]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/mlx4/mlx4_rxtx.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / mlx4 / mlx4_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2017 6WIND S.A.
3 * Copyright 2017 Mellanox Technologies, Ltd
4 */
5
6 /**
7 * @file
8 * Data plane functions for mlx4 driver.
9 */
10
11 #include <assert.h>
12 #include <stdint.h>
13 #include <string.h>
14
15 /* Verbs headers do not support -pedantic. */
16 #ifdef PEDANTIC
17 #pragma GCC diagnostic ignored "-Wpedantic"
18 #endif
19 #include <infiniband/verbs.h>
20 #ifdef PEDANTIC
21 #pragma GCC diagnostic error "-Wpedantic"
22 #endif
23
24 #include <rte_branch_prediction.h>
25 #include <rte_common.h>
26 #include <rte_io.h>
27 #include <rte_mbuf.h>
28 #include <rte_mempool.h>
29 #include <rte_prefetch.h>
30
31 #include "mlx4.h"
32 #include "mlx4_prm.h"
33 #include "mlx4_rxtx.h"
34 #include "mlx4_utils.h"
35
36 /**
37 * Pointer-value pair structure used in tx_post_send for saving the first
38 * DWORD (32 byte) of a TXBB.
39 */
40 struct pv {
41 union {
42 volatile struct mlx4_wqe_data_seg *dseg;
43 volatile uint32_t *dst;
44 };
45 uint32_t val;
46 };
47
48 /** A helper structure for TSO packet handling. */
49 struct tso_info {
50 /** Pointer to the array of saved first DWORD (32 byte) of a TXBB. */
51 struct pv *pv;
52 /** Current entry in the pv array. */
53 int pv_counter;
54 /** Total size of the WQE including padding. */
55 uint32_t wqe_size;
56 /** Size of TSO header to prepend to each packet to send. */
57 uint16_t tso_header_size;
58 /** Total size of the TSO segment in the WQE. */
59 uint16_t wqe_tso_seg_size;
60 /** Raw WQE size in units of 16 Bytes and without padding. */
61 uint8_t fence_size;
62 };
63
64 /** A table to translate Rx completion flags to packet type. */
65 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
66 /*
67 * The index to the array should have:
68 * bit[7] - MLX4_CQE_L2_TUNNEL
69 * bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
70 * bit[5] - MLX4_CQE_STATUS_UDP
71 * bit[4] - MLX4_CQE_STATUS_TCP
72 * bit[3] - MLX4_CQE_STATUS_IPV4OPT
73 * bit[2] - MLX4_CQE_STATUS_IPV6
74 * bit[1] - MLX4_CQE_STATUS_IPF
75 * bit[0] - MLX4_CQE_STATUS_IPV4
76 * giving a total of up to 256 entries.
77 */
78 /* L2 */
79 [0x00] = RTE_PTYPE_L2_ETHER,
80 /* L3 */
81 [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
82 RTE_PTYPE_L4_NONFRAG,
83 [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
84 RTE_PTYPE_L4_FRAG,
85 [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
86 RTE_PTYPE_L4_FRAG,
87 [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
88 RTE_PTYPE_L4_NONFRAG,
89 [0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
90 RTE_PTYPE_L4_FRAG,
91 [0x08] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
92 RTE_PTYPE_L4_NONFRAG,
93 [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
94 RTE_PTYPE_L4_NONFRAG,
95 [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
96 RTE_PTYPE_L4_FRAG,
97 [0x0b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
98 RTE_PTYPE_L4_FRAG,
99 /* TCP */
100 [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
101 RTE_PTYPE_L4_TCP,
102 [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
103 RTE_PTYPE_L4_TCP,
104 [0x16] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
105 RTE_PTYPE_L4_FRAG,
106 [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
107 RTE_PTYPE_L4_TCP,
108 [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
109 RTE_PTYPE_L4_TCP,
110 /* UDP */
111 [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
112 RTE_PTYPE_L4_UDP,
113 [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114 RTE_PTYPE_L4_UDP,
115 [0x26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
116 RTE_PTYPE_L4_FRAG,
117 [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
118 RTE_PTYPE_L4_UDP,
119 [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
120 RTE_PTYPE_L4_UDP,
121 /* Tunneled - L3 IPV6 */
122 [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
123 [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
125 RTE_PTYPE_INNER_L4_NONFRAG,
126 [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
127 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
128 RTE_PTYPE_INNER_L4_FRAG,
129 [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
131 RTE_PTYPE_INNER_L4_FRAG,
132 [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
133 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
134 RTE_PTYPE_INNER_L4_NONFRAG,
135 [0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
137 RTE_PTYPE_INNER_L4_FRAG,
138 [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
139 RTE_PTYPE_INNER_L3_IPV4_EXT |
140 RTE_PTYPE_INNER_L4_NONFRAG,
141 [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
142 RTE_PTYPE_INNER_L3_IPV4_EXT |
143 RTE_PTYPE_INNER_L4_NONFRAG,
144 [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
145 RTE_PTYPE_INNER_L3_IPV4_EXT |
146 RTE_PTYPE_INNER_L4_FRAG,
147 [0x8b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148 RTE_PTYPE_INNER_L3_IPV4_EXT |
149 RTE_PTYPE_INNER_L4_FRAG,
150 /* Tunneled - L3 IPV6, TCP */
151 [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
152 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
153 RTE_PTYPE_INNER_L4_TCP,
154 [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
156 RTE_PTYPE_INNER_L4_TCP,
157 [0x96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
159 RTE_PTYPE_INNER_L4_FRAG,
160 [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
162 [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
164 /* Tunneled - L3 IPV6, UDP */
165 [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
166 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
167 RTE_PTYPE_INNER_L4_UDP,
168 [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
169 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
170 RTE_PTYPE_INNER_L4_UDP,
171 [0xa6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
172 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
173 RTE_PTYPE_INNER_L4_FRAG,
174 [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
175 RTE_PTYPE_INNER_L3_IPV4_EXT |
176 RTE_PTYPE_INNER_L4_UDP,
177 [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
178 RTE_PTYPE_INNER_L3_IPV4_EXT |
179 RTE_PTYPE_INNER_L4_UDP,
