]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/sfc/efsys.h
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / sfc / efsys.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2 *
3 * Copyright (c) 2016-2018 Solarflare Communications Inc.
4 * All rights reserved.
5 *
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
8 */
9
10 #ifndef _SFC_COMMON_EFSYS_H
11 #define _SFC_COMMON_EFSYS_H
12
13 #include <stdbool.h>
14
15 #include <rte_spinlock.h>
16 #include <rte_byteorder.h>
17 #include <rte_debug.h>
18 #include <rte_memzone.h>
19 #include <rte_memory.h>
20 #include <rte_memcpy.h>
21 #include <rte_cycles.h>
22 #include <rte_prefetch.h>
23 #include <rte_common.h>
24 #include <rte_malloc.h>
25 #include <rte_log.h>
26 #include <rte_io.h>
27
28 #include "sfc_debug.h"
29 #include "sfc_log.h"
30
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34
35 #define EFSYS_HAS_UINT64 1
36 #define EFSYS_USE_UINT64 1
37 #define EFSYS_HAS_SSE2_M128 1
38
39 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
40 #define EFSYS_IS_BIG_ENDIAN 1
41 #define EFSYS_IS_LITTLE_ENDIAN 0
42 #elif RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
43 #define EFSYS_IS_BIG_ENDIAN 0
44 #define EFSYS_IS_LITTLE_ENDIAN 1
45 #else
46 #error "Cannot determine system endianness"
47 #endif
48 #include "efx_types.h"
49
50
51 #ifndef _NOTE
52 #define _NOTE(s)
53 #endif
54
55 typedef bool boolean_t;
56
57 #ifndef B_FALSE
58 #define B_FALSE false
59 #endif
60 #ifndef B_TRUE
61 #define B_TRUE true
62 #endif
63
64 /*
65 * RTE_MAX() and RTE_MIN() cannot be used since braced-group within
66 * expression allowed only inside a function, but MAX() is used as
67 * a number of elements in array.
68 */
69 #ifndef MAX
70 #define MAX(v1, v2) ((v1) > (v2) ? (v1) : (v2))
71 #endif
72 #ifndef MIN
73 #define MIN(v1, v2) ((v1) < (v2) ? (v1) : (v2))
74 #endif
75
76 /* There are macros for alignment in DPDK, but we need to make a proper
77 * correspondence here, if we want to re-use them at all
78 */
79 #ifndef IS_P2ALIGNED
80 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
81 #endif
82
83 #ifndef P2ROUNDUP
84 #define P2ROUNDUP(x, align) (-(-(x) & -(align)))
85 #endif
86
87 #ifndef P2ALIGN
88 #define P2ALIGN(_x, _a) ((_x) & -(_a))
89 #endif
90
91 #ifndef IS2P
92 #define ISP2(x) rte_is_power_of_2(x)
93 #endif
94
95 #define ENOTACTIVE ENOTCONN
96
97 static inline void
98 prefetch_read_many(const volatile void *addr)
99 {
100 rte_prefetch0(addr);
101 }
102
103 static inline void
104 prefetch_read_once(const volatile void *addr)
105 {
106 rte_prefetch_non_temporal(addr);
107 }
108
109 /* Modifiers used for Windows builds */
110 #define __in
111 #define __in_opt
112 #define __in_ecount(_n)
113 #define __in_ecount_opt(_n)
114 #define __in_bcount(_n)
115 #define __in_bcount_opt(_n)
116
117 #define __out
118 #define __out_opt
119 #define __out_ecount(_n)
120 #define __out_ecount_opt(_n)
121 #define __out_bcount(_n)
122 #define __out_bcount_opt(_n)
123 #define __out_bcount_part(_n, _l)
124 #define __out_bcount_part_opt(_n, _l)
125
126 #define __deref_out
127
128 #define __inout
129 #define __inout_opt
130 #define __inout_ecount(_n)
131 #define __inout_ecount_opt(_n)
132 #define __inout_bcount(_n)
133 #define __inout_bcount_opt(_n)
