _mm256_setzero_si256());
589
590 uint64_t burst = __builtin_popcountll
591 (_mm_cvtsi128_si64
592 (_mm256_extracti128_si256
593 (status0_7, 1)));
594 burst += __builtin_popcountll
595 (_mm_cvtsi128_si64
596 (_mm256_castsi256_si128(status0_7)));
597 received += burst;
598 if (burst != ICE_DESCS_PER_LOOP_AVX)
599 break;
600 }
601
602 /* update tail pointers */
603 rxq->rx_tail += received;
604 rxq->rx_tail &= (rxq->nb_rx_desc - 1);
605 if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
606 rxq->rx_tail--;
607 received--;
608 }
609 rxq->rxrearm_nb += received;
610 return received;
611 }
612
613 /**
614 * Notice:
615 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
616 */
617 uint16_t
618 ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
619 uint16_t nb_pkts)
620 {
621 return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
622 }
623
624 /**
625 * vPMD receive routine that reassembles single burst of 32 scattered packets
626 * Notice:
627 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
628 */
629 static uint16_t
630 ice_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
631 uint16_t nb_pkts)
632 {
633 struct ice_rx_queue *rxq = rx_queue;
634 uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
635
636 /* get some new buffers */
637 uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
638 split_flags);
639 if (nb_bufs == 0)
640 return 0;
641
642 /* happy day case, full burst + no packets to be joined */
643 const uint64_t *split_fl64 = (uint64_t *)split_flags;
644
645 if (!rxq->pkt_first_seg &&
646 split_fl64[0] == 0 && split_fl64[1] == 0 &&
647 split_fl64[2] == 0 && split_fl64[3] == 0)
648 return nb_bufs;
649
650 /* reassemble any packets that need reassembly*/
651 unsigned int i = 0;
652
653 if (!rxq->pkt_first_seg) {
654 /* find the first split flag, and only reassemble then*/
655 while (i < nb_bufs && !split_flags[i])
656 i++;
657 if (i == nb_bufs)
658 return nb_bufs;
659 }
660 return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
661 &split_flags[i]);
662 }
663
664 /**
665 * vPMD receive routine that reassembles scattered packets.
666 * Main receive routine that can handle arbitrary burst sizes
667 * Notice:
668 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
669 */
670 uint16_t
671 ice_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
672 uint16_t nb_pkts)
673 {
674 uint16_t retval = 0;
675
676 while (nb_pkts > ICE_VPMD_RX_BURST) {
677 uint16_t burst = ice_recv_scattered_burst_vec_avx2(rx_queue,
678 rx_pkts + retval, ICE_VPMD_RX_BURST);
679 retval += burst;
680 nb_pkts -= burst;
681 if (burst < ICE_VPMD_RX_BURST)
682 return retval;
683 }
684 return retval + ice_recv_scattered_burst_vec_avx2(rx_queue,
685 rx_pkts + retval, nb_pkts);
686 }
687
688 static inline void
689 ice_vtx1(volatile struct ice_tx_desc *txdp,
690 struct rte_mbuf *pkt, uint64_t flags)
691 {
692 uint64_t high_qw =
693 (ICE_TX_DESC_DTYPE_DATA |
694 ((uint64_t)flags << ICE_TXD_QW1_CMD_S) |
695 ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
696
697 __m128i descriptor = _mm_set_epi64x(high_qw,
698 pkt->buf_physaddr + pkt->data_off);
699 _mm_store_si128((__m128i *)txdp, descriptor);
700 }
701
702 static inline void
703 ice_vtx(volatile struct ice_tx_desc *txdp,
704 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
705 {
706 const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
707 ((uint64_t)flags << ICE_TXD_QW1_CMD_S));
708
709 /* if unaligned on 32-bit boundary, do one to align */
710 if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