180 /* Tunneled - L3 IPV4 */
181 [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
182 [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
184 RTE_PTYPE_INNER_L4_NONFRAG,
185 [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
186 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
187 RTE_PTYPE_INNER_L4_FRAG,
188 [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
189 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
190 RTE_PTYPE_INNER_L4_FRAG,
191 [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
192 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
193 RTE_PTYPE_INNER_L4_NONFRAG,
194 [0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
196 RTE_PTYPE_INNER_L4_FRAG,
197 [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198 RTE_PTYPE_INNER_L3_IPV4_EXT |
199 RTE_PTYPE_INNER_L4_NONFRAG,
200 [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
201 RTE_PTYPE_INNER_L3_IPV4_EXT |
202 RTE_PTYPE_INNER_L4_NONFRAG,
203 [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204 RTE_PTYPE_INNER_L3_IPV4_EXT |
205 RTE_PTYPE_INNER_L4_FRAG,
206 [0xcb] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207 RTE_PTYPE_INNER_L3_IPV4_EXT |
208 RTE_PTYPE_INNER_L4_FRAG,
209 /* Tunneled - L3 IPV4, TCP */
210 [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
212 RTE_PTYPE_INNER_L4_TCP,
213 [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
215 RTE_PTYPE_INNER_L4_TCP,
216 [0xd6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
217 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
218 RTE_PTYPE_INNER_L4_FRAG,
219 [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
220 RTE_PTYPE_INNER_L3_IPV4_EXT |
221 RTE_PTYPE_INNER_L4_TCP,
222 [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
223 RTE_PTYPE_INNER_L3_IPV4_EXT |
224 RTE_PTYPE_INNER_L4_TCP,
225 /* Tunneled - L3 IPV4, UDP */
226 [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
227 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
228 RTE_PTYPE_INNER_L4_UDP,
229 [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
230 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
231 RTE_PTYPE_INNER_L4_UDP,
232 [0xe6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
233 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
234 RTE_PTYPE_INNER_L4_FRAG,
235 [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
236 RTE_PTYPE_INNER_L3_IPV4_EXT |
237 RTE_PTYPE_INNER_L4_UDP,
238 [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
239 RTE_PTYPE_INNER_L3_IPV4_EXT |
240 RTE_PTYPE_INNER_L4_UDP,
241 };
242
243 /**
244 * Stamp TXBB burst so it won't be reused by the HW.
245 *
246 * Routine is used when freeing WQE used by the chip or when failing
247 * building an WQ entry has failed leaving partial information on the queue.
248 *
249 * @param sq
250 * Pointer to the SQ structure.
251 * @param start
252 * Pointer to the first TXBB to stamp.
253 * @param end
254 * Pointer to the followed end TXBB to stamp.
255 *
256 * @return
257 * Stamping burst size in byte units.
258 */
259 static uint32_t
260 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
261 volatile uint32_t *end)
262 {
263 uint32_t stamp = sq->stamp;
264 int32_t size = (intptr_t)end - (intptr_t)start;
265
266 assert(start != end);
267 /* Hold SQ ring wrap around. */
268 if (size < 0) {
269 size = (int32_t)sq->size + size;
270 do {
271 *start = stamp;
272 start += MLX4_SQ_STAMP_DWORDS;
273 } while (start != (volatile uint32_t *)sq->eob);
274 start = (volatile uint32_t *)sq->buf;
275 /* Flip invalid stamping ownership. */
276 stamp ^= RTE_BE32(1u << MLX4_SQ_OWNER_BIT);
277 sq->stamp = stamp;
278 if (start == end)
279 return size;
280 }
281 do {
282 *start = stamp;
283 start += MLX4_SQ_STAMP_DWORDS;
284 } while (start != end);
285 return (uint32_t)size;
286 }
287
288 /**
289 * Manage Tx completions.
290 *
291 * When sending a burst, mlx4_tx_burst() posts several WRs.
292 * To improve performance, a completion event is only required once every
293 * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
294 * for other WRs, but this information would not be used anyway.
295 *
296 * @param txq
297 * Pointer to Tx queue structure.
298 * @param elts_m
299 * Tx elements number mask.
300 * @param sq
301 * Pointer to the SQ structure.
302 */
303 static void
304 mlx4_txq_complete(struct txq *txq, const unsigned int elts_m,
305 struct mlx4_sq *sq)
306 {
307 unsigned int elts_tail = txq->elts_tail;
308 struct mlx4_cq *cq = &txq->mcq;
309 volatile struct mlx4_cqe *cqe;
310 uint32_t completed;
311 uint32_t cons_index = cq->cons_index;
312 volatile uint32_t *first_txbb;
313
314 /*
315 * Traverse over all CQ entries reported and handle each WQ entry
316 * reported by them.
317 */
318 do {
319 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
320 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
321 !!(cons_index & cq->cqe_cnt)))
322 break;
323 #ifndef NDEBUG
324 /*
325 * Make sure we read the CQE after we read the ownership bit.
326 */
327 rte_io_rmb();
328 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
329 MLX4_CQE_OPCODE_ERROR)) {
330 volatile struct mlx4_err_cqe *cqe_err =
331 (volatile struct mlx4_err_cqe *)cqe;
332 ERROR("%p CQE error - vendor syndrome: 0x%x"
333 " syndrome: 0x%x\n",
334 (void *)txq, cqe_err->vendor_err,
335 cqe_err->syndrome);
336 break;
337 }
338 #endif /* NDEBUG */
339 cons_index++;
340 } while (1);
341 completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
342 if (unlikely(!completed))
343 return;
344 /* First stamping address is the end of the last one. */
345 first_txbb = (&(*txq->elts)[elts_tail & elts_m])->eocb;
346 elts_tail += completed;
347 /* The new tail element holds the end address. */
348 sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
349 (&(*txq->elts)[elts_tail & elts_m])->eocb);
350 /* Update CQ consumer index. */
351 cq->cons_index = cons_index;
352 *cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
353 txq->elts_tail = elts_tail;
354 }
355
356 /**
357 * Write Tx data segment to the SQ.
358 *
359 * @param dseg
360 * Pointer to data segment in SQ.
361 * @param lkey
362 * Memory region lkey.
363 * @param addr
364 * Data address.
365 * @param byte_count
366 * Big endian bytes count of the data to send.