134 #define __inout_bcount_full_opt(_n)
135
136 #define __deref_out_bcount_opt(n)
137
138 #define __checkReturn
139 #define __success(_x)
140
141 #define __drv_when(_p, _c)
142
143 /* Code inclusion options */
144
145
146 #define EFSYS_OPT_NAMES 1
147
148 /* Disable SFN5xxx/SFN6xxx since it requires specific support in the PMD */
149 #define EFSYS_OPT_SIENA 0
150 /* Enable SFN7xxx support */
151 #define EFSYS_OPT_HUNTINGTON 1
152 /* Enable SFN8xxx support */
153 #define EFSYS_OPT_MEDFORD 1
154 /* Enable SFN2xxx support */
155 #define EFSYS_OPT_MEDFORD2 1
156 #ifdef RTE_LIBRTE_SFC_EFX_DEBUG
157 #define EFSYS_OPT_CHECK_REG 1
158 #else
159 #define EFSYS_OPT_CHECK_REG 0
160 #endif
161
162 /* MCDI is required for SFN7xxx and SFN8xx */
163 #define EFSYS_OPT_MCDI 1
164 #define EFSYS_OPT_MCDI_LOGGING 1
165 #define EFSYS_OPT_MCDI_PROXY_AUTH 1
166
167 #define EFSYS_OPT_MAC_STATS 1
168
169 #define EFSYS_OPT_LOOPBACK 1
170
171 #define EFSYS_OPT_MON_MCDI 0
172 #define EFSYS_OPT_MON_STATS 0
173
174 #define EFSYS_OPT_PHY_STATS 0
175 #define EFSYS_OPT_BIST 0
176 #define EFSYS_OPT_PHY_LED_CONTROL 0
177 #define EFSYS_OPT_PHY_FLAGS 0
178
179 #define EFSYS_OPT_VPD 0
180 #define EFSYS_OPT_NVRAM 0
181 #define EFSYS_OPT_BOOTCFG 0
182 #define EFSYS_OPT_IMAGE_LAYOUT 0
183
184 #define EFSYS_OPT_DIAG 0
185 #define EFSYS_OPT_RX_SCALE 1
186 #define EFSYS_OPT_QSTATS 0
187 /* Filters support is required for SFN7xxx and SFN8xx */
188 #define EFSYS_OPT_FILTER 1
189 #define EFSYS_OPT_RX_SCATTER 0
190
191 #define EFSYS_OPT_EV_PREFETCH 0
192
193 #define EFSYS_OPT_DECODE_INTR_FATAL 0
194
195 #define EFSYS_OPT_LICENSING 0
196
197 #define EFSYS_OPT_ALLOW_UNCONFIGURED_NIC 0
198
199 #define EFSYS_OPT_RX_PACKED_STREAM 0
200
201 #define EFSYS_OPT_RX_ES_SUPER_BUFFER 1
202
203 #define EFSYS_OPT_TUNNEL 1
204
205 #define EFSYS_OPT_FW_SUBVARIANT_AWARE 1
206
207 /* ID */
208
209 typedef struct __efsys_identifier_s efsys_identifier_t;
210
211
212 #define EFSYS_PROBE(_name) \
213 do { } while (0)
214
215 #define EFSYS_PROBE1(_name, _type1, _arg1) \
216 do { } while (0)
217
218 #define EFSYS_PROBE2(_name, _type1, _arg1, _type2, _arg2) \
219 do { } while (0)
220
221 #define EFSYS_PROBE3(_name, _type1, _arg1, _type2, _arg2, \
222 _type3, _arg3) \
223 do { } while (0)
224
225 #define EFSYS_PROBE4(_name, _type1, _arg1, _type2, _arg2, \
226 _type3, _arg3, _type4, _arg4) \
227 do { } while (0)
228
229 #define EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \
230 _type3, _arg3, _type4, _arg4, _type5, _arg5) \
231 do { } while (0)
232
233 #define EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \
234 _type3, _arg3, _type4, _arg4, _type5, _arg5, \
235 _type6, _arg6) \
236 do { } while (0)
237
238 #define EFSYS_PROBE7(_name, _type1, _arg1, _type2, _arg2, \
239 _type3, _arg3, _type4, _arg4, _type5, _arg5, \
240 _type6, _arg6, _type7, _arg7) \
241 do { } while (0)
242
243
244 /* DMA */
245
246 typedef rte_iova_t efsys_dma_addr_t;
247
248 typedef struct efsys_mem_s {
249 const struct rte_memzone *esm_mz;
250 /*
251 * Ideally it should have volatile qualifier to denote that
252 * the memory may be updated by someone else. However, it adds
253 * qualifier discard warnings when the pointer or its derivative
254 * is passed to memset() or rte_mov16().
