]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/liquidio/lio_rxtx.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / liquidio / lio_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Cavium, Inc
3 */
4
5 #include <rte_ethdev_driver.h>
6 #include <rte_cycles.h>
7 #include <rte_malloc.h>
8
9 #include "lio_logs.h"
10 #include "lio_struct.h"
11 #include "lio_ethdev.h"
12 #include "lio_rxtx.h"
13
14 #define LIO_MAX_SG 12
15 /* Flush iq if available tx_desc fall below LIO_FLUSH_WM */
16 #define LIO_FLUSH_WM(_iq) ((_iq)->nb_desc / 2)
17 #define LIO_PKT_IN_DONE_CNT_MASK 0x00000000FFFFFFFFULL
18
19 static void
20 lio_droq_compute_max_packet_bufs(struct lio_droq *droq)
21 {
22 uint32_t count = 0;
23
24 do {
25 count += droq->buffer_size;
26 } while (count < LIO_MAX_RX_PKTLEN);
27 }
28
29 static void
30 lio_droq_reset_indices(struct lio_droq *droq)
31 {
32 droq->read_idx = 0;
33 droq->write_idx = 0;
34 droq->refill_idx = 0;
35 droq->refill_count = 0;
36 rte_atomic64_set(&droq->pkts_pending, 0);
37 }
38
39 static void
40 lio_droq_destroy_ring_buffers(struct lio_droq *droq)
41 {
42 uint32_t i;
43
44 for (i = 0; i < droq->nb_desc; i++) {
45 if (droq->recv_buf_list[i].buffer) {
46 rte_pktmbuf_free((struct rte_mbuf *)
47 droq->recv_buf_list[i].buffer);
48 droq->recv_buf_list[i].buffer = NULL;
49 }
50 }
51
52 lio_droq_reset_indices(droq);
53 }
54
55 static int
56 lio_droq_setup_ring_buffers(struct lio_device *lio_dev,
57 struct lio_droq *droq)
58 {
59 struct lio_droq_desc *desc_ring = droq->desc_ring;
60 uint32_t i;
61 void *buf;
62
63 for (i = 0; i < droq->nb_desc; i++) {
64 buf = rte_pktmbuf_alloc(droq->mpool);
65 if (buf == NULL) {
66 lio_dev_err(lio_dev, "buffer alloc failed\n");
67 droq->stats.rx_alloc_failure++;
68 lio_droq_destroy_ring_buffers(droq);
69 return -ENOMEM;
70 }
71
72 droq->recv_buf_list[i].buffer = buf;
73 droq->info_list[i].length = 0;
74
75 /* map ring buffers into memory */
76 desc_ring[i].info_ptr = lio_map_ring_info(droq, i);
77 desc_ring[i].buffer_ptr =
78 lio_map_ring(droq->recv_buf_list[i].buffer);
79 }
80
81 lio_droq_reset_indices(droq);
82
83 lio_droq_compute_max_packet_bufs(droq);
84
85 return 0;
86 }
87
88 static void
89 lio_dma_zone_free(struct lio_device *lio_dev, const struct rte_memzone *mz)
90 {
91 const struct rte_memzone *mz_tmp;
92 int ret = 0;
93
94 if (mz == NULL) {
95 lio_dev_err(lio_dev, "Memzone NULL\n");
96 return;
97 }
98
99 mz_tmp = rte_memzone_lookup(mz->name);
100 if (mz_tmp == NULL) {
101 lio_dev_err(lio_dev, "Memzone %s Not Found\n", mz->name);
102 return;
103 }
104
105 ret = rte_memzone_free(mz);
106 if (ret)
107 lio_dev_err(lio_dev, "Memzone free Failed ret %d\n", ret);
108 }
109
110 /**
111 * Frees the space for descriptor ring for the droq.
112 *
113 * @param lio_dev - pointer to the lio device structure
114 * @param q_no - droq no.
115 */
116 static void
117 lio_delete_droq(struct lio_device *lio_dev, uint32_t q_no)
118 {
119 struct lio_droq *droq = lio_dev->droq[q_no];
120
121 lio_dev_dbg(lio_dev, "OQ[%d]\n", q_no);
122
123 lio_droq_destroy_ring_buffers(droq);
124 rte_free(droq->recv_buf_list);
125 droq->recv_buf_list = NULL;
126 lio_dma_zone_free(lio_dev, droq->info_mz);
127 lio_dma_zone_free(lio_dev, droq->desc_ring_mz);
128
129 memset(droq, 0, LIO_DROQ_SIZE);
130 }
131
132 static void *
133 lio_alloc_info_buffer(struct lio_device *lio_dev,
134 struct lio_droq *droq, unsigned int socket_id)
135 {
136 droq->info_mz = rte_eth_dma_zone_reserve(lio_dev->eth_dev,
137 "info_list", droq->q_no,
138 (droq->nb_desc *
139 LIO_DROQ_INFO_SIZE),
140 RTE_CACHE_LINE_SIZE,
141 socket_id);
142
143 if (droq->info_mz == NULL)
144 return NULL;
145
146 droq->info_list_dma = droq->info_mz->iova;
147 droq->info_alloc_size = droq->info_mz->len;
148 droq->info_base_addr = (size_t)droq->info_mz->addr;
149
150 return droq->info_mz->addr;
151 }
152
153 /**
154 * Allocates space for the descriptor ring for the droq and
155 * sets the base addr, num desc etc in Octeon registers.
156 *
157 * @param lio_dev - pointer to the lio device structure
158 * @param q_no - droq no.
159 * @param app_ctx - pointer to application context
160 * @return Success: 0 Failure: -1
161 */
162 static int
163 lio_init_droq(struct lio_device *lio_dev, uint32_t q_no,
164 uint32_t num_descs, uint32_t desc_size,
165 struct rte_mempool *mpool, unsigned int socket_id)
166 {
167 uint32_t c_refill_threshold;
168 uint32_t desc_ring_size;
169 struct lio_droq *droq;
170
171 lio_dev_dbg(lio_dev, "OQ[%d]\n", q_no);
172
173 droq = lio_dev->droq[q_no];
174 droq->lio_dev = lio_dev;
175 droq->q_no = q_no;
176 droq->mpool = mpool;
177
178 c_refill_threshold = LIO_OQ_REFILL_THRESHOLD_CFG(lio_dev);
179
180 droq->nb_desc = num_descs;
181 droq->buffer_size = desc_size;
182
183 desc_ring_size = droq->nb_desc * LIO_DROQ_DESC_SIZE;
184 droq->desc_ring_mz = rte_eth_dma_zone_reserve(lio_dev->eth_dev,
185 "droq", q_no,
186 desc_ring_size,
187 RTE_CACHE_LINE_SIZE,
188 socket_id);
189
190 if (droq->desc_ring_mz == NULL) {
191 lio_dev_err(lio_dev,
192 "Output queue %d ring alloc failed\n", q_no);
193 return -1;
194 }
195
196 droq->desc_ring_dma = droq->desc_ring_mz->iova;
197 droq->desc_ring = (struct lio_droq_desc *)droq->desc_ring_mz->addr;
198
199 lio_dev_dbg(lio_dev, "droq[%d]: desc_ring: virt: 0x%p, dma: %lx\n",
200 q_no, droq->desc_ring, (unsigned long)droq->desc_ring_dma);
201 lio_dev_dbg(lio_dev, "droq[%d]: num_desc: %d\n", q_no,
202 droq->nb_desc);
203
204 droq->info_list = lio_alloc_info_buffer(lio_dev, droq, socket_id);
205 if (droq->info_list == NULL) {
206 lio_dev_err(lio_dev, "Cannot allocate memory for info list.\n");
207 goto init_droq_fail;
208 }
209
210 droq->recv_buf_list = rte_zmalloc_socket("recv_buf_list",
211 (droq->nb_desc *
212 LIO_DROQ_RECVBUF_SIZE),
213 RTE_CACHE_LINE_SIZE,
214 socket_id);
215 if (droq->recv_buf_list == NULL) {
216 lio_dev_err(lio_dev,
217 "Output queue recv buf list alloc failed\n");
218 goto init_droq_fail;
219 }
220
221 if (lio_droq_setup_ring_buffers(lio_dev, droq))
222 goto init_droq_fail;
223
224 droq->refill_threshold = c_refill_threshold;
225
226 rte_spinlock_init(&droq->lock);
227
228 lio_dev->fn_list.setup_oq_regs(lio_dev, q_no);
229
230 lio_dev->io_qmask.oq |= (1ULL << q_no);
231
232 return 0;
233
234 init_droq_fail:
235 lio_delete_droq(lio_dev, q_no);
236
237 return -1;
238 }
239
240 int
241 lio_setup_droq(struct lio_device *lio_dev, int oq_no, int num_descs,
242 int desc_size, struct rte_mempool *mpool, unsigned int socket_id)
243 {
244 struct lio_droq *droq;
245
246 PMD_INIT_FUNC_TRACE();
247
248 /* Allocate the DS for the new droq. */
249 droq = rte_zmalloc_socket("ethdev RX queue", sizeof(*droq),
250 RTE_CACHE_LINE_SIZE, socket_id);
251 if (droq == NULL)
252 return -ENOMEM;
253
254 lio_dev->droq[oq_no] = droq;
255
256 /* Initialize the Droq */
257 if (lio_init_droq(lio_dev, oq_no, num_descs, desc_size, mpool,
258 socket_id)) {
259 lio_dev_err(lio_dev, "Droq[%u] Initialization Failed\n", oq_no);
260 rte_free(lio_dev->droq[oq_no]);
261 lio_dev->droq[oq_no] = NULL;
262 return -ENOMEM;
263 }
264
265 lio_dev->num_oqs++;
266
267 lio_dev_dbg(lio_dev, "Total number of OQ: %d\n", lio_dev->num_oqs);
268
269 /* Send credit for octeon output queues. credits are always
270 * sent after the output queue is enabled.
