]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/mlx5/mlx5_rxtx_vec_sse.h
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / mlx5 / mlx5_rxtx_vec_sse.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2017 6WIND S.A.
3 * Copyright 2017 Mellanox Technologies, Ltd
4 */
5
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
8
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <smmintrin.h>
13
14 #include <rte_mbuf.h>
15 #include <rte_mempool.h>
16 #include <rte_prefetch.h>
17
18 #include <mlx5_prm.h>
19
20 #include "mlx5_defs.h"
21 #include "mlx5.h"
22 #include "mlx5_utils.h"
23 #include "mlx5_rxtx.h"
24 #include "mlx5_rxtx_vec.h"
25 #include "mlx5_autoconf.h"
26
27 #ifndef __INTEL_COMPILER
28 #pragma GCC diagnostic ignored "-Wcast-qual"
29 #endif
30
31 /**
32 * Store free buffers to RX SW ring.
33 *
34 * @param rxq
35 * Pointer to RX queue structure.
36 * @param pkts
37 * Pointer to array of packets to be stored.
38 * @param pkts_n
39 * Number of packets to be stored.
40 */
41 static inline void
42 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
43 {
44 const uint16_t q_mask = (1 << rxq->elts_n) - 1;
45 struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
46 unsigned int pos;
47 uint16_t p = n & -2;
48
49 for (pos = 0; pos < p; pos += 2) {
50 __m128i mbp;
51
52 mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
53 _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
54 }
55 if (n & 1)
56 pkts[pos] = elts[pos];
57 }
58
59 /**
60 * Decompress a compressed completion and fill in mbufs in RX SW ring with data
61 * extracted from the title completion descriptor.
62 *
63 * @param rxq
64 * Pointer to RX queue structure.
65 * @param cq
66 * Pointer to completion array having a compressed completion at first.
67 * @param elts
68 * Pointer to SW ring to be filled. The first mbuf has to be pre-built from
69 * the title completion descriptor to be copied to the rest of mbufs.
70 *
71 * @return
72 * Number of mini-CQEs successfully decompressed.
73 */
74 static inline uint16_t
75 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
76 struct rte_mbuf **elts)
77 {
78 volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
79 struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
80 unsigned int pos;
81 unsigned int i;
82 unsigned int inv = 0;
83 /* Mask to shuffle from extracted mini CQE to mbuf. */
84 const __m128i shuf_mask1 =
85 _mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */
86 -1, -1, /* skip vlan_tci */
87 6, 7, /* data_len, bswap16 */
88 -1, -1, 6, 7, /* pkt_len, bswap16 */
89 -1, -1, -1, -1 /* skip packet_type */);
90 const __m128i shuf_mask2 =
91 _mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */
92 -1, -1, /* skip vlan_tci */
93 14, 15, /* data_len, bswap16 */
94 -1, -1, 14, 15, /* pkt_len, bswap16 */
95 -1, -1, -1, -1 /* skip packet_type */);
96 /* Restore the compressed count. Must be 16 bits. */
97 const uint16_t mcqe_n = t_pkt->data_len +
98 (rxq->crc_present * RTE_ETHER_CRC_LEN);
99 const __m128i rearm =
100 _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
101 const __m128i rxdf =
102 _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
103 const __m128i crc_adj =
104 _mm_set_epi16(0, 0, 0,
105 rxq->crc_present * RTE_ETHER_CRC_LEN,
106 0,
107 rxq->crc_present * RTE_ETHER_CRC_LEN,
108 0, 0);
109 const uint32_t flow_tag = t_pkt->hash.fdir.hi;
110 #ifdef MLX5_PMD_SOFT_COUNTERS
111 const __m128i zero = _mm_setzero_si128();
112 const __m128i ones = _mm_cmpeq_epi32(zero, zero);
113 uint32_t rcvd_byte = 0;
114 /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
115 const __m128i len_shuf_mask =
116 _mm_set_epi8(-1, -1, -1, -1,
117 -1, -1, -1, -1,
118 14, 15, 6, 7,
119 10, 11, 2, 3);
120 #endif
121 /*
122 * A. load mCQEs into a 128bit register.
123 * B. store rearm data to mbuf.
124 * C. combine data from mCQEs with rx_descriptor_fields1.
125 * D. store rx_descriptor_fields1.