367 */
368 static inline void
369 mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
370 uint32_t lkey, uintptr_t addr, rte_be32_t byte_count)
371 {
372 dseg->addr = rte_cpu_to_be_64(addr);
373 dseg->lkey = lkey;
374 #if RTE_CACHE_LINE_SIZE < 64
375 /*
376 * Need a barrier here before writing the byte_count
377 * fields to make sure that all the data is visible
378 * before the byte_count field is set.
379 * Otherwise, if the segment begins a new cacheline,
380 * the HCA prefetcher could grab the 64-byte chunk and
381 * get a valid (!= 0xffffffff) byte count but stale
382 * data, and end up sending the wrong data.
383 */
384 rte_io_wmb();
385 #endif /* RTE_CACHE_LINE_SIZE */
386 dseg->byte_count = byte_count;
387 }
388
389 /**
390 * Obtain and calculate TSO information needed for assembling a TSO WQE.
391 *
392 * @param buf
393 * Pointer to the first packet mbuf.
394 * @param txq
395 * Pointer to Tx queue structure.
396 * @param tinfo
397 * Pointer to a structure to fill the info with.
398 *
399 * @return
400 * 0 on success, negative value upon error.
401 */
402 static inline int
403 mlx4_tx_burst_tso_get_params(struct rte_mbuf *buf,
404 struct txq *txq,
405 struct tso_info *tinfo)
406 {
407 struct mlx4_sq *sq = &txq->msq;
408 const uint8_t tunneled = txq->priv->hw_csum_l2tun &&
409 (buf->ol_flags & PKT_TX_TUNNEL_MASK);
410
411 tinfo->tso_header_size = buf->l2_len + buf->l3_len + buf->l4_len;
412 if (tunneled)
413 tinfo->tso_header_size +=
414 buf->outer_l2_len + buf->outer_l3_len;
415 if (unlikely(buf->tso_segsz == 0 ||
416 tinfo->tso_header_size == 0 ||
417 tinfo->tso_header_size > MLX4_MAX_TSO_HEADER ||
418 tinfo->tso_header_size > buf->data_len))
419 return -EINVAL;
420 /*
421 * Calculate the WQE TSO segment size
422 * Note:
423 * 1. An LSO segment must be padded such that the subsequent data
424 * segment is 16-byte aligned.
425 * 2. The start address of the TSO segment is always 16 Bytes aligned.
426 */
427 tinfo->wqe_tso_seg_size = RTE_ALIGN(sizeof(struct mlx4_wqe_lso_seg) +
428 tinfo->tso_header_size,
429 sizeof(struct mlx4_wqe_data_seg));
430 tinfo->fence_size = ((sizeof(struct mlx4_wqe_ctrl_seg) +
431 tinfo->wqe_tso_seg_size) >> MLX4_SEG_SHIFT) +
432 buf->nb_segs;
433 tinfo->wqe_size =
434 RTE_ALIGN((uint32_t)(tinfo->fence_size << MLX4_SEG_SHIFT),
435 MLX4_TXBB_SIZE);
436 /* Validate WQE size and WQE space in the send queue. */
437 if (sq->remain_size < tinfo->wqe_size ||
438 tinfo->wqe_size > MLX4_MAX_WQE_SIZE)
439 return -ENOMEM;
440 /* Init pv. */
441 tinfo->pv = (struct pv *)txq->bounce_buf;
442 tinfo->pv_counter = 0;
443 return 0;
444 }
445
446 /**
447 * Fill the TSO WQE data segments with info on buffers to transmit .
448 *
449 * @param buf
450 * Pointer to the first packet mbuf.
451 * @param txq
452 * Pointer to Tx queue structure.
453 * @param tinfo
454 * Pointer to TSO info to use.
455 * @param dseg
456 * Pointer to the first data segment in the TSO WQE.
457 * @param ctrl
458 * Pointer to the control segment in the TSO WQE.
459 *
460 * @return
461 * 0 on success, negative value upon error.
462 */
463 static inline volatile struct mlx4_wqe_ctrl_seg *
464 mlx4_tx_burst_fill_tso_dsegs(struct rte_mbuf *buf,
465 struct txq *txq,
466 struct tso_info *tinfo,
467 volatile struct mlx4_wqe_data_seg *dseg,
468 volatile struct mlx4_wqe_ctrl_seg *ctrl)
469 {
470 uint32_t lkey;
471 int nb_segs = buf->nb_segs;
472 int nb_segs_txbb;
473 struct mlx4_sq *sq = &txq->msq;
474 struct rte_mbuf *sbuf = buf;
475 struct pv *pv = tinfo->pv;
476 int *pv_counter = &tinfo->pv_counter;
477 volatile struct mlx4_wqe_ctrl_seg *ctrl_next =
478 (volatile struct mlx4_wqe_ctrl_seg *)
479 ((volatile uint8_t *)ctrl + tinfo->wqe_size);
480 uint16_t data_len = sbuf->data_len - tinfo->tso_header_size;
481 uintptr_t data_addr = rte_pktmbuf_mtod_offset(sbuf, uintptr_t,
482 tinfo->tso_header_size);
483
484 do {
485 /* how many dseg entries do we have in the current TXBB ? */
486 nb_segs_txbb = (MLX4_TXBB_SIZE -
487 ((uintptr_t)dseg & (MLX4_TXBB_SIZE - 1))) >>
488 MLX4_SEG_SHIFT;
489 switch (nb_segs_txbb) {
490 #ifndef NDEBUG
491 default:
492 /* Should never happen. */
493 rte_panic("%p: Invalid number of SGEs(%d) for a TXBB",
494 (void *)txq, nb_segs_txbb);
495 /* rte_panic never returns. */
496 break;
497 #endif /* NDEBUG */
498 case 4:
499 /* Memory region key for this memory pool. */
500 lkey = mlx4_tx_mb2mr(txq, sbuf);
501 if (unlikely(lkey == (uint32_t)-1))
502 goto err;
503 dseg->addr = rte_cpu_to_be_64(data_addr);
504 dseg->lkey = lkey;
505 /*
506 * This data segment starts at the beginning of a new
507 * TXBB, so we need to postpone its byte_count writing
508 * for later.
509 */
510 pv[*pv_counter].dseg = dseg;
511 /*
512 * Zero length segment is treated as inline segment
513 * with zero data.
514 */
515 pv[(*pv_counter)++].val =
516 rte_cpu_to_be_32(data_len ?