271 */
272 rte_write32(lio_dev->droq[oq_no]->nb_desc,
273 lio_dev->droq[oq_no]->pkts_credit_reg);
274 rte_wmb();
275
276 return 0;
277 }
278
279 static inline uint32_t
280 lio_droq_get_bufcount(uint32_t buf_size, uint32_t total_len)
281 {
282 uint32_t buf_cnt = 0;
283
284 while (total_len > (buf_size * buf_cnt))
285 buf_cnt++;
286
287 return buf_cnt;
288 }
289
290 /* If we were not able to refill all buffers, try to move around
291 * the buffers that were not dispatched.
292 */
293 static inline uint32_t
294 lio_droq_refill_pullup_descs(struct lio_droq *droq,
295 struct lio_droq_desc *desc_ring)
296 {
297 uint32_t refill_index = droq->refill_idx;
298 uint32_t desc_refilled = 0;
299
300 while (refill_index != droq->read_idx) {
301 if (droq->recv_buf_list[refill_index].buffer) {
302 droq->recv_buf_list[droq->refill_idx].buffer =
303 droq->recv_buf_list[refill_index].buffer;
304 desc_ring[droq->refill_idx].buffer_ptr =
305 desc_ring[refill_index].buffer_ptr;
306 droq->recv_buf_list[refill_index].buffer = NULL;
307 desc_ring[refill_index].buffer_ptr = 0;
308 do {
309 droq->refill_idx = lio_incr_index(
310 droq->refill_idx, 1,
311 droq->nb_desc);
312 desc_refilled++;
313 droq->refill_count--;
314 } while (droq->recv_buf_list[droq->refill_idx].buffer);
315 }
316 refill_index = lio_incr_index(refill_index, 1,
317 droq->nb_desc);
318 } /* while */
319
320 return desc_refilled;
321 }
322
323 /* lio_droq_refill
324 *
325 * @param droq - droq in which descriptors require new buffers.
326 *
327 * Description:
328 * Called during normal DROQ processing in interrupt mode or by the poll
329 * thread to refill the descriptors from which buffers were dispatched
330 * to upper layers. Attempts to allocate new buffers. If that fails, moves
331 * up buffers (that were not dispatched) to form a contiguous ring.
332 *
333 * Returns:
334 * No of descriptors refilled.
335 *
336 * Locks:
337 * This routine is called with droq->lock held.
338 */
339 static uint32_t
340 lio_droq_refill(struct lio_droq *droq)
341 {
342 struct lio_droq_desc *desc_ring;
343 uint32_t desc_refilled = 0;
344 void *buf = NULL;
345
346 desc_ring = droq->desc_ring;
347
348 while (droq->refill_count && (desc_refilled < droq->nb_desc)) {
349 /* If a valid buffer exists (happens if there is no dispatch),
350 * reuse the buffer, else allocate.
351 */
352 if (droq->recv_buf_list[droq->refill_idx].buffer == NULL) {
353 buf = rte_pktmbuf_alloc(droq->mpool);
354 /* If a buffer could not be allocated, no point in
355 * continuing
356 */
357 if (buf == NULL) {
358 droq->stats.rx_alloc_failure++;
359 break;
360 }
361
362 droq->recv_buf_list[droq->refill_idx].buffer = buf;
363 }
364
365 desc_ring[droq->refill_idx].buffer_ptr =
366 lio_map_ring(droq->recv_buf_list[droq->refill_idx].buffer);
367 /* Reset any previous values in the length field. */
368 droq->info_list[droq->refill_idx].length = 0;
369
370 droq->refill_idx = lio_incr_index(droq->refill_idx, 1,
371 droq->nb_desc);
372 desc_refilled++;
373 droq->refill_count--;
374 }
375
376 if (droq->refill_count)
377 desc_refilled += lio_droq_refill_pullup_descs(droq, desc_ring);
378
379 /* if droq->refill_count
380 * The refill count would not change in pass two. We only moved buffers
381 * to close the gap in the ring, but we would still have the same no. of
382 * buffers to refill.
383 */
384 return desc_refilled;
385 }
386
387 static int
388 lio_droq_fast_process_packet(struct lio_device *lio_dev,
389 struct lio_droq *droq,
390 struct rte_mbuf **rx_pkts)
391 {
392 struct rte_mbuf *nicbuf = NULL;
393 struct lio_droq_info *info;
394 uint32_t total_len = 0;
395 int data_total_len = 0;
396 uint32_t pkt_len = 0;
397 union octeon_rh *rh;
398 int data_pkts = 0;
399
400 info = &droq->info_list[droq->read_idx];
401 lio_swap_8B_data((uint64_t *)info, 2);
402
403 if (!info->length)
404 return -1;
405
406 /* Len of resp hdr in included in the received data len. */
407 info->length -= OCTEON_RH_SIZE;
408 rh = &info->rh;
409
410 total_len += (uint32_t)info->length;
411
412 if (lio_opcode_slow_path(rh)) {
413 uint32_t buf_cnt;
414
415 buf_cnt = lio_droq_get_bufcount(droq->buffer_size,
416 (uint32_t)info->length);
417 droq->read_idx = lio_incr_index(droq->read_idx, buf_cnt,
418 droq->nb_desc);
419 droq->refill_count += buf_cnt;
420 } else {
421 if (info->length <= droq->buffer_size) {
422 if (rh->r_dh.has_hash)
423 pkt_len = (uint32_t)(info->length - 8);
424 else
425 pkt_len = (uint32_t)info->length;
426
427 nicbuf = droq->recv_buf_list[droq->read_idx].buffer;
428 droq->recv_buf_list[droq->read_idx].buffer = NULL;
429 droq->read_idx = lio_incr_index(
430 droq->read_idx, 1,
431 droq->nb_desc);
432 droq->refill_count++;
433
434 if (likely(nicbuf != NULL)) {
435 /* We don't have a way to pass flags yet */
436 nicbuf->ol_flags = 0;
437 if (rh->r_dh.has_hash) {
438 uint64_t *hash_ptr;
439
440 nicbuf->ol_flags |= PKT_RX_RSS_HASH;
441 hash_ptr = rte_pktmbuf_mtod(nicbuf,
442 uint64_t *);
443 lio_swap_8B_data(hash_ptr, 1);
444 nicbuf->hash.rss = (uint32_t)*hash_ptr;
445 nicbuf->data_off += 8;
446 }
447
448 nicbuf->pkt_len = pkt_len;
449 nicbuf->data_len = pkt_len;
450 nicbuf->port = lio_dev->port_id;
451 /* Store the mbuf */
452 rx_pkts[data_pkts++] = nicbuf;
453 data_total_len += pkt_len;
454 }
455
456 /* Prefetch buffer pointers when on a cache line
457 * boundary
458 */