126 * E. store flow tag (rte_flow mark).
127 */
128 for (pos = 0; pos < mcqe_n; ) {
129 __m128i mcqe1, mcqe2;
130 __m128i rxdf1, rxdf2;
131 #ifdef MLX5_PMD_SOFT_COUNTERS
132 __m128i byte_cnt, invalid_mask;
133 #endif
134
135 for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
136 if (likely(pos + i < mcqe_n))
137 rte_prefetch0((void *)(cq + pos + i));
138
139 /* A.1 load mCQEs into a 128bit register. */
140 mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
141 mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
142 /* B.1 store rearm data to mbuf. */
143 _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
144 _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
145 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
146 rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
147 rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
148 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
149 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
150 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
151 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
152 /* D.1 store rx_descriptor_fields1. */
153 _mm_storeu_si128((__m128i *)
154 &elts[pos]->rx_descriptor_fields1,
155 rxdf1);
156 _mm_storeu_si128((__m128i *)
157 &elts[pos + 1]->rx_descriptor_fields1,
158 rxdf2);
159 /* B.1 store rearm data to mbuf. */
160 _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
161 _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
162 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
163 rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
164 rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
165 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
166 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
167 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
168 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
169 /* D.1 store rx_descriptor_fields1. */
170 _mm_storeu_si128((__m128i *)
171 &elts[pos + 2]->rx_descriptor_fields1,
172 rxdf1);
173 _mm_storeu_si128((__m128i *)
174 &elts[pos + 3]->rx_descriptor_fields1,
175 rxdf2);
176 #ifdef MLX5_PMD_SOFT_COUNTERS
177 invalid_mask = _mm_set_epi64x(0,
178 (mcqe_n - pos) *
179 sizeof(uint16_t) * 8);
180 invalid_mask = _mm_sll_epi64(ones, invalid_mask);
181 mcqe1 = _mm_srli_si128(mcqe1, 4);
182 byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
183 byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
184 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
185 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
186 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
187 #endif
188 if (rxq->mark) {
189 /* E.1 store flow tag (rte_flow mark). */
190 elts[pos]->hash.fdir.hi = flow_tag;
191 elts[pos + 1]->hash.fdir.hi = flow_tag;
192 elts[pos + 2]->hash.fdir.hi = flow_tag;
193 elts[pos + 3]->hash.fdir.hi = flow_tag;
194 }
195 if (rxq->dynf_meta) {
196 int32_t offs = rxq->flow_meta_offset;
197 const uint32_t meta =
198 *RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
199
200 /* Check if title packet has valid metadata. */
201 if (meta) {
202 MLX5_ASSERT(t_pkt->ol_flags &
203 rxq->flow_meta_mask);
204 *RTE_MBUF_DYNFIELD(elts[pos], offs,
205 uint32_t *) = meta;
206 *RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
207 uint32_t *) = meta;
208 *RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
209 uint32_t *) = meta;
210 *RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
211 uint32_t *) = meta;
212 }
213 }
214 pos += MLX5_VPMD_DESCS_PER_LOOP;
215 /* Move to next CQE and invalidate consumed CQEs. */
216 if (!(pos & 0x7) && pos < mcqe_n) {
217 mcq = (void *)(cq + pos);
218 for (i = 0; i < 8; ++i)
219 cq[inv++].op_own = MLX5_CQE_INVALIDATE;
220 }
221 }
222 /* Invalidate the rest of CQEs. */
223 for (; inv < mcqe_n; ++inv)
224 cq[inv].op_own = MLX5_CQE_INVALIDATE;
225 #ifdef MLX5_PMD_SOFT_COUNTERS
226 rxq->stats.ipackets += mcqe_n;
227 rxq->stats.ibytes += rcvd_byte;
228 #endif
229 rxq->cq_ci += mcqe_n;
230 return mcqe_n;
231 }
232
233 /**
234 * Calculate packet type and offload flag for mbuf and store it.
235 *
236 * @param rxq
237 * Pointer to RX queue structure.
238 * @param cqes[4]
239 * Array of four 16bytes completions extracted from the original completion
240 * descriptor.
241 * @param op_err
242 * Opcode vector having responder error status. Each field is 4B.
243 * @param pkts
244 * Pointer to array of packets to be filled.