255 * So, skip the qualifier here, but make sure that it is added
256 * below in access macros.
257 */
258 void *esm_base;
259 efsys_dma_addr_t esm_addr;
260 } efsys_mem_t;
261
262
263 #define EFSYS_MEM_ZERO(_esmp, _size) \
264 do { \
265 (void)memset((void *)(_esmp)->esm_base, 0, (_size)); \
266 \
267 _NOTE(CONSTANTCONDITION); \
268 } while (B_FALSE)
269
270 #define EFSYS_MEM_READD(_esmp, _offset, _edp) \
271 do { \
272 volatile uint8_t *_base = (_esmp)->esm_base; \
273 volatile uint32_t *_addr; \
274 \
275 _NOTE(CONSTANTCONDITION); \
276 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
277 \
278 _addr = (volatile uint32_t *)(_base + (_offset)); \
279 (_edp)->ed_u32[0] = _addr[0]; \
280 \
281 EFSYS_PROBE2(mem_readl, unsigned int, (_offset), \
282 uint32_t, (_edp)->ed_u32[0]); \
283 \
284 _NOTE(CONSTANTCONDITION); \
285 } while (B_FALSE)
286
287 #define EFSYS_MEM_READQ(_esmp, _offset, _eqp) \
288 do { \
289 volatile uint8_t *_base = (_esmp)->esm_base; \
290 volatile uint64_t *_addr; \
291 \
292 _NOTE(CONSTANTCONDITION); \
293 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
294 \
295 _addr = (volatile uint64_t *)(_base + (_offset)); \
296 (_eqp)->eq_u64[0] = _addr[0]; \
297 \
298 EFSYS_PROBE3(mem_readq, unsigned int, (_offset), \
299 uint32_t, (_eqp)->eq_u32[1], \
300 uint32_t, (_eqp)->eq_u32[0]); \
301 \
302 _NOTE(CONSTANTCONDITION); \
303 } while (B_FALSE)
304
305 #define EFSYS_MEM_READO(_esmp, _offset, _eop) \
306 do { \
307 volatile uint8_t *_base = (_esmp)->esm_base; \
308 volatile __m128i *_addr; \
309 \
310 _NOTE(CONSTANTCONDITION); \
311 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
312 \
313 _addr = (volatile __m128i *)(_base + (_offset)); \
314 (_eop)->eo_u128[0] = _addr[0]; \
315 \
316 EFSYS_PROBE5(mem_reado, unsigned int, (_offset), \
317 uint32_t, (_eop)->eo_u32[3], \
318 uint32_t, (_eop)->eo_u32[2], \
319 uint32_t, (_eop)->eo_u32[1], \
320 uint32_t, (_eop)->eo_u32[0]); \
321 \
322 _NOTE(CONSTANTCONDITION); \
323 } while (B_FALSE)
324
325
326 #define EFSYS_MEM_WRITED(_esmp, _offset, _edp) \
327 do { \
328 volatile uint8_t *_base = (_esmp)->esm_base; \
329 volatile uint32_t *_addr; \
330 \
331 _NOTE(CONSTANTCONDITION); \
332 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
333 \
334 EFSYS_PROBE2(mem_writed, unsigned int, (_offset), \
335 uint32_t, (_edp)->ed_u32[0]); \
336 \
337 _addr = (volatile uint32_t *)(_base + (_offset)); \
338 _addr[0] = (_edp)->ed_u32[0]; \
339 \
340 _NOTE(CONSTANTCONDITION); \
341 } while (B_FALSE)
342
343 #define EFSYS_MEM_WRITEQ(_esmp, _offset, _eqp) \
344 do { \
345 volatile uint8_t *_base = (_esmp)->esm_base; \
346 volatile uint64_t *_addr; \
347 \
348 _NOTE(CONSTANTCONDITION); \
349 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
350 \
351 EFSYS_PROBE3(mem_writeq, unsigned int, (_offset), \
352 uint32_t, (_eqp)->eq_u32[1], \
353 uint32_t, (_eqp)->eq_u32[0]); \
354 \