459 if ((droq->read_idx & 3) == 0) {
460 rte_prefetch0(
461 &droq->recv_buf_list[droq->read_idx]);
462 rte_prefetch0(
463 &droq->info_list[droq->read_idx]);
464 }
465 } else {
466 struct rte_mbuf *first_buf = NULL;
467 struct rte_mbuf *last_buf = NULL;
468
469 while (pkt_len < info->length) {
470 int cpy_len = 0;
471
472 cpy_len = ((pkt_len + droq->buffer_size) >
473 info->length)
474 ? ((uint32_t)info->length -
475 pkt_len)
476 : droq->buffer_size;
477
478 nicbuf =
479 droq->recv_buf_list[droq->read_idx].buffer;
480 droq->recv_buf_list[droq->read_idx].buffer =
481 NULL;
482
483 if (likely(nicbuf != NULL)) {
484 /* Note the first seg */
485 if (!pkt_len)
486 first_buf = nicbuf;
487
488 nicbuf->port = lio_dev->port_id;
489 /* We don't have a way to pass
490 * flags yet
491 */
492 nicbuf->ol_flags = 0;
493 if ((!pkt_len) && (rh->r_dh.has_hash)) {
494 uint64_t *hash_ptr;
495
496 nicbuf->ol_flags |=
497 PKT_RX_RSS_HASH;
498 hash_ptr = rte_pktmbuf_mtod(
499 nicbuf, uint64_t *);
500 lio_swap_8B_data(hash_ptr, 1);
501 nicbuf->hash.rss =
502 (uint32_t)*hash_ptr;
503 nicbuf->data_off += 8;
504 nicbuf->pkt_len = cpy_len - 8;
505 nicbuf->data_len = cpy_len - 8;
506 } else {
507 nicbuf->pkt_len = cpy_len;
508 nicbuf->data_len = cpy_len;
509 }
510
511 if (pkt_len)
512 first_buf->nb_segs++;
513
514 if (last_buf)
515 last_buf->next = nicbuf;
516
517 last_buf = nicbuf;
518 } else {
519 PMD_RX_LOG(lio_dev, ERR, "no buf\n");
520 }
521
522 pkt_len += cpy_len;
523 droq->read_idx = lio_incr_index(
524 droq->read_idx,
525 1, droq->nb_desc);
526 droq->refill_count++;
527
528 /* Prefetch buffer pointers when on a
529 * cache line boundary
530 */
531 if ((droq->read_idx & 3) == 0) {
532 rte_prefetch0(&droq->recv_buf_list
533 [droq->read_idx]);
534
535 rte_prefetch0(
536 &droq->info_list[droq->read_idx]);
537 }
538 }
539 rx_pkts[data_pkts++] = first_buf;
540 if (rh->r_dh.has_hash)
541 data_total_len += (pkt_len - 8);
542 else
543 data_total_len += pkt_len;
544 }
545
546 /* Inform upper layer about packet checksum verification */
547 struct rte_mbuf *m = rx_pkts[data_pkts - 1];
548
549 if (rh->r_dh.csum_verified & LIO_IP_CSUM_VERIFIED)
550 m->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
551
552 if (rh->r_dh.csum_verified & LIO_L4_CSUM_VERIFIED)
553 m->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
554 }
555
556 if (droq->refill_count >= droq->refill_threshold) {
557 int desc_refilled = lio_droq_refill(droq);
558
559 /* Flush the droq descriptor data to memory to be sure
560 * that when we update the credits the data in memory is
561 * accurate.
562 */
563 rte_wmb();
564 rte_write32(desc_refilled, droq->pkts_credit_reg);
565 /* make sure mmio write completes */
566 rte_wmb();
567 }
568
569 info->length = 0;
570 info->rh.rh64 = 0;
571
572 droq->stats.pkts_received++;
573 droq->stats.rx_pkts_received += data_pkts;
574 droq->stats.rx_bytes_received += data_total_len;
575 droq->stats.bytes_received += total_len;
576
577 return data_pkts;
578 }
579
580 static uint32_t
581 lio_droq_fast_process_packets(struct lio_device *lio_dev,
582 struct lio_droq *droq,
583 struct rte_mbuf **rx_pkts,
584 uint32_t pkts_to_process)
585 {
586 int ret, data_pkts = 0;
587 uint32_t pkt;
588
589 for (pkt = 0; pkt < pkts_to_process; pkt++) {
590 ret = lio_droq_fast_process_packet(lio_dev, droq,
591 &rx_pkts[data_pkts]);
592 if (ret < 0) {
593 lio_dev_err(lio_dev, "Port[%d] DROQ[%d] idx: %d len:0, pkt_cnt: %d\n",
594 lio_dev->port_id, droq->q_no,
595 droq->read_idx, pkts_to_process);
596 break;
597 }
598 data_pkts += ret;
599 }
600
601 rte_atomic64_sub(&droq->pkts_pending, pkt);
602
603 return data_pkts;
604 }
605
606 static inline uint32_t
607 lio_droq_check_hw_for_pkts(struct lio_droq *droq)
608 {
609 uint32_t last_count;
610 uint32_t pkt_count;
611
612 pkt_count = rte_read32(droq->pkts_sent_reg);
613
614 last_count = pkt_count - droq->pkt_count;
615 droq->pkt_count = pkt_count;
616
617 if (last_count)
618 rte_atomic64_add(&droq->pkts_pending, last_count);
619
620 return last_count;
621 }
622
623 uint16_t
624 lio_dev_recv_pkts(void *rx_queue,
625 struct rte_mbuf **rx_pkts,
626 uint16_t budget)
627 {
628 struct lio_droq *droq = rx_queue;
629 struct lio_device *lio_dev = droq->lio_dev;
630 uint32_t pkts_processed = 0;
631 uint32_t pkt_count = 0;
632
633 lio_droq_check_hw_for_pkts(droq);
634
635 pkt_count = rte_atomic64_read(&droq->pkts_pending);
636 if (!pkt_count)
637 return 0;
638
639 if (pkt_count > budget)
640 pkt_count = budget;
641
642 /* Grab the lock */
643 rte_spinlock_lock(&droq->lock);
644 pkts_processed = lio_droq_fast_process_packets(lio_dev,
645 droq, rx_pkts,
646 pkt_count);
647
648 if (droq->pkt_count) {
649 rte_write32(droq->pkt_count, droq->pkts_sent_reg);
650 droq->pkt_count = 0;
651 }
652
653 /* Release the spin lock */
654 rte_spinlock_unlock(&droq->lock);
655
656 return pkts_processed;
657 }
658
659 void
660 lio_delete_droq_queue(struct lio_device *lio_dev,
661 int oq_no)
662 {
663 lio_delete_droq(lio_dev, oq_no);
664 lio_dev->num_oqs--;
665 rte_free(lio_dev->droq[oq_no]);
666 lio_dev->droq[oq_no] = NULL;
667 }
668
669 /**
670 * lio_init_instr_queue()
671 * @param lio_dev - pointer to the lio device structure.
672 * @param txpciq - queue to be initialized.
673 *
674 * Called at driver init time for each input queue. iq_conf has the
675 * configuration parameters for the queue.