245 */
246 static inline void
247 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
248 __m128i op_err, struct rte_mbuf **pkts)
249 {
250 __m128i pinfo0, pinfo1;
251 __m128i pinfo, ptype;
252 __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
253 rxq->hw_timestamp * PKT_RX_TIMESTAMP);
254 __m128i cv_flags;
255 const __m128i zero = _mm_setzero_si128();
256 const __m128i ptype_mask =
257 _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
258 const __m128i ptype_ol_mask =
259 _mm_set_epi32(0x106, 0x106, 0x106, 0x106);
260 const __m128i pinfo_mask =
261 _mm_set_epi32(0x3, 0x3, 0x3, 0x3);
262 const __m128i cv_flag_sel =
263 _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
264 (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
265 PKT_RX_L4_CKSUM_GOOD) >> 1),
266 0,
267 (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
268 0,
269 (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
270 (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
271 0);
272 const __m128i cv_mask =
273 _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
274 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
275 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
276 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
277 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
278 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
279 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
280 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
281 const __m128i mbuf_init =
282 _mm_load_si128((__m128i *)&rxq->mbuf_initializer);
283 __m128i rearm0, rearm1, rearm2, rearm3;
284 uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
285
286 /* Extract pkt_info field. */
287 pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
288 pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
289 pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
290 /* Extract hdr_type_etc field. */
291 pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
292 pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
293 ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
294 if (rxq->mark) {
295 const __m128i pinfo_ft_mask =
296 _mm_set_epi32(0xffffff00, 0xffffff00,
297 0xffffff00, 0xffffff00);
298 const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
299 __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
300 __m128i flow_tag, invalid_mask;
301
302 flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
303 /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
304 invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
305 ol_flags = _mm_or_si128(ol_flags,
306 _mm_andnot_si128(invalid_mask,
307 fdir_flags));
308 /* Mask out invalid entries. */
309 fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
310 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
311 ol_flags = _mm_or_si128(ol_flags,
312 _mm_andnot_si128(
313 _mm_cmpeq_epi32(flow_tag,
314 pinfo_ft_mask),
315 fdir_id_flags));
316 }
317 /*
318 * Merge the two fields to generate the following:
319 * bit[1] = l3_ok
320 * bit[2] = l4_ok
321 * bit[8] = cv
322 * bit[11:10] = l3_hdr_type
323 * bit[14:12] = l4_hdr_type
324 * bit[15] = ip_frag
325 * bit[16] = tunneled
326 * bit[17] = outer_l3_type
327 */
328 ptype = _mm_and_si128(ptype, ptype_mask);
329 pinfo = _mm_and_si128(pinfo, pinfo_mask);
330 pinfo = _mm_slli_epi32(pinfo, 16);
331 /* Make pinfo has merged fields for ol_flags calculation. */
332 pinfo = _mm_or_si128(ptype, pinfo);
333 ptype = _mm_srli_epi32(pinfo, 10);
334 ptype = _mm_packs_epi32(ptype, zero);
335 /* Errored packets will have RTE_PTYPE_ALL_MASK. */
336 op_err = _mm_srli_epi16(op_err, 8);
337 ptype = _mm_or_si128(ptype, op_err);
338 pt_idx0 = _mm_extract_epi8(ptype, 0);
339 pt_idx1 = _mm_extract_epi8(ptype, 2);
340 pt_idx2 = _mm_extract_epi8(ptype, 4);
341 pt_idx3 = _mm_extract_epi8(ptype, 6);
342 pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
343 !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
344 pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
345 !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
346 pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
347 !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
348 pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
349 !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
350 /* Fill flags for checksum and VLAN. */
351 pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
352 pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
353 /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
354 cv_flags = _mm_slli_epi32(pinfo, 9);
355 cv_flags = _mm_or_si128(pinfo, cv_flags);
356 /* Move back flags to start from byte[0]. */
357 cv_flags = _mm_srli_epi32(cv_flags, 8);
358 /* Mask out garbage bits. */
359 cv_flags = _mm_and_si128(cv_flags, cv_mask);
360 /* Merge to ol_flags. */
361 ol_flags = _mm_or_si128(ol_flags, cv_flags);
362 /* Merge mbuf_init and ol_flags. */
363 rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
364 rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
365 rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
366 rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
367 /* Write 8B rearm_data and 8B ol_flags. */
368 _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
369 _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
370 _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
371 _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
372 }
373
374 /**
375 * Receive burst of packets. An errored completion also consumes a mbuf, but the
376 * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
377 * before returning to application.