355 _addr = (volatile uint64_t *)(_base + (_offset)); \
356 _addr[0] = (_eqp)->eq_u64[0]; \
357 \
358 _NOTE(CONSTANTCONDITION); \
359 } while (B_FALSE)
360
361 #define EFSYS_MEM_WRITEO(_esmp, _offset, _eop) \
362 do { \
363 volatile uint8_t *_base = (_esmp)->esm_base; \
364 volatile __m128i *_addr; \
365 \
366 _NOTE(CONSTANTCONDITION); \
367 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
368 \
369 \
370 EFSYS_PROBE5(mem_writeo, unsigned int, (_offset), \
371 uint32_t, (_eop)->eo_u32[3], \
372 uint32_t, (_eop)->eo_u32[2], \
373 uint32_t, (_eop)->eo_u32[1], \
374 uint32_t, (_eop)->eo_u32[0]); \
375 \
376 _addr = (volatile __m128i *)(_base + (_offset)); \
377 _addr[0] = (_eop)->eo_u128[0]; \
378 \
379 _NOTE(CONSTANTCONDITION); \
380 } while (B_FALSE)
381
382
383 #define EFSYS_MEM_SIZE(_esmp) \
384 ((_esmp)->esm_mz->len)
385
386 #define EFSYS_MEM_ADDR(_esmp) \
387 ((_esmp)->esm_addr)
388
389 #define EFSYS_MEM_IS_NULL(_esmp) \
390 ((_esmp)->esm_base == NULL)
391
392 #define EFSYS_MEM_PREFETCH(_esmp, _offset) \
393 do { \
394 volatile uint8_t *_base = (_esmp)->esm_base; \
395 \
396 rte_prefetch0(_base + (_offset)); \
397 } while (0)
398
399
400 /* BAR */
401
402 typedef struct efsys_bar_s {
403 rte_spinlock_t esb_lock;
404 int esb_rid;
405 struct rte_pci_device *esb_dev;
406 /*
407 * Ideally it should have volatile qualifier to denote that
408 * the memory may be updated by someone else. However, it adds
409 * qualifier discard warnings when the pointer or its derivative
410 * is passed to memset() or rte_mov16().
411 * So, skip the qualifier here, but make sure that it is added
412 * below in access macros.
413 */
414 void *esb_base;
415 } efsys_bar_t;
416
417 #define SFC_BAR_LOCK_INIT(_esbp, _ifname) \
418 do { \
419 rte_spinlock_init(&(_esbp)->esb_lock); \
420 _NOTE(CONSTANTCONDITION); \
421 } while (B_FALSE)
422 #define SFC_BAR_LOCK_DESTROY(_esbp) ((void)0)
423 #define SFC_BAR_LOCK(_esbp) rte_spinlock_lock(&(_esbp)->esb_lock)
424 #define SFC_BAR_UNLOCK(_esbp) rte_spinlock_unlock(&(_esbp)->esb_lock)
425
426 #define EFSYS_BAR_READD(_esbp, _offset, _edp, _lock) \
427 do { \
428 volatile uint8_t *_base = (_esbp)->esb_base; \
429 volatile uint32_t *_addr; \
430 \
431 _NOTE(CONSTANTCONDITION); \
432 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
433 _NOTE(CONSTANTCONDITION); \
434 if (_lock) \
435 SFC_BAR_LOCK(_esbp); \
436 \
437 _addr = (volatile uint32_t *)(_base + (_offset)); \
438 rte_rmb(); \
439 (_edp)->ed_u32[0] = rte_read32_relaxed(_addr); \
440 \
441 EFSYS_PROBE2(bar_readd, unsigned int, (_offset), \
442 uint32_t, (_edp)->ed_u32[0]); \
443 \
444 _NOTE(CONSTANTCONDITION); \
445 if (_lock) \
446 SFC_BAR_UNLOCK(_esbp); \
447 _NOTE(CONSTANTCONDITION); \
448 } while (B_FALSE)
449
450 #define EFSYS_BAR_READQ(_esbp, _offset, _eqp) \
451 do { \
452 volatile uint8_t *_base = (_esbp)->esb_base; \
453 volatile uint64_t *_addr; \
454 \
455 _NOTE(CONSTANTCONDITION); \