676 *
677 * @return Success: 0 Failure: -1
678 */
679 static int
680 lio_init_instr_queue(struct lio_device *lio_dev,
681 union octeon_txpciq txpciq,
682 uint32_t num_descs, unsigned int socket_id)
683 {
684 uint32_t iq_no = (uint32_t)txpciq.s.q_no;
685 struct lio_instr_queue *iq;
686 uint32_t instr_type;
687 uint32_t q_size;
688
689 instr_type = LIO_IQ_INSTR_TYPE(lio_dev);
690
691 q_size = instr_type * num_descs;
692 iq = lio_dev->instr_queue[iq_no];
693 iq->iq_mz = rte_eth_dma_zone_reserve(lio_dev->eth_dev,
694 "instr_queue", iq_no, q_size,
695 RTE_CACHE_LINE_SIZE,
696 socket_id);
697 if (iq->iq_mz == NULL) {
698 lio_dev_err(lio_dev, "Cannot allocate memory for instr queue %d\n",
699 iq_no);
700 return -1;
701 }
702
703 iq->base_addr_dma = iq->iq_mz->iova;
704 iq->base_addr = (uint8_t *)iq->iq_mz->addr;
705
706 iq->nb_desc = num_descs;
707
708 /* Initialize a list to holds requests that have been posted to Octeon
709 * but has yet to be fetched by octeon
710 */
711 iq->request_list = rte_zmalloc_socket("request_list",
712 sizeof(*iq->request_list) *
713 num_descs,
714 RTE_CACHE_LINE_SIZE,
715 socket_id);
716 if (iq->request_list == NULL) {
717 lio_dev_err(lio_dev, "Alloc failed for IQ[%d] nr free list\n",
718 iq_no);
719 lio_dma_zone_free(lio_dev, iq->iq_mz);
720 return -1;
721 }
722
723 lio_dev_dbg(lio_dev, "IQ[%d]: base: %p basedma: %lx count: %d\n",
724 iq_no, iq->base_addr, (unsigned long)iq->base_addr_dma,
725 iq->nb_desc);
726
727 iq->lio_dev = lio_dev;
728 iq->txpciq.txpciq64 = txpciq.txpciq64;
729 iq->fill_cnt = 0;
730 iq->host_write_index = 0;
731 iq->lio_read_index = 0;
732 iq->flush_index = 0;
733
734 rte_atomic64_set(&iq->instr_pending, 0);
735
736 /* Initialize the spinlock for this instruction queue */
737 rte_spinlock_init(&iq->lock);
738 rte_spinlock_init(&iq->post_lock);
739
740 rte_atomic64_clear(&iq->iq_flush_running);
741
742 lio_dev->io_qmask.iq |= (1ULL << iq_no);
743
744 /* Set the 32B/64B mode for each input queue */
745 lio_dev->io_qmask.iq64B |= ((instr_type == 64) << iq_no);
746 iq->iqcmd_64B = (instr_type == 64);
747
748 lio_dev->fn_list.setup_iq_regs(lio_dev, iq_no);
749
750 return 0;
751 }
752
753 int
754 lio_setup_instr_queue0(struct lio_device *lio_dev)
755 {
756 union octeon_txpciq txpciq;
757 uint32_t num_descs = 0;
758 uint32_t iq_no = 0;
759
760 num_descs = LIO_NUM_DEF_TX_DESCS_CFG(lio_dev);
761
762 lio_dev->num_iqs = 0;
763
764 lio_dev->instr_queue[0] = rte_zmalloc(NULL,
765 sizeof(struct lio_instr_queue), 0);
766 if (lio_dev->instr_queue[0] == NULL)
767 return -ENOMEM;
768
769 lio_dev->instr_queue[0]->q_index = 0;
770 lio_dev->instr_queue[0]->app_ctx = (void *)(size_t)0;
771 txpciq.txpciq64 = 0;
772 txpciq.s.q_no = iq_no;
773 txpciq.s.pkind = lio_dev->pfvf_hsword.pkind;
774 txpciq.s.use_qpg = 0;
775 txpciq.s.qpg = 0;
776 if (lio_init_instr_queue(lio_dev, txpciq, num_descs, SOCKET_ID_ANY)) {
777 rte_free(lio_dev->instr_queue[0]);
778 lio_dev->instr_queue[0] = NULL;
779 return -1;
780 }
781
782 lio_dev->num_iqs++;
783
784 return 0;
785 }
786
787 /**
788 * lio_delete_instr_queue()
789 * @param lio_dev - pointer to the lio device structure.
790 * @param iq_no - queue to be deleted.
791 *
792 * Called at driver unload time for each input queue. Deletes all
793 * allocated resources for the input queue.
794 */
795 static void
796 lio_delete_instr_queue(struct lio_device *lio_dev, uint32_t iq_no)
797 {
798 struct lio_instr_queue *iq = lio_dev->instr_queue[iq_no];
799
800 rte_free(iq->request_list);
801 iq->request_list = NULL;
802 lio_dma_zone_free(lio_dev, iq->iq_mz);
803 }
804
805 void
806 lio_free_instr_queue0(struct lio_device *lio_dev)
807 {
808 lio_delete_instr_queue(lio_dev, 0);
809 rte_free(lio_dev->instr_queue[0]);
810 lio_dev->instr_queue[0] = NULL;
811 lio_dev->num_iqs--;
812 }
813
814 /* Return 0 on success, -1 on failure */
815 int
816 lio_setup_iq(struct lio_device *lio_dev, int q_index,
817 union octeon_txpciq txpciq, uint32_t num_descs, void *app_ctx,
818 unsigned int socket_id)
819 {
820 uint32_t iq_no = (uint32_t)txpciq.s.q_no;
821
822 lio_dev->instr_queue[iq_no] = rte_zmalloc_socket("ethdev TX queue",
823 sizeof(struct lio_instr_queue),
824 RTE_CACHE_LINE_SIZE, socket_id);
825 if (lio_dev->instr_queue[iq_no] == NULL)
826 return -1;
827
828 lio_dev->instr_queue[iq_no]->q_index = q_index;
829 lio_dev->instr_queue[iq_no]->app_ctx = app_ctx;
830
831 if (lio_init_instr_queue(lio_dev, txpciq, num_descs, socket_id)) {
832 rte_free(lio_dev->instr_queue[iq_no]);
833 lio_dev->instr_queue[iq_no] = NULL;
834 return -1;
835 }
836
837 lio_dev->num_iqs++;
838
839 return 0;
840 }
841
842 int
843 lio_wait_for_instr_fetch(struct lio_device *lio_dev)
844 {
845 int pending, instr_cnt;
846 int i, retry = 1000;
847
848 do {
849 instr_cnt = 0;
850
851 for (i = 0; i < LIO_MAX_INSTR_QUEUES(lio_dev); i++) {
852 if (!(lio_dev->io_qmask.iq & (1ULL << i)))
853 continue;
854
855 if (lio_dev->instr_queue[i] == NULL)
856 break;
857
858 pending = rte_atomic64_read(
859 &lio_dev->instr_queue[i]->instr_pending);
860 if (pending)
861 lio_flush_iq(lio_dev, lio_dev->instr_queue[i]);
862
863 instr_cnt += pending;
864 }
865
866 if (instr_cnt == 0)
867 break;
868
869 rte_delay_ms(1);
870
871 } while (retry-- && instr_cnt);
872
873 return instr_cnt;
874 }
875
876 static inline void
877 lio_ring_doorbell(struct lio_device *lio_dev,
878 struct lio_instr_queue *iq)
879 {
880 if (rte_atomic64_read(&lio_dev->status) == LIO_DEV_RUNNING) {
881 rte_write32(iq->fill_cnt, iq->doorbell_reg);
882 /* make sure doorbell write goes through */
883 rte_wmb();
884 iq->fill_cnt = 0;
885 }
886 }
887
888 static inline void
889 copy_cmd_into_iq(struct lio_instr_queue *iq, uint8_t *cmd)
890 {
891 uint8_t *iqptr, cmdsize;
892
893 cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
894 iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
895
896 rte_memcpy(iqptr, cmd, cmdsize);
897 }
898
899 static inline struct lio_iq_post_status
900 post_command2(struct lio_instr_queue *iq, uint8_t *cmd)
901 {
902 struct lio_iq_post_status st;
903
904 st.status = LIO_IQ_SEND_OK;
905
906 /* This ensures that the read index does not wrap around to the same
907 * position if queue gets full before Octeon could fetch any instr.
908 */
909 if (rte_atomic64_read(&iq->instr_pending) >=
910 (int32_t)(iq->nb_desc - 1)) {
911 st.status = LIO_IQ_SEND_FAILED;
912 st.index = -1;
913 return st;
914 }
915
916 if (rte_atomic64_read(&iq->instr_pending) >=
917 (int32_t)(iq->nb_desc - 2))
918 st.status = LIO_IQ_SEND_STOP;
919
920 copy_cmd_into_iq(iq, cmd);
921
922 /* "index" is returned, host_write_index is modified. */
923 st.index = iq->host_write_index;
924 iq->host_write_index = lio_incr_index(iq->host_write_index, 1,
925 iq->nb_desc);
926 iq->fill_cnt++;
927
928 /* Flush the command into memory. We need to be sure the data is in
929 * memory before indicating that the instruction is pending.