378 *
379 * @param rxq
380 * Pointer to RX queue structure.
381 * @param[out] pkts
382 * Array to store received packets.
383 * @param pkts_n
384 * Maximum number of packets in array.
385 * @param[out] err
386 * Pointer to a flag. Set non-zero value if pkts array has at least one error
387 * packet to handle.
388 *
389 * @return
390 * Number of packets received including errors (<= pkts_n).
391 */
392 static inline uint16_t
393 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
394 uint64_t *err)
395 {
396 const uint16_t q_n = 1 << rxq->cqe_n;
397 const uint16_t q_mask = q_n - 1;
398 volatile struct mlx5_cqe *cq;
399 struct rte_mbuf **elts;
400 unsigned int pos;
401 uint64_t n;
402 uint16_t repl_n;
403 uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
404 uint16_t nocmp_n = 0;
405 uint16_t rcvd_pkt = 0;
406 unsigned int cq_idx = rxq->cq_ci & q_mask;
407 unsigned int elts_idx;
408 unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
409 const __m128i owner_check =
410 _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
411 const __m128i opcode_check =
412 _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
413 const __m128i format_check =
414 _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
415 const __m128i resp_err_check =
416 _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
417 #ifdef MLX5_PMD_SOFT_COUNTERS
418 uint32_t rcvd_byte = 0;
419 /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
420 const __m128i len_shuf_mask =
421 _mm_set_epi8(-1, -1, -1, -1,
422 -1, -1, -1, -1,
423 12, 13, 8, 9,
424 4, 5, 0, 1);
425 #endif
426 /* Mask to shuffle from extracted CQE to mbuf. */
427 const __m128i shuf_mask =
428 _mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */
429 12, 13, 14, 15, /* rss, bswap32 */
430 10, 11, /* vlan_tci, bswap16 */
431 4, 5, /* data_len, bswap16 */
432 -1, -1, /* zero out 2nd half of pkt_len */
433 4, 5 /* pkt_len, bswap16 */);
434 /* Mask to blend from the last Qword to the first DQword. */
435 const __m128i blend_mask =
436 _mm_set_epi8(-1, -1, -1, -1,
437 -1, -1, -1, -1,
438 0, 0, 0, 0,
439 0, 0, 0, -1);
440 const __m128i zero = _mm_setzero_si128();
441 const __m128i ones = _mm_cmpeq_epi32(zero, zero);
442 const __m128i crc_adj =
443 _mm_set_epi16(0, 0, 0, 0, 0,
444 rxq->crc_present * RTE_ETHER_CRC_LEN,
445 0,
446 rxq->crc_present * RTE_ETHER_CRC_LEN);
447 const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
448
449 MLX5_ASSERT(rxq->sges_n == 0);
450 MLX5_ASSERT(rxq->cqe_n == rxq->elts_n);
451 cq = &(*rxq->cqes)[cq_idx];
452 rte_prefetch0(cq);
453 rte_prefetch0(cq + 1);
454 rte_prefetch0(cq + 2);
455 rte_prefetch0(cq + 3);
456 pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
457 repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
458 if (repl_n >= rxq->rq_repl_thresh)
459 mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
460 /* See if there're unreturned mbufs from compressed CQE. */
461 rcvd_pkt = rxq->decompressed;
462 if (rcvd_pkt > 0) {
463 rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
464 rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
465 rxq->rq_pi += rcvd_pkt;
466 rxq->decompressed -= rcvd_pkt;
467 pkts += rcvd_pkt;
468 }
469 elts_idx = rxq->rq_pi & q_mask;
470 elts = &(*rxq->elts)[elts_idx];
471 /* Not to overflow pkts array. */
472 pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
473 /* Not to cross queue end. */
474 pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
475 pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
476 if (!pkts_n)
477 return rcvd_pkt;
478 /* At this point, there shouldn't be any remained packets. */
479 MLX5_ASSERT(rxq->decompressed == 0);
480 /*
481 * A. load first Qword (8bytes) in one loop.
482 * B. copy 4 mbuf pointers from elts ring to returing pkts.
483 * C. load remained CQE data and extract necessary fields.