517 data_len :
518 0x80000000);
519 if (--nb_segs == 0)
520 return ctrl_next;
521 /* Prepare next buf info */
522 sbuf = sbuf->next;
523 dseg++;
524 data_len = sbuf->data_len;
525 data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
526 /* fallthrough */
527 case 3:
528 lkey = mlx4_tx_mb2mr(txq, sbuf);
529 if (unlikely(lkey == (uint32_t)-1))
530 goto err;
531 mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
532 rte_cpu_to_be_32(data_len ?
533 data_len :
534 0x80000000));
535 if (--nb_segs == 0)
536 return ctrl_next;
537 /* Prepare next buf info */
538 sbuf = sbuf->next;
539 dseg++;
540 data_len = sbuf->data_len;
541 data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
542 /* fallthrough */
543 case 2:
544 lkey = mlx4_tx_mb2mr(txq, sbuf);
545 if (unlikely(lkey == (uint32_t)-1))
546 goto err;
547 mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
548 rte_cpu_to_be_32(data_len ?
549 data_len :
550 0x80000000));
551 if (--nb_segs == 0)
552 return ctrl_next;
553 /* Prepare next buf info */
554 sbuf = sbuf->next;
555 dseg++;
556 data_len = sbuf->data_len;
557 data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
558 /* fallthrough */
559 case 1:
560 lkey = mlx4_tx_mb2mr(txq, sbuf);
561 if (unlikely(lkey == (uint32_t)-1))
562 goto err;
563 mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
564 rte_cpu_to_be_32(data_len ?
565 data_len :
566 0x80000000));
567 if (--nb_segs == 0)
568 return ctrl_next;
569 /* Prepare next buf info */
570 sbuf = sbuf->next;
571 dseg++;
572 data_len = sbuf->data_len;
573 data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
574 /* fallthrough */
575 }
576 /* Wrap dseg if it points at the end of the queue. */
577 if ((volatile uint8_t *)dseg >= sq->eob)
578 dseg = (volatile struct mlx4_wqe_data_seg *)
579 ((volatile uint8_t *)dseg - sq->size);
580 } while (true);
581 err:
582 return NULL;
583 }
584
585 /**
586 * Fill the packet's l2, l3 and l4 headers to the WQE.
587 *
588 * This will be used as the header for each TSO segment that is transmitted.
589 *
590 * @param buf
591 * Pointer to the first packet mbuf.
592 * @param txq
593 * Pointer to Tx queue structure.
594 * @param tinfo
595 * Pointer to TSO info to use.
596 * @param ctrl
597 * Pointer to the control segment in the TSO WQE.
598 *
599 * @return
600 * 0 on success, negative value upon error.
601 */
602 static inline volatile struct mlx4_wqe_data_seg *
603 mlx4_tx_burst_fill_tso_hdr(struct rte_mbuf *buf,
604 struct txq *txq,
605 struct tso_info *tinfo,
606 volatile struct mlx4_wqe_ctrl_seg *ctrl)
607 {
608 volatile struct mlx4_wqe_lso_seg *tseg =
609 (volatile struct mlx4_wqe_lso_seg *)(ctrl + 1);
610 struct mlx4_sq *sq = &txq->msq;
611 struct pv *pv = tinfo->pv;
612 int *pv_counter = &tinfo->pv_counter;
613 int remain_size = tinfo->tso_header_size;
614 char *from = rte_pktmbuf_mtod(buf, char *);
615 uint16_t txbb_avail_space;
616 /* Union to overcome volatile constraints when copying TSO header. */
617 union {
618 volatile uint8_t *vto;
619 uint8_t *to;
620 } thdr = { .vto = (volatile uint8_t *)tseg->header, };
621
622 /*
623 * TSO data always starts at offset 20 from the beginning of the TXBB
624 * (16 byte ctrl + 4byte TSO desc). Since each TXBB is 64Byte aligned
625 * we can write the first 44 TSO header bytes without worry for TxQ
626 * wrapping or overwriting the first TXBB 32bit word.
627 */
628 txbb_avail_space = MLX4_TXBB_SIZE -
629 (sizeof(struct mlx4_wqe_ctrl_seg) +
630 sizeof(struct mlx4_wqe_lso_seg));
631 while (remain_size >= (int)(txbb_avail_space + sizeof(uint32_t))) {
632 /* Copy to end of txbb. */
633 rte_memcpy(thdr.to, from, txbb_avail_space);
634 from += txbb_avail_space;
635 thdr.to += txbb_avail_space;
636 /* New TXBB, Check for TxQ wrap. */
637 if (thdr.to >= sq->eob)
638 thdr.vto = sq->buf;
639 /* New TXBB, stash the first 32bits for later use. */
640 pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
641 pv[(*pv_counter)++].val = *(uint32_t *)from,
642 from += sizeof(uint32_t);
643 thdr.to += sizeof(uint32_t);
644 remain_size -= txbb_avail_space + sizeof(uint32_t);
645 /* Avail space in new TXBB is TXBB size - 4 */
646 txbb_avail_space = MLX4_TXBB_SIZE - sizeof(uint32_t);
647 }
648 if (remain_size > txbb_avail_space) {
649 rte_memcpy(thdr.to, from, txbb_avail_space);
650 from += txbb_avail_space;
651 thdr.to += txbb_avail_space;
652 remain_size -= txbb_avail_space;
653 /* New TXBB, Check for TxQ wrap. */
654 if (thdr.to >= sq->eob)
655 thdr.vto = sq->buf;
656 pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
657 rte_memcpy(&pv[*pv_counter].val, from, remain_size);
658 (*pv_counter)++;
659 } else if (remain_size) {
660 rte_memcpy(thdr.to, from, remain_size);
661 }
662 tseg->mss_hdr_size = rte_cpu_to_be_32((buf->tso_segsz << 16) |
663 tinfo->tso_header_size);
664 /* Calculate data segment location */
665 return (volatile struct mlx4_wqe_data_seg *)
666 ((uintptr_t)tseg + tinfo->wqe_tso_seg_size);
667 }
668
669 /**
670 * Write data segments and header for TSO uni/multi segment packet.
671 *
672 * @param buf
673 * Pointer to the first packet mbuf.
674 * @param txq
675 * Pointer to Tx queue structure.
676 * @param ctrl
677 * Pointer to the WQE control segment.
678 *
679 * @return
680 * Pointer to the next WQE control segment on success, NULL otherwise.