930 */
931 rte_wmb();
932
933 rte_atomic64_inc(&iq->instr_pending);
934
935 return st;
936 }
937
938 static inline void
939 lio_add_to_request_list(struct lio_instr_queue *iq,
940 int idx, void *buf, int reqtype)
941 {
942 iq->request_list[idx].buf = buf;
943 iq->request_list[idx].reqtype = reqtype;
944 }
945
946 static inline void
947 lio_free_netsgbuf(void *buf)
948 {
949 struct lio_buf_free_info *finfo = buf;
950 struct lio_device *lio_dev = finfo->lio_dev;
951 struct rte_mbuf *m = finfo->mbuf;
952 struct lio_gather *g = finfo->g;
953 uint8_t iq = finfo->iq_no;
954
955 /* This will take care of multiple segments also */
956 rte_pktmbuf_free(m);
957
958 rte_spinlock_lock(&lio_dev->glist_lock[iq]);
959 STAILQ_INSERT_TAIL(&lio_dev->glist_head[iq], &g->list, entries);
960 rte_spinlock_unlock(&lio_dev->glist_lock[iq]);
961 rte_free(finfo);
962 }
963
964 /* Can only run in process context */
965 static int
966 lio_process_iq_request_list(struct lio_device *lio_dev,
967 struct lio_instr_queue *iq)
968 {
969 struct octeon_instr_irh *irh = NULL;
970 uint32_t old = iq->flush_index;
971 struct lio_soft_command *sc;
972 uint32_t inst_count = 0;
973 int reqtype;
974 void *buf;
975
976 while (old != iq->lio_read_index) {
977 reqtype = iq->request_list[old].reqtype;
978 buf = iq->request_list[old].buf;
979
980 if (reqtype == LIO_REQTYPE_NONE)
981 goto skip_this;
982
983 switch (reqtype) {
984 case LIO_REQTYPE_NORESP_NET:
985 rte_pktmbuf_free((struct rte_mbuf *)buf);
986 break;
987 case LIO_REQTYPE_NORESP_NET_SG:
988 lio_free_netsgbuf(buf);
989 break;
990 case LIO_REQTYPE_SOFT_COMMAND:
991 sc = buf;
992 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
993 if (irh->rflag) {
994 /* We're expecting a response from Octeon.
995 * It's up to lio_process_ordered_list() to
996 * process sc. Add sc to the ordered soft
997 * command response list because we expect
998 * a response from Octeon.
999 */
1000 rte_spinlock_lock(&lio_dev->response_list.lock);
1001 rte_atomic64_inc(
1002 &lio_dev->response_list.pending_req_count);
1003 STAILQ_INSERT_TAIL(
1004 &lio_dev->response_list.head,
1005 &sc->node, entries);
1006 rte_spinlock_unlock(
1007 &lio_dev->response_list.lock);
1008 } else {
1009 if (sc->callback) {
1010 /* This callback must not sleep */
1011 sc->callback(LIO_REQUEST_DONE,
1012 sc->callback_arg);
1013 }
1014 }
1015 break;
1016 default:
1017 lio_dev_err(lio_dev,
1018 "Unknown reqtype: %d buf: %p at idx %d\n",
1019 reqtype, buf, old);
1020 }
1021
1022 iq->request_list[old].buf = NULL;
1023 iq->request_list[old].reqtype = 0;
1024
1025 skip_this:
1026 inst_count++;
1027 old = lio_incr_index(old, 1, iq->nb_desc);
1028 }
1029
1030 iq->flush_index = old;
1031
1032 return inst_count;
1033 }
1034
1035 static void
1036 lio_update_read_index(struct lio_instr_queue *iq)
1037 {
1038 uint32_t pkt_in_done = rte_read32(iq->inst_cnt_reg);
1039 uint32_t last_done;
1040
1041 last_done = pkt_in_done - iq->pkt_in_done;
1042 iq->pkt_in_done = pkt_in_done;
1043
1044 /* Add last_done and modulo with the IQ size to get new index */
1045 iq->lio_read_index = (iq->lio_read_index +
1046 (uint32_t)(last_done & LIO_PKT_IN_DONE_CNT_MASK)) %
1047 iq->nb_desc;
1048 }
1049
1050 int
1051 lio_flush_iq(struct lio_device *lio_dev, struct lio_instr_queue *iq)
1052 {
1053 uint32_t tot_inst_processed = 0;
1054 uint32_t inst_processed = 0;
1055 int tx_done = 1;
1056
1057 if (rte_atomic64_test_and_set(&iq->iq_flush_running) == 0)
1058 return tx_done;
1059
1060 rte_spinlock_lock(&iq->lock);
1061
1062 lio_update_read_index(iq);
1063
1064 do {
1065 /* Process any outstanding IQ packets. */
1066 if (iq->flush_index == iq->lio_read_index)
1067 break;
1068
1069 inst_processed = lio_process_iq_request_list(lio_dev, iq);
1070
1071 if (inst_processed) {
1072 rte_atomic64_sub(&iq->instr_pending, inst_processed);
1073 iq->stats.instr_processed += inst_processed;
1074 }
1075
1076 tot_inst_processed += inst_processed;
1077 inst_processed = 0;
1078
1079 } while (1);
1080
1081 rte_spinlock_unlock(&iq->lock);
1082
1083 rte_atomic64_clear(&iq->iq_flush_running);
1084
1085 return tx_done;
1086 }
1087
1088 static int
1089 lio_send_command(struct lio_device *lio_dev, uint32_t iq_no, void *cmd,
1090 void *buf, uint32_t datasize, uint32_t reqtype)
1091 {
1092 struct lio_instr_queue *iq = lio_dev->instr_queue[iq_no];
1093 struct lio_iq_post_status st;
1094
1095 rte_spinlock_lock(&iq->post_lock);
1096
1097 st = post_command2(iq, cmd);
1098
1099 if (st.status != LIO_IQ_SEND_FAILED) {
1100 lio_add_to_request_list(iq, st.index, buf, reqtype);
1101 LIO_INCR_INSTRQUEUE_PKT_COUNT(lio_dev, iq_no, bytes_sent,
1102 datasize);
1103 LIO_INCR_INSTRQUEUE_PKT_COUNT(lio_dev, iq_no, instr_posted, 1);
1104
1105 lio_ring_doorbell(lio_dev, iq);
1106 } else {
1107 LIO_INCR_INSTRQUEUE_PKT_COUNT(lio_dev, iq_no, instr_dropped, 1);
1108 }
1109
1110 rte_spinlock_unlock(&iq->post_lock);
1111
1112 return st.status;
1113 }
1114
1115 void
1116 lio_prepare_soft_command(struct lio_device *lio_dev,
1117 struct lio_soft_command *sc, uint8_t opcode,
1118 uint8_t subcode, uint32_t irh_ossp, uint64_t ossp0,
1119 uint64_t ossp1)
1120 {
1121 struct octeon_instr_pki_ih3 *pki_ih3;
1122 struct octeon_instr_ih3 *ih3;
1123 struct octeon_instr_irh *irh;
1124 struct octeon_instr_rdp *rdp;
1125
1126 RTE_ASSERT(opcode <= 15);
1127 RTE_ASSERT(subcode <= 127);
1128
1129 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
1130
1131 ih3->pkind = lio_dev->instr_queue[sc->iq_no]->txpciq.s.pkind;
1132
1133 pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
1134
1135 pki_ih3->w = 1;
1136 pki_ih3->raw = 1;
1137 pki_ih3->utag = 1;
1138 pki_ih3->uqpg = lio_dev->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
1139 pki_ih3->utt = 1;
1140
1141 pki_ih3->tag = LIO_CONTROL;
1142 pki_ih3->tagtype = OCTEON_ATOMIC_TAG;
1143 pki_ih3->qpg = lio_dev->instr_queue[sc->iq_no]->txpciq.s.qpg;
1144 pki_ih3->pm = 0x7;
1145 pki_ih3->sl = 8;
1146
1147 if (sc->datasize)
1148 ih3->dlengsz = sc->datasize;
1149
1150 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
1151 irh->opcode = opcode;
1152 irh->subcode = subcode;
1153
1154 /* opcode/subcode specific parameters (ossp) */
1155 irh->ossp = irh_ossp;
1156 sc->cmd.cmd3.ossp[0] = ossp0;
1157 sc->cmd.cmd3.ossp[1] = ossp1;
1158
1159 if (sc->rdatasize) {
1160 rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
1161 rdp->pcie_port = lio_dev->pcie_port;
1162 rdp->rlen = sc->rdatasize;
1163 irh->rflag = 1;