484 * Final 16bytes cqes[] extracted from original 64bytes CQE has the
485 * following structure:
486 * struct {
487 * uint8_t pkt_info;
488 * uint8_t flow_tag[3];
489 * uint16_t byte_cnt;
490 * uint8_t rsvd4;
491 * uint8_t op_own;
492 * uint16_t hdr_type_etc;
493 * uint16_t vlan_info;
494 * uint32_t rx_has_res;
495 * } c;
496 * D. fill in mbuf.
497 * E. get valid CQEs.
498 * F. find compressed CQE.
499 */
500 for (pos = 0;
501 pos < pkts_n;
502 pos += MLX5_VPMD_DESCS_PER_LOOP) {
503 __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
504 __m128i cqe_tmp1, cqe_tmp2;
505 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
506 __m128i op_own, op_own_tmp1, op_own_tmp2;
507 __m128i opcode, owner_mask, invalid_mask;
508 __m128i comp_mask;
509 __m128i mask;
510 #ifdef MLX5_PMD_SOFT_COUNTERS
511 __m128i byte_cnt;
512 #endif
513 __m128i mbp1, mbp2;
514 __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
515 unsigned int p1, p2, p3;
516
517 /* Prefetch next 4 CQEs. */
518 if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
519 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
520 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
521 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
522 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
523 }
524 /* A.0 do not cross the end of CQ. */
525 mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
526 mask = _mm_sll_epi64(ones, mask);
527 p = _mm_andnot_si128(mask, p);
528 /* A.1 load cqes. */
529 p3 = _mm_extract_epi16(p, 3);
530 cqes[3] = _mm_loadl_epi64((__m128i *)
531 &cq[pos + p3].sop_drop_qpn);
532 rte_compiler_barrier();
533 p2 = _mm_extract_epi16(p, 2);
534 cqes[2] = _mm_loadl_epi64((__m128i *)
535 &cq[pos + p2].sop_drop_qpn);
536 rte_compiler_barrier();
537 /* B.1 load mbuf pointers. */
538 mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
539 mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
540 /* A.1 load a block having op_own. */
541 p1 = _mm_extract_epi16(p, 1);
542 cqes[1] = _mm_loadl_epi64((__m128i *)
543 &cq[pos + p1].sop_drop_qpn);
544 rte_compiler_barrier();
545 cqes[0] = _mm_loadl_epi64((__m128i *)
546 &cq[pos].sop_drop_qpn);
547 /* B.2 copy mbuf pointers. */
548 _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
549 _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
550 rte_cio_rmb();
551 /* C.1 load remained CQE data and extract necessary fields. */
552 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
553 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
554 cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
555 cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
556 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
557 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
558 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
559 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
560 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
561 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
562 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
563 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
564 /* C.2 generate final structure for mbuf with swapping bytes. */
565 pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
566 pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
567 /* C.3 adjust CRC length. */
568 pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
569 pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
570 /* C.4 adjust flow mark. */
571 pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
572 pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
573 /* D.1 fill in mbuf - rx_descriptor_fields1. */
574 _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
575 _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
576 /* E.1 extract op_own field. */
577 op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
578 /* C.1 load remained CQE data and extract necessary fields. */
579 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
580 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
581 cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
582 cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
583 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
584 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
585 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
586 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
587 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
588 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
589 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
590 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
591 /* C.2 generate final structure for mbuf with swapping bytes. */
592 pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
593 pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
594 /* C.3 adjust CRC length. */
595 pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
596 pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
597 /* C.4 adjust flow mark. */
598 pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
599 pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
600 /* E.1 extract op_own byte. */
601 op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
602 op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
603 /* D.1 fill in mbuf - rx_descriptor_fields1. */
604 _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
605 _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
606 /* E.2 flip owner bit to mark CQEs from last round. */
607 owner_mask = _mm_and_si128(op_own, owner_check);
608 if (ownership)
609 owner_mask = _mm_xor_si128(owner_mask, owner_check);
610 owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
611 owner_mask = _mm_packs_epi32(owner_mask, zero);
612 /* E.3 get mask for invalidated CQEs. */
613 opcode = _mm_and_si128(op_own, opcode_check);
614 invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
615 invalid_mask = _mm_packs_epi32(invalid_mask, zero);
616 /* E.4 mask out beyond boundary. */
617 invalid_mask = _mm_or_si128(invalid_mask, mask);
618 /* E.5 merge invalid_mask with invalid owner. */
619 invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
620 /* F.1 find compressed CQE format. */
621 comp_mask = _mm_and_si128(op_own, format_check);
622 comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
623 comp_mask = _mm_packs_epi32(comp_mask, zero);
624 /* F.2 mask out invalid entries. */
625 comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
626 comp_idx = _mm_cvtsi128_si64(comp_mask);
627 /* F.3 get the first compressed CQE. */
628 comp_idx = comp_idx ?