456 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
457 \
458 SFC_BAR_LOCK(_esbp); \
459 \
460 _addr = (volatile uint64_t *)(_base + (_offset)); \
461 rte_rmb(); \
462 (_eqp)->eq_u64[0] = rte_read64_relaxed(_addr); \
463 \
464 EFSYS_PROBE3(bar_readq, unsigned int, (_offset), \
465 uint32_t, (_eqp)->eq_u32[1], \
466 uint32_t, (_eqp)->eq_u32[0]); \
467 \
468 SFC_BAR_UNLOCK(_esbp); \
469 _NOTE(CONSTANTCONDITION); \
470 } while (B_FALSE)
471
472 #define EFSYS_BAR_READO(_esbp, _offset, _eop, _lock) \
473 do { \
474 volatile uint8_t *_base = (_esbp)->esb_base; \
475 volatile __m128i *_addr; \
476 \
477 _NOTE(CONSTANTCONDITION); \
478 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
479 \
480 _NOTE(CONSTANTCONDITION); \
481 if (_lock) \
482 SFC_BAR_LOCK(_esbp); \
483 \
484 _addr = (volatile __m128i *)(_base + (_offset)); \
485 rte_rmb(); \
486 /* There is no rte_read128_relaxed() yet */ \
487 (_eop)->eo_u128[0] = _addr[0]; \
488 \
489 EFSYS_PROBE5(bar_reado, unsigned int, (_offset), \
490 uint32_t, (_eop)->eo_u32[3], \
491 uint32_t, (_eop)->eo_u32[2], \
492 uint32_t, (_eop)->eo_u32[1], \
493 uint32_t, (_eop)->eo_u32[0]); \
494 \
495 _NOTE(CONSTANTCONDITION); \
496 if (_lock) \
497 SFC_BAR_UNLOCK(_esbp); \
498 _NOTE(CONSTANTCONDITION); \
499 } while (B_FALSE)
500
501
502 #define EFSYS_BAR_WRITED(_esbp, _offset, _edp, _lock) \
503 do { \
504 volatile uint8_t *_base = (_esbp)->esb_base; \
505 volatile uint32_t *_addr; \
506 \
507 _NOTE(CONSTANTCONDITION); \
508 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
509 \
510 _NOTE(CONSTANTCONDITION); \
511 if (_lock) \
512 SFC_BAR_LOCK(_esbp); \
513 \
514 EFSYS_PROBE2(bar_writed, unsigned int, (_offset), \
515 uint32_t, (_edp)->ed_u32[0]); \
516 \
517 _addr = (volatile uint32_t *)(_base + (_offset)); \
518 rte_write32_relaxed((_edp)->ed_u32[0], _addr); \
519 rte_wmb(); \
520 \
521 _NOTE(CONSTANTCONDITION); \
522 if (_lock) \
523 SFC_BAR_UNLOCK(_esbp); \
524 _NOTE(CONSTANTCONDITION); \
525 } while (B_FALSE)
526
527 #define EFSYS_BAR_WRITEQ(_esbp, _offset, _eqp) \
528 do { \
529 volatile uint8_t *_base = (_esbp)->esb_base; \
530 volatile uint64_t *_addr; \
531 \
532 _NOTE(CONSTANTCONDITION); \
533 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
534 \
535 SFC_BAR_LOCK(_esbp); \
536 \
537 EFSYS_PROBE3(bar_writeq, unsigned int, (_offset), \
538 uint32_t, (_eqp)->eq_u32[1], \
539 uint32_t, (_eqp)->eq_u32[0]); \
540 \
541 _addr = (volatile uint64_t *)(_base + (_offset)); \
542 rte_write64_relaxed((_eqp)->eq_u64[0], _addr); \
543 rte_wmb(); \
544 \
545 SFC_BAR_UNLOCK(_esbp); \
546 _NOTE(CONSTANTCONDITION); \
547 } while (B_FALSE)
548
549 /*
550 * Guarantees 64bit aligned 64bit writes to write combined BAR mapping
551 * (required by PIO hardware).
552 *
553 * Neither VFIO, nor UIO, nor NIC UIO (on FreeBSD) support
554 * write-combined memory mapped to user-land, so just abort if used.