1164 /* PKI IH3 */
1165 ih3->fsz = OCTEON_SOFT_CMD_RESP_IH3;
1166 } else {
1167 irh->rflag = 0;
1168 /* PKI IH3 */
1169 ih3->fsz = OCTEON_PCI_CMD_O3;
1170 }
1171 }
1172
1173 int
1174 lio_send_soft_command(struct lio_device *lio_dev,
1175 struct lio_soft_command *sc)
1176 {
1177 struct octeon_instr_ih3 *ih3;
1178 struct octeon_instr_irh *irh;
1179 uint32_t len = 0;
1180
1181 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
1182 if (ih3->dlengsz) {
1183 RTE_ASSERT(sc->dmadptr);
1184 sc->cmd.cmd3.dptr = sc->dmadptr;
1185 }
1186
1187 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
1188 if (irh->rflag) {
1189 RTE_ASSERT(sc->dmarptr);
1190 RTE_ASSERT(sc->status_word != NULL);
1191 *sc->status_word = LIO_COMPLETION_WORD_INIT;
1192 sc->cmd.cmd3.rptr = sc->dmarptr;
1193 }
1194
1195 len = (uint32_t)ih3->dlengsz;
1196
1197 if (sc->wait_time)
1198 sc->timeout = lio_uptime + sc->wait_time;
1199
1200 return lio_send_command(lio_dev, sc->iq_no, &sc->cmd, sc, len,
1201 LIO_REQTYPE_SOFT_COMMAND);
1202 }
1203
1204 int
1205 lio_setup_sc_buffer_pool(struct lio_device *lio_dev)
1206 {
1207 char sc_pool_name[RTE_MEMPOOL_NAMESIZE];
1208 uint16_t buf_size;
1209
1210 buf_size = LIO_SOFT_COMMAND_BUFFER_SIZE + RTE_PKTMBUF_HEADROOM;
1211 snprintf(sc_pool_name, sizeof(sc_pool_name),
1212 "lio_sc_pool_%u", lio_dev->port_id);
1213 lio_dev->sc_buf_pool = rte_pktmbuf_pool_create(sc_pool_name,
1214 LIO_MAX_SOFT_COMMAND_BUFFERS,
1215 0, 0, buf_size, SOCKET_ID_ANY);
1216 return 0;
1217 }
1218
1219 void
1220 lio_free_sc_buffer_pool(struct lio_device *lio_dev)
1221 {
1222 rte_mempool_free(lio_dev->sc_buf_pool);
1223 }
1224
1225 struct lio_soft_command *
1226 lio_alloc_soft_command(struct lio_device *lio_dev, uint32_t datasize,
1227 uint32_t rdatasize, uint32_t ctxsize)
1228 {
1229 uint32_t offset = sizeof(struct lio_soft_command);
1230 struct lio_soft_command *sc;
1231 struct rte_mbuf *m;
1232 uint64_t dma_addr;
1233
1234 RTE_ASSERT((offset + datasize + rdatasize + ctxsize) <=
1235 LIO_SOFT_COMMAND_BUFFER_SIZE);
1236
1237 m = rte_pktmbuf_alloc(lio_dev->sc_buf_pool);
1238 if (m == NULL) {
1239 lio_dev_err(lio_dev, "Cannot allocate mbuf for sc\n");
1240 return NULL;
1241 }
1242
1243 /* set rte_mbuf data size and there is only 1 segment */
1244 m->pkt_len = LIO_SOFT_COMMAND_BUFFER_SIZE;
1245 m->data_len = LIO_SOFT_COMMAND_BUFFER_SIZE;
1246
1247 /* use rte_mbuf buffer for soft command */
1248 sc = rte_pktmbuf_mtod(m, struct lio_soft_command *);
1249 memset(sc, 0, LIO_SOFT_COMMAND_BUFFER_SIZE);
1250 sc->size = LIO_SOFT_COMMAND_BUFFER_SIZE;
1251 sc->dma_addr = rte_mbuf_data_iova(m);
1252 sc->mbuf = m;
1253
1254 dma_addr = sc->dma_addr;
1255
1256 if (ctxsize) {
1257 sc->ctxptr = (uint8_t *)sc + offset;
1258 sc->ctxsize = ctxsize;
1259 }
1260
1261 /* Start data at 128 byte boundary */
1262 offset = (offset + ctxsize + 127) & 0xffffff80;
1263
1264 if (datasize) {
1265 sc->virtdptr = (uint8_t *)sc + offset;
1266 sc->dmadptr = dma_addr + offset;
1267 sc->datasize = datasize;
1268 }
1269
1270 /* Start rdata at 128 byte boundary */
1271 offset = (offset + datasize + 127) & 0xffffff80;
1272
1273 if (rdatasize) {
1274 RTE_ASSERT(rdatasize >= 16);
1275 sc->virtrptr = (uint8_t *)sc + offset;
1276 sc->dmarptr = dma_addr + offset;
1277 sc->rdatasize = rdatasize;
1278 sc->status_word = (uint64_t *)((uint8_t *)(sc->virtrptr) +
1279 rdatasize - 8);
1280 }
1281
1282 return sc;
1283 }
1284
1285 void
1286 lio_free_soft_command(struct lio_soft_command *sc)
1287 {
1288 rte_pktmbuf_free(sc->mbuf);
1289 }
1290
1291 void
1292 lio_setup_response_list(struct lio_device *lio_dev)
1293 {
1294 STAILQ_INIT(&lio_dev->response_list.head);
1295 rte_spinlock_init(&lio_dev->response_list.lock);
1296 rte_atomic64_set(&lio_dev->response_list.pending_req_count, 0);
1297 }
1298
1299 int
1300 lio_process_ordered_list(struct lio_device *lio_dev)
1301 {
1302 int resp_to_process = LIO_MAX_ORD_REQS_TO_PROCESS;
1303 struct lio_response_list *ordered_sc_list;
1304 struct lio_soft_command *sc;
1305 int request_complete = 0;
1306 uint64_t status64;
1307 uint32_t status;
1308
1309 ordered_sc_list = &lio_dev->response_list;
1310
1311 do {
1312 rte_spinlock_lock(&ordered_sc_list->lock);
1313
1314 if (STAILQ_EMPTY(&ordered_sc_list->head)) {
1315 /* ordered_sc_list is empty; there is
1316 * nothing to process
1317 */
1318 rte_spinlock_unlock(&ordered_sc_list->lock);
1319 return -1;
1320 }
1321
1322 sc = LIO_STQUEUE_FIRST_ENTRY(&ordered_sc_list->head,
1323 struct lio_soft_command, node);
1324
1325 status = LIO_REQUEST_PENDING;
1326
1327 /* check if octeon has finished DMA'ing a response
1328 * to where rptr is pointing to
1329 */
1330 status64 = *sc->status_word;
1331
1332 if (status64 != LIO_COMPLETION_WORD_INIT) {
1333 /* This logic ensures that all 64b have been written.
1334 * 1. check byte 0 for non-FF
1335 * 2. if non-FF, then swap result from BE to host order
1336 * 3. check byte 7 (swapped to 0) for non-FF
1337 * 4. if non-FF, use the low 32-bit status code
1338 * 5. if either byte 0 or byte 7 is FF, don't use status
1339 */
1340 if ((status64 & 0xff) != 0xff) {
1341 lio_swap_8B_data(&status64, 1);
1342 if (((status64 & 0xff) != 0xff)) {
1343 /* retrieve 16-bit firmware status */
1344 status = (uint32_t)(status64 &
1345 0xffffULL);
1346 if (status) {
1347 status =
1348 LIO_FIRMWARE_STATUS_CODE(
1349 status);
1350 } else {
1351 /* i.e. no error */
1352 status = LIO_REQUEST_DONE;
1353 }
1354 }
1355 }
1356 } else if ((sc->timeout && lio_check_timeout(lio_uptime,
1357 sc->timeout))) {
1358 lio_dev_err(lio_dev,
1359 "cmd failed, timeout (%ld, %ld)\n",
1360 (long)lio_uptime, (long)sc->timeout);
1361 status = LIO_REQUEST_TIMEOUT;
1362 }
1363
1364 if (status != LIO_REQUEST_PENDING) {
1365 /* we have received a response or we have timed out.
1366 * remove node from linked list
1367 */
1368 STAILQ_REMOVE(&ordered_sc_list->head,
1369 &sc->node, lio_stailq_node, entries);
1370 rte_atomic64_dec(
1371 &lio_dev->response_list.pending_req_count);
1372 rte_spinlock_unlock(&ordered_sc_list->lock);
1373
1374 if (sc->callback)
1375 sc->callback(status, sc->callback_arg);
1376
1377 request_complete++;
1378 } else {
1379 /* no response yet */
1380 request_complete = 0;
1381 rte_spinlock_unlock(&ordered_sc_list->lock);
1382 }
1383
1384 /* If we hit the Max Ordered requests to process every loop,
1385 * we quit and let this function be invoked the next time
1386 * the poll thread runs to process the remaining requests.