711 ice_vtx1(txdp, *pkt, flags);
712 nb_pkts--, txdp++, pkt++;
713 }
714
715 /* do two at a time while possible, in bursts */
716 for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
717 uint64_t hi_qw3 =
718 hi_qw_tmpl |
719 ((uint64_t)pkt[3]->data_len <<
720 ICE_TXD_QW1_TX_BUF_SZ_S);
721 uint64_t hi_qw2 =
722 hi_qw_tmpl |
723 ((uint64_t)pkt[2]->data_len <<
724 ICE_TXD_QW1_TX_BUF_SZ_S);
725 uint64_t hi_qw1 =
726 hi_qw_tmpl |
727 ((uint64_t)pkt[1]->data_len <<
728 ICE_TXD_QW1_TX_BUF_SZ_S);
729 uint64_t hi_qw0 =
730 hi_qw_tmpl |
731 ((uint64_t)pkt[0]->data_len <<
732 ICE_TXD_QW1_TX_BUF_SZ_S);
733
734 __m256i desc2_3 =
735 _mm256_set_epi64x
736 (hi_qw3,
737 pkt[3]->buf_physaddr + pkt[3]->data_off,
738 hi_qw2,
739 pkt[2]->buf_physaddr + pkt[2]->data_off);
740 __m256i desc0_1 =
741 _mm256_set_epi64x
742 (hi_qw1,
743 pkt[1]->buf_physaddr + pkt[1]->data_off,
744 hi_qw0,
745 pkt[0]->buf_physaddr + pkt[0]->data_off);
746 _mm256_store_si256((void *)(txdp + 2), desc2_3);
747 _mm256_store_si256((void *)txdp, desc0_1);
748 }
749
750 /* do any last ones */
751 while (nb_pkts) {
752 ice_vtx1(txdp, *pkt, flags);
753 txdp++, pkt++, nb_pkts--;
754 }
755 }
756
757 static inline uint16_t
758 ice_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
759 uint16_t nb_pkts)
760 {
761 struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
762 volatile struct ice_tx_desc *txdp;
763 struct ice_tx_entry *txep;
764 uint16_t n, nb_commit, tx_id;
765 uint64_t flags = ICE_TD_CMD;
766 uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
767
768 /* cross rx_thresh boundary is not allowed */
769 nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
770
771 if (txq->nb_tx_free < txq->tx_free_thresh)
772 ice_tx_free_bufs(txq);
773
774 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
775 if (unlikely(nb_pkts == 0))
776 return 0;
777
778 tx_id = txq->tx_tail;
779 txdp = &txq->tx_ring[tx_id];
780 txep = &txq->sw_ring[tx_id];
781
782 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
783
784 n = (uint16_t)(txq->nb_tx_desc - tx_id);
785 if (nb_commit >= n) {
786 ice_tx_backlog_entry(txep, tx_pkts, n);
787
788 ice_vtx(txdp, tx_pkts, n - 1, flags);
789 tx_pkts += (n - 1);
790 txdp += (n - 1);
791
792 ice_vtx1(txdp, *tx_pkts++, rs);
793
794 nb_commit = (uint16_t)(nb_commit - n);
795
796 tx_id = 0;
797 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
798
799 /* avoid reach the end of ring */
800 txdp = &txq->tx_ring[tx_id];
801 txep = &txq->sw_ring[tx_id];
802 }
803
804 ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
805
806 ice_vtx(txdp, tx_pkts, nb_commit, flags);
807
808 tx_id = (uint16_t)(tx_id + nb_commit);
809 if (tx_id > txq->tx_next_rs) {
810 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
811 rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
812 ICE_TXD_QW1_CMD_S);
813 txq->tx_next_rs =
814 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
815 }
816
817 txq->tx_tail = tx_id;
818
819 ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
820
821 return nb_pkts;
822 }
823
824 uint16_t
825 ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
826 uint16_t nb_pkts)
827 {
828 uint16_t nb_tx = 0;
829 struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
830
831 while (nb_pkts) {
832 uint16_t ret, num;
833
834 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
835 ret = ice_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
836 num);
837 nb_tx += ret;
838 nb_pkts -= ret;
839 if (ret < num)
840 break;
841 }
842
843 return nb_tx;
844 }