681 */
682 static volatile struct mlx4_wqe_ctrl_seg *
683 mlx4_tx_burst_tso(struct rte_mbuf *buf, struct txq *txq,
684 volatile struct mlx4_wqe_ctrl_seg *ctrl)
685 {
686 volatile struct mlx4_wqe_data_seg *dseg;
687 volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
688 struct mlx4_sq *sq = &txq->msq;
689 struct tso_info tinfo;
690 struct pv *pv;
691 int pv_counter;
692 int ret;
693
694 ret = mlx4_tx_burst_tso_get_params(buf, txq, &tinfo);
695 if (unlikely(ret))
696 goto error;
697 dseg = mlx4_tx_burst_fill_tso_hdr(buf, txq, &tinfo, ctrl);
698 if (unlikely(dseg == NULL))
699 goto error;
700 if ((uintptr_t)dseg >= (uintptr_t)sq->eob)
701 dseg = (volatile struct mlx4_wqe_data_seg *)
702 ((uintptr_t)dseg - sq->size);
703 ctrl_next = mlx4_tx_burst_fill_tso_dsegs(buf, txq, &tinfo, dseg, ctrl);
704 if (unlikely(ctrl_next == NULL))
705 goto error;
706 /* Write the first DWORD of each TXBB save earlier. */
707 if (likely(tinfo.pv_counter)) {
708 pv = tinfo.pv;
709 pv_counter = tinfo.pv_counter;
710 /* Need a barrier here before writing the first TXBB word. */
711 rte_io_wmb();
712 do {
713 --pv_counter;
714 *pv[pv_counter].dst = pv[pv_counter].val;
715 } while (pv_counter > 0);
716 }
717 ctrl->fence_size = tinfo.fence_size;
718 sq->remain_size -= tinfo.wqe_size;
719 return ctrl_next;
720 error:
721 txq->stats.odropped++;
722 return NULL;
723 }
724
725 /**
726 * Write data segments of multi-segment packet.
727 *
728 * @param buf
729 * Pointer to the first packet mbuf.
730 * @param txq
731 * Pointer to Tx queue structure.
732 * @param ctrl
733 * Pointer to the WQE control segment.
734 *
735 * @return
736 * Pointer to the next WQE control segment on success, NULL otherwise.
737 */
738 static volatile struct mlx4_wqe_ctrl_seg *
739 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
740 volatile struct mlx4_wqe_ctrl_seg *ctrl)
741 {
742 struct pv *pv = (struct pv *)txq->bounce_buf;
743 struct mlx4_sq *sq = &txq->msq;
744 struct rte_mbuf *sbuf = buf;
745 uint32_t lkey;
746 int pv_counter = 0;
747 int nb_segs = buf->nb_segs;
748 uint32_t wqe_size;
749 volatile struct mlx4_wqe_data_seg *dseg =
750 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
751
752 ctrl->fence_size = 1 + nb_segs;
753 wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
754 MLX4_TXBB_SIZE);
755 /* Validate WQE size and WQE space in the send queue. */
756 if (sq->remain_size < wqe_size ||
757 wqe_size > MLX4_MAX_WQE_SIZE)
758 return NULL;
759 /*
760 * Fill the data segments with buffer information.
761 * First WQE TXBB head segment is always control segment,
762 * so jump to tail TXBB data segments code for the first
763 * WQE data segments filling.
764 */
765 goto txbb_tail_segs;
766 txbb_head_seg:
767 /* Memory region key (big endian) for this memory pool. */
768 lkey = mlx4_tx_mb2mr(txq, sbuf);
769 if (unlikely(lkey == (uint32_t)-1)) {
770 DEBUG("%p: unable to get MP <-> MR association",
771 (void *)txq);
772 return NULL;
773 }
774 /* Handle WQE wraparound. */
775 if (dseg >=
776 (volatile struct mlx4_wqe_data_seg *)sq->eob)
777 dseg = (volatile struct mlx4_wqe_data_seg *)
778 sq->buf;
779 dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
780 dseg->lkey = lkey;
781 /*
782 * This data segment starts at the beginning of a new
783 * TXBB, so we need to postpone its byte_count writing
784 * for later.
785 */
786 pv[pv_counter].dseg = dseg;
787 /*
788 * Zero length segment is treated as inline segment
789 * with zero data.
790 */
791 pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
792 sbuf->data_len : 0x80000000);
793 sbuf = sbuf->next;
794 dseg++;
795 nb_segs--;
796 txbb_tail_segs:
797 /* Jump to default if there are more than two segments remaining. */
798 switch (nb_segs) {
799 default:
800 lkey = mlx4_tx_mb2mr(txq, sbuf);
801 if (unlikely(lkey == (uint32_t)-1)) {
802 DEBUG("%p: unable to get MP <-> MR association",
803 (void *)txq);
804 return NULL;
805 }
806 mlx4_fill_tx_data_seg(dseg, lkey,
807 rte_pktmbuf_mtod(sbuf, uintptr_t),
808 rte_cpu_to_be_32(sbuf->data_len ?
809 sbuf->data_len :
810 0x80000000));
811 sbuf = sbuf->next;
812 dseg++;
813 nb_segs--;
814 /* fallthrough */
815 case 2:
816 lkey = mlx4_tx_mb2mr(txq, sbuf);
817 if (unlikely(lkey == (uint32_t)-1)) {
818 DEBUG("%p: unable to get MP <-> MR association",
819 (void *)txq);
820 return NULL;
821 }
822 mlx4_fill_tx_data_seg(dseg, lkey,
823 rte_pktmbuf_mtod(sbuf, uintptr_t),
824 rte_cpu_to_be_32(sbuf->data_len ?
825 sbuf->data_len :
826 0x80000000));
827 sbuf = sbuf->next;
828 dseg++;
829 nb_segs--;
830 /* fallthrough */
831 case 1:
832 lkey = mlx4_tx_mb2mr(txq, sbuf);
833 if (unlikely(lkey == (uint32_t)-1)) {
834 DEBUG("%p: unable to get MP <-> MR association",
835 (void *)txq);
836 return NULL;
837 }
838 mlx4_fill_tx_data_seg(dseg, lkey,
839 rte_pktmbuf_mtod(sbuf, uintptr_t),
840 rte_cpu_to_be_32(sbuf->data_len ?
841 sbuf->data_len :
842 0x80000000));
843 nb_segs--;
844 if (nb_segs) {
845 sbuf = sbuf->next;
846 dseg++;
847 goto txbb_head_seg;
848 }
849 /* fallthrough */
850 case 0:
851 break;
852 }
853 /* Write the first DWORD of each TXBB save earlier. */
854 if (pv_counter) {
855 /* Need a barrier here before writing the byte_count. */
856 rte_io_wmb();
857 for (--pv_counter; pv_counter >= 0; pv_counter--)
858 pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
859 }
860 sq->remain_size -= wqe_size;
861 /* Align next WQE address to the next TXBB. */
862 return (volatile struct mlx4_wqe_ctrl_seg *)
863 ((volatile uint8_t *)ctrl + wqe_size);
864 }
865
866 /**
867 * DPDK callback for Tx.
868 *
869 * @param dpdk_txq
870 * Generic pointer to Tx queue structure.
871 * @param[in] pkts
872 * Packets to transmit.
873 * @param pkts_n
874 * Number of packets in array.
875 *
876 * @return
877 * Number of packets successfully transmitted (<= pkts_n).
878 */
879 uint16_t
880 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
881 {
882 struct txq *txq = (struct txq *)dpdk_txq;
883 unsigned int elts_head = txq->elts_head;
884 const unsigned int elts_n = txq->elts_n;
885 const unsigned int elts_m = elts_n - 1;
886 unsigned int bytes_sent = 0;
887 unsigned int i;
888 unsigned int max = elts_head - txq->elts_tail;
889 struct mlx4_sq *sq = &txq->msq;
890 volatile struct mlx4_wqe_ctrl_seg *ctrl;
891 struct txq_elt *elt;
892
893 assert(txq->elts_comp_cd != 0);
894 if (likely(max >= txq->elts_comp_cd_init))
895 mlx4_txq_complete(txq, elts_m, sq);
896 max = elts_n - max;
897 assert(max >= 1);
898 assert(max <= elts_n);
899 /* Always leave one free entry in the ring. */
900 --max;
901 if (max > pkts_n)
902 max = pkts_n;
903 elt = &(*txq->elts)[elts_head & elts_m];
904 /* First Tx burst element saves the next WQE control segment. */
905 ctrl = elt->wqe;
906 for (i = 0; (i != max); ++i) {
907 struct rte_mbuf *buf = pkts[i];
908 struct txq_elt *elt_next = &(*txq->elts)[++elts_head & elts_m];
909 uint32_t owner_opcode = sq->owner_opcode;
910 volatile struct mlx4_wqe_data_seg *dseg =
911 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
912 volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
913 union {
914 uint32_t flags;
915 uint16_t flags16[2];
916 } srcrb;
917 uint32_t lkey;
918 bool tso = txq->priv->tso && (buf->ol_flags & PKT_TX_TCP_SEG);
919
920 /* Clean up old buffer. */
921 if (likely(elt->buf != NULL)) {
922 struct rte_mbuf *tmp = elt->buf;
923
924 #ifndef NDEBUG
925 /* Poisoning. */
926 memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
927 #endif
928 /* Faster than rte_pktmbuf_free(). */
929 do {
930 struct rte_mbuf *next = tmp->next;
931
932 rte_pktmbuf_free_seg(tmp);
933 tmp = next;
934 } while (tmp != NULL);
935 }
936 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
937 if (tso) {
938 /* Change opcode to TSO */
939 owner_opcode &= ~MLX4_OPCODE_CONFIG_CMD;
940 owner_opcode |= MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR;
941 ctrl_next = mlx4_tx_burst_tso(buf, txq, ctrl);
942 if (!ctrl_next) {
943 elt->buf = NULL;
944 break;
945 }
946 } else if (buf->nb_segs == 1) {
947 /* Validate WQE space in the send queue. */
948 if (sq->remain_size < MLX4_TXBB_SIZE) {
949 elt->buf = NULL;
950 break;
951 }
952 lkey = mlx4_tx_mb2mr(txq, buf);
953 if (unlikely(lkey == (uint32_t)-1)) {
954 /* MR does not exist. */
955 DEBUG("%p: unable to get MP <-> MR association",
956 (void *)txq);
957 elt->buf = NULL;
958 break;
959 }
960 mlx4_fill_tx_data_seg(dseg++, lkey,
961 rte_pktmbuf_mtod(buf, uintptr_t),
962 rte_cpu_to_be_32(buf->data_len));
963 /* Set WQE size in 16-byte units. */
964 ctrl->fence_size = 0x2;
965 sq->remain_size -= MLX4_TXBB_SIZE;
966 /* Align next WQE address to the next TXBB. */
967 ctrl_next = ctrl + 0x4;
968 } else {
969 ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
970 if (!ctrl_next) {
971 elt->buf = NULL;
972 break;
973 }
974 }
975 /* Hold SQ ring wrap around. */
976 if ((volatile uint8_t *)ctrl_next >= sq->eob) {
977 ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
978 ((volatile uint8_t *)ctrl_next - sq->size);
979 /* Flip HW valid ownership. */
980 sq->owner_opcode ^= 1u << MLX4_SQ_OWNER_BIT;
981 }
982 /*
983 * For raw Ethernet, the SOLICIT flag is used to indicate
984 * that no ICRC should be calculated.
985 */
986 if (--txq->elts_comp_cd == 0) {
987 /* Save the completion burst end address. */
988 elt_next->eocb = (volatile uint32_t *)ctrl_next;
989 txq->elts_comp_cd = txq->elts_comp_cd_init;
990 srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
991 MLX4_WQE_CTRL_CQ_UPDATE);
992 } else {
993 srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
994 }
995 /* Enable HW checksum offload if requested */
996 if (txq->csum &&
997 (buf->ol_flags &
998 (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
999 const uint64_t is_tunneled = (buf->ol_flags &
1000 (PKT_TX_TUNNEL_GRE |
1001 PKT_TX_TUNNEL_VXLAN));
1002
1003 if (is_tunneled && txq->csum_l2tun) {
1004 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
1005 MLX4_WQE_CTRL_IL4_HDR_CSUM;
1006 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
1007 srcrb.flags |=
1008 RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
1009 } else {
1010 srcrb.flags |=
1011 RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
1012 MLX4_WQE_CTRL_TCP_UDP_CSUM);
1013 }
1014 }
1015 if (txq->lb) {
1016 /*
1017 * Copy destination MAC address to the WQE, this allows
1018 * loopback in eSwitch, so that VFs and PF can
1019 * communicate with each other.
1020 */
1021 srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
1022 ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
1023 sizeof(uint16_t)));
1024 } else {
1025 ctrl->imm = 0;
1026 }
1027 ctrl->srcrb_flags = srcrb.flags;
1028 /*
1029 * Make sure descriptor is fully written before
1030 * setting ownership bit (because HW can start
1031 * executing as soon as we do).
1032 */
1033 rte_io_wmb();
1034 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
1035 elt->buf = buf;
1036 bytes_sent += buf->pkt_len;
1037 ctrl = ctrl_next;
1038 elt = elt_next;
1039 }
1040 /* Take a shortcut if nothing must be sent. */
1041 if (unlikely(i == 0))
1042 return 0;
1043 /* Save WQE address of the next Tx burst element. */
1044 elt->wqe = ctrl;
1045 /* Increment send statistics counters. */
1046 txq->stats.opackets += i;
1047 txq->stats.obytes += bytes_sent;
1048 /* Make sure that descriptors are written before doorbell record. */
1049 rte_wmb();
1050 /* Ring QP doorbell. */
1051 rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
1052 txq->elts_head += i;
1053 return i;
1054 }
1055
1056 /**
1057 * Translate Rx completion flags to packet type.
1058 *
1059 * @param[in] cqe
1060 * Pointer to CQE.
1061 *
1062 * @return
1063 * Packet type for struct rte_mbuf.
1064 */
1065 static inline uint32_t
1066 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
1067 uint32_t l2tun_offload)
1068 {
1069 uint8_t idx = 0;
1070 uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
1071 uint32_t status = rte_be_to_cpu_32(cqe->status);
1072
1073 /*
1074 * The index to the array should have:
1075 * bit[7] - MLX4_CQE_L2_TUNNEL
1076 * bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
1077 */
1078 if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
1079 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
1080 ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
1081 /*
1082 * The index to the array should have:
1083 * bit[5] - MLX4_CQE_STATUS_UDP
1084 * bit[4] - MLX4_CQE_STATUS_TCP
1085 * bit[3] - MLX4_CQE_STATUS_IPV4OPT
1086 * bit[2] - MLX4_CQE_STATUS_IPV6
1087 * bit[1] - MLX4_CQE_STATUS_IPF
1088 * bit[0] - MLX4_CQE_STATUS_IPV4
1089 * giving a total of up to 256 entries.
1090 */
1091 idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
1092 if (status & MLX4_CQE_STATUS_IPV6)
1093 idx |= ((status & MLX4_CQE_STATUS_IPV6F) >> 11);
1094 return mlx4_ptype_table[idx];
1095 }
1096
1097 /**
1098 * Translate Rx completion flags to offload flags.
1099 *
1100 * @param flags
1101 * Rx completion flags returned by mlx4_cqe_flags().
1102 * @param csum
1103 * Whether Rx checksums are enabled.
1104 * @param csum_l2tun
1105 * Whether Rx L2 tunnel checksums are enabled.
1106 *
1107 * @return
1108 * Offload flags (ol_flags) in mbuf format.
1109 */
1110 static inline uint32_t
1111 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
1112 {
1113 uint32_t ol_flags = 0;
1114
1115 if (csum)
1116 ol_flags |=
1117 mlx4_transpose(flags,
1118 MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
1119 PKT_RX_IP_CKSUM_GOOD) |
1120 mlx4_transpose(flags,
1121 MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
1122 PKT_RX_L4_CKSUM_GOOD);
1123 if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
1124 ol_flags |=
1125 mlx4_transpose(flags,
1126 MLX4_CQE_L2_TUNNEL_IPOK,
1127 PKT_RX_IP_CKSUM_GOOD) |
1128 mlx4_transpose(flags,
1129 MLX4_CQE_L2_TUNNEL_L4_CSUM,
1130 PKT_RX_L4_CKSUM_GOOD);
1131 return ol_flags;
1132 }
1133
1134 /**
1135 * Extract checksum information from CQE flags.
1136 *
1137 * @param cqe
1138 * Pointer to CQE structure.
1139 * @param csum
1140 * Whether Rx checksums are enabled.
1141 * @param csum_l2tun
1142 * Whether Rx L2 tunnel checksums are enabled.
1143 *
1144 * @return
1145 * CQE checksum information.
1146 */
1147 static inline uint32_t
1148 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
1149 {
1150 uint32_t flags = 0;
1151
1152 /*
1153 * The relevant bits are in different locations on their
1154 * CQE fields therefore we can join them in one 32bit
1155 * variable.
1156 */
1157 if (csum)
1158 flags = (rte_be_to_cpu_32(cqe->status) &
1159 MLX4_CQE_STATUS_IPV4_CSUM_OK);
1160 if (csum_l2tun)
1161 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
1162 (MLX4_CQE_L2_TUNNEL |
1163 MLX4_CQE_L2_TUNNEL_IPOK |
1164 MLX4_CQE_L2_TUNNEL_L4_CSUM |
1165 MLX4_CQE_L2_TUNNEL_IPV4));
1166 return flags;
1167 }
1168
1169 /**
1170 * Poll one CQE from CQ.
1171 *
1172 * @param rxq
1173 * Pointer to the receive queue structure.
1174 * @param[out] out
1175 * Just polled CQE.
1176 *
1177 * @return
1178 * Number of bytes of the CQE, 0 in case there is no completion.
1179 */
1180 static unsigned int
1181 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
1182 {
1183 int ret = 0;
1184 volatile struct mlx4_cqe *cqe = NULL;
1185 struct mlx4_cq *cq = &rxq->mcq;
1186
1187 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
1188 if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
1189 !!(cq->cons_index & cq->cqe_cnt))
1190 goto out;
1191 /*
1192 * Make sure we read CQ entry contents after we've checked the
1193 * ownership bit.
1194 */
1195 rte_rmb();
1196 assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
1197 assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
1198 MLX4_CQE_OPCODE_ERROR);
1199 ret = rte_be_to_cpu_32(cqe->byte_cnt);
1200 ++cq->cons_index;
1201 out:
1202 *out = cqe;
1203 return ret;
1204 }
1205
1206 /**
1207 * DPDK callback for Rx with scattered packets support.
1208 *
1209 * @param dpdk_rxq
1210 * Generic pointer to Rx queue structure.
1211 * @param[out] pkts
1212 * Array to store received packets.
1213 * @param pkts_n
1214 * Maximum number of packets in array.
1215 *
1216 * @return
1217 * Number of packets successfully received (<= pkts_n).
1218 */
1219 uint16_t
1220 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1221 {
1222 struct rxq *rxq = dpdk_rxq;
1223 const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
1224 const uint16_t sges_n = rxq->sges_n;
1225 struct rte_mbuf *pkt = NULL;
1226 struct rte_mbuf *seg = NULL;
1227 unsigned int i = 0;
1228 uint32_t rq_ci = rxq->rq_ci << sges_n;
1229 int len = 0;
1230
1231 while (pkts_n) {
1232 volatile struct mlx4_cqe *cqe;
1233 uint32_t idx = rq_ci & wr_cnt;
1234 struct rte_mbuf *rep = (*rxq->elts)[idx];
1235 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
1236
1237 /* Update the 'next' pointer of the previous segment. */
1238 if (pkt)
1239 seg->next = rep;
1240 seg = rep;
1241 rte_prefetch0(seg);
1242 rte_prefetch0(scat);
1243 rep = rte_mbuf_raw_alloc(rxq->mp);
1244 if (unlikely(rep == NULL)) {
1245 ++rxq->stats.rx_nombuf;
1246 if (!pkt) {
1247 /*
1248 * No buffers before we even started,
1249 * bail out silently.
1250 */
1251 break;
1252 }
1253 while (pkt != seg) {
1254 assert(pkt != (*rxq->elts)[idx]);
1255 rep = pkt->next;
1256 pkt->next = NULL;
1257 pkt->nb_segs = 1;
1258 rte_mbuf_raw_free(pkt);
1259 pkt = rep;
1260 }
1261 break;
1262 }
1263 if (!pkt) {
1264 /* Looking for the new packet. */
1265 len = mlx4_cq_poll_one(rxq, &cqe);
1266 if (!len) {
1267 rte_mbuf_raw_free(rep);
1268 break;
1269 }
1270 if (unlikely(len < 0)) {
1271 /* Rx error, packet is likely too large. */
1272 rte_mbuf_raw_free(rep);
1273 ++rxq->stats.idropped;
1274 goto skip;
1275 }
1276 pkt = seg;
1277 assert(len >= (rxq->crc_present << 2));
1278 /* Update packet information. */
1279 pkt->packet_type =
1280 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
1281 pkt->ol_flags = PKT_RX_RSS_HASH;
1282 pkt->hash.rss = cqe->immed_rss_invalid;
1283 if (rxq->crc_present)
1284 len -= ETHER_CRC_LEN;
1285 pkt->pkt_len = len;
1286 if (rxq->csum | rxq->csum_l2tun) {
1287 uint32_t flags =
1288 mlx4_cqe_flags(cqe,
1289 rxq->csum,
1290 rxq->csum_l2tun);
1291
1292 pkt->ol_flags =
1293 rxq_cq_to_ol_flags(flags,
1294 rxq->csum,
1295 rxq->csum_l2tun);
1296 }
1297 }
1298 rep->nb_segs = 1;
1299 rep->port = rxq->port_id;
1300 rep->data_len = seg->data_len;
1301 rep->data_off = seg->data_off;
1302 (*rxq->elts)[idx] = rep;
1303 /*
1304 * Fill NIC descriptor with the new buffer. The lkey and size
1305 * of the buffers are already known, only the buffer address
1306 * changes.
1307 */
1308 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1309 /* If there's only one MR, no need to replace LKey in WQE. */
1310 if (unlikely(mlx4_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
1311 scat->lkey = mlx4_rx_mb2mr(rxq, rep);
1312 if (len > seg->data_len) {
1313 len -= seg->data_len;
1314 ++pkt->nb_segs;
1315 ++rq_ci;
1316 continue;
1317 }
1318 /* The last segment. */
1319 seg->data_len = len;
1320 /* Increment bytes counter. */
1321 rxq->stats.ibytes += pkt->pkt_len;
1322 /* Return packet. */
1323 *(pkts++) = pkt;
1324 pkt = NULL;
1325 --pkts_n;
1326 ++i;
1327 skip:
1328 /* Align consumer index to the next stride. */
1329 rq_ci >>= sges_n;
1330 ++rq_ci;
1331 rq_ci <<= sges_n;
1332 }
1333 if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1334 return 0;
1335 /* Update the consumer index. */
1336 rxq->rq_ci = rq_ci >> sges_n;
1337 rte_wmb();
1338 *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1339 *rxq->mcq.set_ci_db =
1340 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1341 /* Increment packets counter. */
1342 rxq->stats.ipackets += i;
1343 return i;
1344 }
1345
1346 /**
1347 * Dummy DPDK callback for Tx.
1348 *
1349 * This function is used to temporarily replace the real callback during
1350 * unsafe control operations on the queue, or in case of error.
1351 *
1352 * @param dpdk_txq
1353 * Generic pointer to Tx queue structure.
1354 * @param[in] pkts
1355 * Packets to transmit.
1356 * @param pkts_n
1357 * Number of packets in array.
1358 *
1359 * @return
1360 * Number of packets successfully transmitted (<= pkts_n).
1361 */
1362 uint16_t
1363 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1364 {
1365 (void)dpdk_txq;
1366 (void)pkts;
1367 (void)pkts_n;
1368 return 0;
1369 }
1370
1371 /**
1372 * Dummy DPDK callback for Rx.
1373 *
1374 * This function is used to temporarily replace the real callback during
1375 * unsafe control operations on the queue, or in case of error.
1376 *
1377 * @param dpdk_rxq
1378 * Generic pointer to Rx queue structure.
1379 * @param[out] pkts
1380 * Array to store received packets.
1381 * @param pkts_n
1382 * Maximum number of packets in array.
1383 *
1384 * @return
1385 * Number of packets successfully received (<= pkts_n).
1386 */
1387 uint16_t
1388 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1389 {
1390 (void)dpdk_rxq;
1391 (void)pkts;
1392 (void)pkts_n;
1393 return 0;
1394 }