1387 * This function can take up the entire CPU if there is
1388 * no upper limit to the requests processed.
1389 */
1390 if (request_complete >= resp_to_process)
1391 break;
1392 } while (request_complete);
1393
1394 return 0;
1395 }
1396
1397 static inline struct lio_stailq_node *
1398 list_delete_first_node(struct lio_stailq_head *head)
1399 {
1400 struct lio_stailq_node *node;
1401
1402 if (STAILQ_EMPTY(head))
1403 node = NULL;
1404 else
1405 node = STAILQ_FIRST(head);
1406
1407 if (node)
1408 STAILQ_REMOVE(head, node, lio_stailq_node, entries);
1409
1410 return node;
1411 }
1412
1413 void
1414 lio_delete_sglist(struct lio_instr_queue *txq)
1415 {
1416 struct lio_device *lio_dev = txq->lio_dev;
1417 int iq_no = txq->q_index;
1418 struct lio_gather *g;
1419
1420 if (lio_dev->glist_head == NULL)
1421 return;
1422
1423 do {
1424 g = (struct lio_gather *)list_delete_first_node(
1425 &lio_dev->glist_head[iq_no]);
1426 if (g) {
1427 if (g->sg)
1428 rte_free(
1429 (void *)((unsigned long)g->sg - g->adjust));
1430 rte_free(g);
1431 }
1432 } while (g);
1433 }
1434
1435 /**
1436 * \brief Setup gather lists
1437 * @param lio per-network private data
1438 */
1439 int
1440 lio_setup_sglists(struct lio_device *lio_dev, int iq_no,
1441 int fw_mapped_iq, int num_descs, unsigned int socket_id)
1442 {
1443 struct lio_gather *g;
1444 int i;
1445
1446 rte_spinlock_init(&lio_dev->glist_lock[iq_no]);
1447
1448 STAILQ_INIT(&lio_dev->glist_head[iq_no]);
1449
1450 for (i = 0; i < num_descs; i++) {
1451 g = rte_zmalloc_socket(NULL, sizeof(*g), RTE_CACHE_LINE_SIZE,
1452 socket_id);
1453 if (g == NULL) {
1454 lio_dev_err(lio_dev,
1455 "lio_gather memory allocation failed for qno %d\n",
1456 iq_no);
1457 break;
1458 }
1459
1460 g->sg_size =
1461 ((ROUNDUP4(LIO_MAX_SG) >> 2) * LIO_SG_ENTRY_SIZE);
1462
1463 g->sg = rte_zmalloc_socket(NULL, g->sg_size + 8,
1464 RTE_CACHE_LINE_SIZE, socket_id);
1465 if (g->sg == NULL) {
1466 lio_dev_err(lio_dev,
1467 "sg list memory allocation failed for qno %d\n",
1468 iq_no);
1469 rte_free(g);
1470 break;
1471 }
1472
1473 /* The gather component should be aligned on 64-bit boundary */
1474 if (((unsigned long)g->sg) & 7) {
1475 g->adjust = 8 - (((unsigned long)g->sg) & 7);
1476 g->sg =
1477 (struct lio_sg_entry *)((unsigned long)g->sg +
1478 g->adjust);
1479 }
1480
1481 STAILQ_INSERT_TAIL(&lio_dev->glist_head[iq_no], &g->list,
1482 entries);
1483 }
1484
1485 if (i != num_descs) {
1486 lio_delete_sglist(lio_dev->instr_queue[fw_mapped_iq]);
1487 return -ENOMEM;
1488 }
1489
1490 return 0;
1491 }
1492
1493 void
1494 lio_delete_instruction_queue(struct lio_device *lio_dev, int iq_no)
1495 {
1496 lio_delete_instr_queue(lio_dev, iq_no);
1497 rte_free(lio_dev->instr_queue[iq_no]);
1498 lio_dev->instr_queue[iq_no] = NULL;
1499 lio_dev->num_iqs--;
1500 }
1501
1502 static inline uint32_t
1503 lio_iq_get_available(struct lio_device *lio_dev, uint32_t q_no)
1504 {
1505 return ((lio_dev->instr_queue[q_no]->nb_desc - 1) -
1506 (uint32_t)rte_atomic64_read(
1507 &lio_dev->instr_queue[q_no]->instr_pending));
1508 }
1509
1510 static inline int
1511 lio_iq_is_full(struct lio_device *lio_dev, uint32_t q_no)
1512 {
1513 return ((uint32_t)rte_atomic64_read(
1514 &lio_dev->instr_queue[q_no]->instr_pending) >=
1515 (lio_dev->instr_queue[q_no]->nb_desc - 2));
1516 }
1517
1518 static int
1519 lio_dev_cleanup_iq(struct lio_device *lio_dev, int iq_no)
1520 {
1521 struct lio_instr_queue *iq = lio_dev->instr_queue[iq_no];
1522 uint32_t count = 10000;
1523
1524 while ((lio_iq_get_available(lio_dev, iq_no) < LIO_FLUSH_WM(iq)) &&
1525 --count)
1526 lio_flush_iq(lio_dev, iq);
1527
1528 return count ? 0 : 1;
1529 }
1530
1531 static void
1532 lio_ctrl_cmd_callback(uint32_t status __rte_unused, void *sc_ptr)
1533 {
1534 struct lio_soft_command *sc = sc_ptr;
1535 struct lio_dev_ctrl_cmd *ctrl_cmd;
1536 struct lio_ctrl_pkt *ctrl_pkt;
1537
1538 ctrl_pkt = (struct lio_ctrl_pkt *)sc->ctxptr;
1539 ctrl_cmd = ctrl_pkt->ctrl_cmd;
1540 ctrl_cmd->cond = 1;
1541
1542 lio_free_soft_command(sc);
1543 }
1544
1545 static inline struct lio_soft_command *
1546 lio_alloc_ctrl_pkt_sc(struct lio_device *lio_dev,
1547 struct lio_ctrl_pkt *ctrl_pkt)
1548 {
1549 struct lio_soft_command *sc = NULL;
1550 uint32_t uddsize, datasize;
1551 uint32_t rdatasize;
1552 uint8_t *data;
1553
1554 uddsize = (uint32_t)(ctrl_pkt->ncmd.s.more * 8);
1555
1556 datasize = OCTEON_CMD_SIZE + uddsize;
1557 rdatasize = (ctrl_pkt->wait_time) ? 16 : 0;
1558
1559 sc = lio_alloc_soft_command(lio_dev, datasize,
1560 rdatasize, sizeof(struct lio_ctrl_pkt));
1561 if (sc == NULL)
1562 return NULL;
1563
1564 rte_memcpy(sc->ctxptr, ctrl_pkt, sizeof(struct lio_ctrl_pkt));
1565
1566 data = (uint8_t *)sc->virtdptr;
1567
1568 rte_memcpy(data, &ctrl_pkt->ncmd, OCTEON_CMD_SIZE);
1569
1570 lio_swap_8B_data((uint64_t *)data, OCTEON_CMD_SIZE >> 3);
1571
1572 if (uddsize) {
1573 /* Endian-Swap for UDD should have been done by caller. */
1574 rte_memcpy(data + OCTEON_CMD_SIZE, ctrl_pkt->udd, uddsize);
1575 }
1576
1577 sc->iq_no = (uint32_t)ctrl_pkt->iq_no;
1578
1579 lio_prepare_soft_command(lio_dev, sc,
1580 LIO_OPCODE, LIO_OPCODE_CMD,
1581 0, 0, 0);
1582
1583 sc->callback = lio_ctrl_cmd_callback;
1584 sc->callback_arg = sc;
1585 sc->wait_time = ctrl_pkt->wait_time;
1586
1587 return sc;
1588 }
1589
1590 int
1591 lio_send_ctrl_pkt(struct lio_device *lio_dev, struct lio_ctrl_pkt *ctrl_pkt)
1592 {
1593 struct lio_soft_command *sc = NULL;
1594 int retval;
1595
1596 sc = lio_alloc_ctrl_pkt_sc(lio_dev, ctrl_pkt);
1597 if (sc == NULL) {
1598 lio_dev_err(lio_dev, "soft command allocation failed\n");
1599 return -1;
1600 }
1601
1602 retval = lio_send_soft_command(lio_dev, sc);
1603 if (retval == LIO_IQ_SEND_FAILED) {
1604 lio_free_soft_command(sc);
1605 lio_dev_err(lio_dev, "Port: %d soft command: %d send failed status: %x\n",
1606 lio_dev->port_id, ctrl_pkt->ncmd.s.cmd, retval);
1607 return -1;
1608 }
1609
1610 return retval;
1611 }
1612
1613 /** Send data packet to the device
1614 * @param lio_dev - lio device pointer
1615 * @param ndata - control structure with queueing, and buffer information
1616 *
1617 * @returns IQ_FAILED if it failed to add to the input queue. IQ_STOP if it the
1618 * queue should be stopped, and LIO_IQ_SEND_OK if it sent okay.
1619 */
1620 static inline int
1621 lio_send_data_pkt(struct lio_device *lio_dev, struct lio_data_pkt *ndata)
1622 {
1623 return lio_send_command(lio_dev, ndata->q_no, &ndata->cmd,
1624 ndata->buf, ndata->datasize, ndata->reqtype);
1625 }
1626
1627 uint16_t
1628 lio_dev_xmit_pkts(void *tx_queue, struct rte_mbuf **pkts, uint16_t nb_pkts)
1629 {
1630 struct lio_instr_queue *txq = tx_queue;
1631 union lio_cmd_setup cmdsetup;
1632 struct lio_device *lio_dev;
1633 struct lio_iq_stats *stats;
1634 struct lio_data_pkt ndata;
1635 int i, processed = 0;
1636 struct rte_mbuf *m;
1637 uint32_t tag = 0;
1638 int status = 0;
1639 int iq_no;
1640
1641 lio_dev = txq->lio_dev;
1642 iq_no = txq->txpciq.s.q_no;
1643 stats = &lio_dev->instr_queue[iq_no]->stats;
1644
1645 if (!lio_dev->intf_open || !lio_dev->linfo.link.s.link_up) {
1646 PMD_TX_LOG(lio_dev, ERR, "Transmit failed link_status : %d\n",
1647 lio_dev->linfo.link.s.link_up);
1648 goto xmit_failed;
1649 }
1650
1651 lio_dev_cleanup_iq(lio_dev, iq_no);
1652
1653 for (i = 0; i < nb_pkts; i++) {
1654 uint32_t pkt_len = 0;
1655
1656 m = pkts[i];
1657
1658 /* Prepare the attributes for the data to be passed to BASE. */
1659 memset(&ndata, 0, sizeof(struct lio_data_pkt));
1660
1661 ndata.buf = m;
1662
1663 ndata.q_no = iq_no;
1664 if (lio_iq_is_full(lio_dev, ndata.q_no)) {
1665 stats->tx_iq_busy++;
1666 if (lio_dev_cleanup_iq(lio_dev, iq_no)) {
1667 PMD_TX_LOG(lio_dev, ERR,
1668 "Transmit failed iq:%d full\n",
1669 ndata.q_no);
1670 break;
1671 }
1672 }
1673
1674 cmdsetup.cmd_setup64 = 0;
1675 cmdsetup.s.iq_no = iq_no;
1676
1677 /* check checksum offload flags to form cmd */
1678 if (m->ol_flags & PKT_TX_IP_CKSUM)
1679 cmdsetup.s.ip_csum = 1;
1680
1681 if (m->ol_flags & PKT_TX_OUTER_IP_CKSUM)
1682 cmdsetup.s.tnl_csum = 1;
1683 else if ((m->ol_flags & PKT_TX_TCP_CKSUM) ||
1684 (m->ol_flags & PKT_TX_UDP_CKSUM))
1685 cmdsetup.s.transport_csum = 1;
1686
1687 if (m->nb_segs == 1) {
1688 pkt_len = rte_pktmbuf_data_len(m);
1689 cmdsetup.s.u.datasize = pkt_len;
1690 lio_prepare_pci_cmd(lio_dev, &ndata.cmd,
1691 &cmdsetup, tag);
1692 ndata.cmd.cmd3.dptr = rte_mbuf_data_iova(m);
1693 ndata.reqtype = LIO_REQTYPE_NORESP_NET;
1694 } else {
1695 struct lio_buf_free_info *finfo;
1696 struct lio_gather *g;
1697 rte_iova_t phyaddr;
1698 int i, frags;
1699
1700 finfo = (struct lio_buf_free_info *)rte_malloc(NULL,
1701 sizeof(*finfo), 0);
1702 if (finfo == NULL) {
1703 PMD_TX_LOG(lio_dev, ERR,
1704 "free buffer alloc failed\n");
1705 goto xmit_failed;
1706 }
1707
1708 rte_spinlock_lock(&lio_dev->glist_lock[iq_no]);
1709 g = (struct lio_gather *)list_delete_first_node(
1710 &lio_dev->glist_head[iq_no]);
1711 rte_spinlock_unlock(&lio_dev->glist_lock[iq_no]);
1712 if (g == NULL) {
1713 PMD_TX_LOG(lio_dev, ERR,
1714 "Transmit scatter gather: glist null!\n");
1715 goto xmit_failed;
1716 }
1717
1718 cmdsetup.s.gather = 1;
1719 cmdsetup.s.u.gatherptrs = m->nb_segs;
1720 lio_prepare_pci_cmd(lio_dev, &ndata.cmd,
1721 &cmdsetup, tag);
1722
1723 memset(g->sg, 0, g->sg_size);
1724 g->sg[0].ptr[0] = rte_mbuf_data_iova(m);
1725 lio_add_sg_size(&g->sg[0], m->data_len, 0);
1726 pkt_len = m->data_len;
1727 finfo->mbuf = m;
1728
1729 /* First seg taken care above */
1730 frags = m->nb_segs - 1;
1731 i = 1;
1732 m = m->next;
1733 while (frags--) {
1734 g->sg[(i >> 2)].ptr[(i & 3)] =
1735 rte_mbuf_data_iova(m);
1736 lio_add_sg_size(&g->sg[(i >> 2)],
1737 m->data_len, (i & 3));
1738 pkt_len += m->data_len;
1739 i++;
1740 m = m->next;
1741 }
1742
1743 phyaddr = rte_mem_virt2iova(g->sg);
1744 if (phyaddr == RTE_BAD_IOVA) {
1745 PMD_TX_LOG(lio_dev, ERR, "bad phys addr\n");
1746 goto xmit_failed;
1747 }
1748
1749 ndata.cmd.cmd3.dptr = phyaddr;
1750 ndata.reqtype = LIO_REQTYPE_NORESP_NET_SG;
1751
1752 finfo->g = g;
1753 finfo->lio_dev = lio_dev;
1754 finfo->iq_no = (uint64_t)iq_no;
1755 ndata.buf = finfo;
1756 }
1757
1758 ndata.datasize = pkt_len;
1759
1760 status = lio_send_data_pkt(lio_dev, &ndata);
1761
1762 if (unlikely(status == LIO_IQ_SEND_FAILED)) {
1763 PMD_TX_LOG(lio_dev, ERR, "send failed\n");
1764 break;
1765 }
1766
1767 if (unlikely(status == LIO_IQ_SEND_STOP)) {
1768 PMD_TX_LOG(lio_dev, DEBUG, "iq full\n");
1769 /* create space as iq is full */
1770 lio_dev_cleanup_iq(lio_dev, iq_no);
1771 }
1772
1773 stats->tx_done++;
1774 stats->tx_tot_bytes += pkt_len;
1775 processed++;
1776 }
1777
1778 xmit_failed:
1779 stats->tx_dropped += (nb_pkts - processed);
1780
1781 return processed;
1782 }
1783
1784 void
1785 lio_dev_clear_queues(struct rte_eth_dev *eth_dev)
1786 {
1787 struct lio_instr_queue *txq;
1788 struct lio_droq *rxq;
1789 uint16_t i;
1790
1791 for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
1792 txq = eth_dev->data->tx_queues[i];
1793 if (txq != NULL) {
1794 lio_dev_tx_queue_release(txq);
1795 eth_dev->data->tx_queues[i] = NULL;
1796 }
1797 }
1798
1799 for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
1800 rxq = eth_dev->data->rx_queues[i];
1801 if (rxq != NULL) {
1802 lio_dev_rx_queue_release(rxq);
1803 eth_dev->data->rx_queues[i] = NULL;
1804 }
1805 }
1806 }