555 */
556 #define EFSYS_BAR_WC_WRITEQ(_esbp, _offset, _eqp) \
557 do { \
558 rte_panic("Write-combined BAR access not supported"); \
559 } while (B_FALSE)
560
561 #define EFSYS_BAR_WRITEO(_esbp, _offset, _eop, _lock) \
562 do { \
563 volatile uint8_t *_base = (_esbp)->esb_base; \
564 volatile __m128i *_addr; \
565 \
566 _NOTE(CONSTANTCONDITION); \
567 SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
568 \
569 _NOTE(CONSTANTCONDITION); \
570 if (_lock) \
571 SFC_BAR_LOCK(_esbp); \
572 \
573 EFSYS_PROBE5(bar_writeo, unsigned int, (_offset), \
574 uint32_t, (_eop)->eo_u32[3], \
575 uint32_t, (_eop)->eo_u32[2], \
576 uint32_t, (_eop)->eo_u32[1], \
577 uint32_t, (_eop)->eo_u32[0]); \
578 \
579 _addr = (volatile __m128i *)(_base + (_offset)); \
580 /* There is no rte_write128_relaxed() yet */ \
581 _addr[0] = (_eop)->eo_u128[0]; \
582 rte_wmb(); \
583 \
584 _NOTE(CONSTANTCONDITION); \
585 if (_lock) \
586 SFC_BAR_UNLOCK(_esbp); \
587 _NOTE(CONSTANTCONDITION); \
588 } while (B_FALSE)
589
590 /* Use the standard octo-word write for doorbell writes */
591 #define EFSYS_BAR_DOORBELL_WRITEO(_esbp, _offset, _eop) \
592 do { \
593 EFSYS_BAR_WRITEO((_esbp), (_offset), (_eop), B_FALSE); \
594 _NOTE(CONSTANTCONDITION); \
595 } while (B_FALSE)
596
597 /* SPIN */
598
599 #define EFSYS_SPIN(_us) \
600 do { \
601 rte_delay_us(_us); \
602 _NOTE(CONSTANTCONDITION); \
603 } while (B_FALSE)
604
605 #define EFSYS_SLEEP EFSYS_SPIN
606
607 /* BARRIERS */
608
609 #define EFSYS_MEM_READ_BARRIER() rte_rmb()
610 #define EFSYS_PIO_WRITE_BARRIER() rte_io_wmb()
611
612 /* DMA SYNC */
613
614 /*
615 * DPDK does not provide any DMA syncing API, and no PMD drivers
616 * have any traces of explicit DMA syncing.
617 * DMA mapping is assumed to be coherent.
618 */
619
620 #define EFSYS_DMA_SYNC_FOR_KERNEL(_esmp, _offset, _size) ((void)0)
621
622 /* Just avoid store and compiler (impliciltly) reordering */
623 #define EFSYS_DMA_SYNC_FOR_DEVICE(_esmp, _offset, _size) rte_wmb()
624
625 /* TIMESTAMP */
626
627 typedef uint64_t efsys_timestamp_t;
628
629 #define EFSYS_TIMESTAMP(_usp) \
630 do { \
631 *(_usp) = rte_get_timer_cycles() * 1000000 / \
632 rte_get_timer_hz(); \
633 _NOTE(CONSTANTCONDITION); \
634 } while (B_FALSE)
635
636 /* KMEM */
637
638 #define EFSYS_KMEM_ALLOC(_esip, _size, _p) \
639 do { \
640 (_esip) = (_esip); \
641 (_p) = rte_zmalloc("sfc", (_size), 0); \
642 _NOTE(CONSTANTCONDITION); \
643 } while (B_FALSE)
644
645 #define EFSYS_KMEM_FREE(_esip, _size, _p) \
646 do { \
647 (void)(_esip); \
648 (void)(_size); \
649 rte_free((_p)); \
650 _NOTE(CONSTANTCONDITION); \
651 } while (B_FALSE)
652
653 /* LOCK */
654
655 typedef rte_spinlock_t efsys_lock_t;
656
657 #define SFC_EFSYS_LOCK_INIT(_eslp, _ifname, _label) \
658 rte_spinlock_init((_eslp))
659 #define SFC_EFSYS_LOCK_DESTROY(_eslp) ((void)0)
660 #define SFC_EFSYS_LOCK(_eslp) \
661 rte_spinlock_lock((_eslp))
662 #define SFC_EFSYS_UNLOCK(_eslp) \
663 rte_spinlock_unlock((_eslp))
664 #define SFC_EFSYS_LOCK_ASSERT_OWNED(_eslp) \
665 SFC_ASSERT(rte_spinlock_is_locked((_eslp)))
666
667 typedef int efsys_lock_state_t;
668
669 #define EFSYS_LOCK_MAGIC 0x000010c4
670
671 #define EFSYS_LOCK(_lockp, _state) \
672 do { \
673 SFC_EFSYS_LOCK(_lockp); \
674 (_state) = EFSYS_LOCK_MAGIC; \
675 _NOTE(CONSTANTCONDITION); \
676 } while (B_FALSE)
677
678 #define EFSYS_UNLOCK(_lockp, _state) \
679 do { \
680 SFC_ASSERT((_state) == EFSYS_LOCK_MAGIC); \
681 SFC_EFSYS_UNLOCK(_lockp); \
682 _NOTE(CONSTANTCONDITION); \
683 } while (B_FALSE)
684
685 /* STAT */
686
687 typedef uint64_t efsys_stat_t;
688
689 #define EFSYS_STAT_INCR(_knp, _delta) \
690 do { \
691 *(_knp) += (_delta); \
692 _NOTE(CONSTANTCONDITION); \
693 } while (B_FALSE)
694
695 #define EFSYS_STAT_DECR(_knp, _delta) \
696 do { \
697 *(_knp) -= (_delta); \
698 _NOTE(CONSTANTCONDITION); \
699 } while (B_FALSE)
700
701 #define EFSYS_STAT_SET(_knp, _val) \
702 do { \
703 *(_knp) = (_val); \
704 _NOTE(CONSTANTCONDITION); \
705 } while (B_FALSE)
706
707 #define EFSYS_STAT_SET_QWORD(_knp, _valp) \
708 do { \
709 *(_knp) = rte_le_to_cpu_64((_valp)->eq_u64[0]); \
710 _NOTE(CONSTANTCONDITION); \
711 } while (B_FALSE)
712
713 #define EFSYS_STAT_SET_DWORD(_knp, _valp) \
714 do { \
715 *(_knp) = rte_le_to_cpu_32((_valp)->ed_u32[0]); \
716 _NOTE(CONSTANTCONDITION); \
717 } while (B_FALSE)
718
719 #define EFSYS_STAT_INCR_QWORD(_knp, _valp) \
720 do { \
721 *(_knp) += rte_le_to_cpu_64((_valp)->eq_u64[0]); \
722 _NOTE(CONSTANTCONDITION); \
723 } while (B_FALSE)
724
725 #define EFSYS_STAT_SUBR_QWORD(_knp, _valp) \
726 do { \
727 *(_knp) -= rte_le_to_cpu_64((_valp)->eq_u64[0]); \
728 _NOTE(CONSTANTCONDITION); \
729 } while (B_FALSE)
730
731 /* ERR */
732
733 #if EFSYS_OPT_DECODE_INTR_FATAL
734 #define EFSYS_ERR(_esip, _code, _dword0, _dword1) \
735 do { \
736 (void)(_esip); \
737 SFC_GENERIC_LOG(ERR, "FATAL ERROR #%u (0x%08x%08x)", \
738 (_code), (_dword0), (_dword1)); \
739 _NOTE(CONSTANTCONDITION); \
740 } while (B_FALSE)
741 #endif
742
743 /* ASSERT */
744
745 /* RTE_VERIFY from DPDK treats expressions with % operator incorrectly,
746 * so we re-implement it here
747 */
748 #ifdef RTE_LIBRTE_SFC_EFX_DEBUG
749 #define EFSYS_ASSERT(_exp) \
750 do { \
751 if (unlikely(!(_exp))) \
752 rte_panic("line %d\tassert \"%s\" failed\n", \
753 __LINE__, (#_exp)); \
754 } while (0)
755 #else
756 #define EFSYS_ASSERT(_exp) (void)(_exp)
757 #endif
758
759 #define EFSYS_ASSERT3(_x, _op, _y, _t) EFSYS_ASSERT((_t)(_x) _op (_t)(_y))
760
761 #define EFSYS_ASSERT3U(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, uint64_t)
762 #define EFSYS_ASSERT3S(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, int64_t)
763 #define EFSYS_ASSERT3P(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, uintptr_t)
764
765 /* ROTATE */
766
767 #define EFSYS_HAS_ROTL_DWORD 0
768
769 #ifdef __cplusplus
770 }
771 #endif
772
773 #endif /* _SFC_COMMON_EFSYS_H */