629 __builtin_ctzll(comp_idx) /
630 (sizeof(uint16_t) * 8) :
631 MLX5_VPMD_DESCS_PER_LOOP;
632 /* E.6 mask out entries after the compressed CQE. */
633 mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
634 mask = _mm_sll_epi64(ones, mask);
635 invalid_mask = _mm_or_si128(invalid_mask, mask);
636 /* E.7 count non-compressed valid CQEs. */
637 n = _mm_cvtsi128_si64(invalid_mask);
638 n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
639 MLX5_VPMD_DESCS_PER_LOOP;
640 nocmp_n += n;
641 /* D.2 get the final invalid mask. */
642 mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
643 mask = _mm_sll_epi64(ones, mask);
644 invalid_mask = _mm_or_si128(invalid_mask, mask);
645 /* D.3 check error in opcode. */
646 opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
647 opcode = _mm_packs_epi32(opcode, zero);
648 opcode = _mm_andnot_si128(invalid_mask, opcode);
649 /* D.4 mark if any error is set */
650 *err |= _mm_cvtsi128_si64(opcode);
651 /* D.5 fill in mbuf - rearm_data and packet_type. */
652 rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
653 if (rxq->hw_timestamp) {
654 pkts[pos]->timestamp =
655 rte_be_to_cpu_64(cq[pos].timestamp);
656 pkts[pos + 1]->timestamp =
657 rte_be_to_cpu_64(cq[pos + p1].timestamp);
658 pkts[pos + 2]->timestamp =
659 rte_be_to_cpu_64(cq[pos + p2].timestamp);
660 pkts[pos + 3]->timestamp =
661 rte_be_to_cpu_64(cq[pos + p3].timestamp);
662 }
663 if (rxq->dynf_meta) {
664 /* This code is subject for futher optimization. */
665 int32_t offs = rxq->flow_meta_offset;
666
667 *RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
668 cq[pos].flow_table_metadata;
669 *RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
670 cq[pos + p1].flow_table_metadata;
671 *RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
672 cq[pos + p2].flow_table_metadata;
673 *RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
674 cq[pos + p3].flow_table_metadata;
675 if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
676 pkts[pos]->ol_flags |= rxq->flow_meta_mask;
677 if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
678 pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
679 if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
680 pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
681 if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
682 pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
683 }
684 #ifdef MLX5_PMD_SOFT_COUNTERS
685 /* Add up received bytes count. */
686 byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
687 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
688 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
689 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
690 #endif
691 /*
692 * Break the loop unless more valid CQE is expected, or if
693 * there's a compressed CQE.
694 */
695 if (n != MLX5_VPMD_DESCS_PER_LOOP)
696 break;
697 }
698 /* If no new CQE seen, return without updating cq_db. */
699 if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
700 return rcvd_pkt;
701 /* Update the consumer indexes for non-compressed CQEs. */
702 MLX5_ASSERT(nocmp_n <= pkts_n);
703 rxq->cq_ci += nocmp_n;
704 rxq->rq_pi += nocmp_n;
705 rcvd_pkt += nocmp_n;
706 #ifdef MLX5_PMD_SOFT_COUNTERS
707 rxq->stats.ipackets += nocmp_n;
708 rxq->stats.ibytes += rcvd_byte;
709 #endif
710 /* Decompress the last CQE if compressed. */
711 if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
712 MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
713 rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
714 &elts[nocmp_n]);
715 /* Return more packets if needed. */
716 if (nocmp_n < pkts_n) {
717 uint16_t n = rxq->decompressed;
718
719 n = RTE_MIN(n, pkts_n - nocmp_n);
720 rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
721 rxq->rq_pi += n;
722 rcvd_pkt += n;
723 rxq->decompressed -= n;
724 }
725 }
726 rte_compiler_barrier();
727 *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
728 return rcvd_pkt;
729 }
730
731 #endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */