]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/sfc/sfc_ethdev.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / sfc / sfc_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 *
3 * Copyright (c) 2016-2018 Solarflare Communications Inc.
4 * All rights reserved.
5 *
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
8 */
9
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18
19 #include "efx.h"
20
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31
32 uint32_t sfc_logtype_driver;
33
34 static struct sfc_dp_list sfc_dp_head =
35 TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36
37 static int
38 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
39 {
40 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
41 efx_nic_fw_info_t enfi;
42 int ret;
43 int rc;
44
45 /*
46 * Return value of the callback is likely supposed to be
47 * equal to or greater than 0, nevertheless, if an error
48 * occurs, it will be desirable to pass it to the caller
49 */
50 if ((fw_version == NULL) || (fw_size == 0))
51 return -EINVAL;
52
53 rc = efx_nic_get_fw_version(sa->nic, &enfi);
54 if (rc != 0)
55 return -rc;
56
57 ret = snprintf(fw_version, fw_size,
58 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
59 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
60 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
61 if (ret < 0)
62 return ret;
63
64 if (enfi.enfi_dpcpu_fw_ids_valid) {
65 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
66 int ret_extra;
67
68 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
69 fw_size - dpcpu_fw_ids_offset,
70 " rx%" PRIx16 " tx%" PRIx16,
71 enfi.enfi_rx_dpcpu_fw_id,
72 enfi.enfi_tx_dpcpu_fw_id);
73 if (ret_extra < 0)
74 return ret_extra;
75
76 ret += ret_extra;
77 }
78
79 if (fw_size < (size_t)(++ret))
80 return ret;
81 else
82 return 0;
83 }
84
85 static void
86 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
87 {
88 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
89 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
90 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
91 struct sfc_rss *rss = &sas->rss;
92 uint64_t txq_offloads_def = 0;
93
94 sfc_log_init(sa, "entry");
95
96 dev_info->min_mtu = ETHER_MIN_MTU;
97 dev_info->max_mtu = EFX_MAC_SDU_MAX;
98
99 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
100
101 /* Autonegotiation may be disabled */
102 dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
103 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
104 dev_info->speed_capa |= ETH_LINK_SPEED_1G;
105 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
106 dev_info->speed_capa |= ETH_LINK_SPEED_10G;
107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
108 dev_info->speed_capa |= ETH_LINK_SPEED_25G;
109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
110 dev_info->speed_capa |= ETH_LINK_SPEED_40G;
111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
112 dev_info->speed_capa |= ETH_LINK_SPEED_50G;
113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
114 dev_info->speed_capa |= ETH_LINK_SPEED_100G;
115
116 dev_info->max_rx_queues = sa->rxq_max;
117 dev_info->max_tx_queues = sa->txq_max;
118
119 /* By default packets are dropped if no descriptors are available */
120 dev_info->default_rxconf.rx_drop_en = 1;
121
122 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
123
124 /*
125 * rx_offload_capa includes both device and queue offloads since
126 * the latter may be requested on a per device basis which makes
127 * sense when some offloads are needed to be set on all queues.
128 */
129 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
130 dev_info->rx_queue_offload_capa;
131
132 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
133
134 /*
135 * tx_offload_capa includes both device and queue offloads since
136 * the latter may be requested on a per device basis which makes
137 * sense when some offloads are needed to be set on all queues.
138 */
139 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
140 dev_info->tx_queue_offload_capa;
141
142 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
143 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
144
145 dev_info->default_txconf.offloads |= txq_offloads_def;
146
147 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
148 uint64_t rte_hf = 0;
149 unsigned int i;
150
151 for (i = 0; i < rss->hf_map_nb_entries; ++i)
152 rte_hf |= rss->hf_map[i].rte;
153
154 dev_info->reta_size = EFX_RSS_TBL_SIZE;
155 dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
156 dev_info->flow_type_rss_offloads = rte_hf;
157 }
158
159 /* Initialize to hardware limits */
160 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
161 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
162 /* The RXQ hardware requires that the descriptor count is a power
163 * of 2, but rx_desc_lim cannot properly describe that constraint.
164 */
165 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
166
167 /* Initialize to hardware limits */
168 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
169 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
170 /*
171 * The TXQ hardware requires that the descriptor count is a power
172 * of 2, but tx_desc_lim cannot properly describe that constraint
173 */
174 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
175
176 if (sap->dp_rx->get_dev_info != NULL)
177 sap->dp_rx->get_dev_info(dev_info);
178 if (sap->dp_tx->get_dev_info != NULL)
179 sap->dp_tx->get_dev_info(dev_info);
180
181 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
182 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
183 }
184
185 static const uint32_t *
186 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
187 {
188 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
189
190 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
191 }
192
193 static int
194 sfc_dev_configure(struct rte_eth_dev *dev)
195 {
196 struct rte_eth_dev_data *dev_data = dev->data;
197 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
198 int rc;
199
200 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
201 dev_data->nb_rx_queues, dev_data->nb_tx_queues);
202
203 sfc_adapter_lock(sa);
204 switch (sa->state) {
205 case SFC_ADAPTER_CONFIGURED:
206 /* FALLTHROUGH */
207 case SFC_ADAPTER_INITIALIZED:
208 rc = sfc_configure(sa);
209 break;
210 default:
211 sfc_err(sa, "unexpected adapter state %u to configure",
212 sa->state);
213 rc = EINVAL;
214 break;
215 }
216 sfc_adapter_unlock(sa);
217
218 sfc_log_init(sa, "done %d", rc);
219 SFC_ASSERT(rc >= 0);
220 return -rc;
221 }
222
223 static int
224 sfc_dev_start(struct rte_eth_dev *dev)
225 {
226 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
227 int rc;
228
229 sfc_log_init(sa, "entry");
230
231 sfc_adapter_lock(sa);
232 rc = sfc_start(sa);
233 sfc_adapter_unlock(sa);
234
235 sfc_log_init(sa, "done %d", rc);
236 SFC_ASSERT(rc >= 0);
237 return -rc;
238 }
239
240 static int
241 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
242 {
243 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
244 struct rte_eth_link current_link;
245 int ret;
246
247 sfc_log_init(sa, "entry");
248
249 if (sa->state != SFC_ADAPTER_STARTED) {
250 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
251 } else if (wait_to_complete) {
252 efx_link_mode_t link_mode;
253
254 if (efx_port_poll(sa->nic, &link_mode) != 0)
255 link_mode = EFX_LINK_UNKNOWN;
256 sfc_port_link_mode_to_info(link_mode, &current_link);
257
258 } else {
259 sfc_ev_mgmt_qpoll(sa);
260 rte_eth_linkstatus_get(dev, &current_link);
261 }
262
263 ret = rte_eth_linkstatus_set(dev, &current_link);
264 if (ret == 0)
265 sfc_notice(sa, "Link status is %s",
266 current_link.link_status ? "UP" : "DOWN");
267
268 return ret;
269 }
270
271 static void
272 sfc_dev_stop(struct rte_eth_dev *dev)
273 {
274 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
275
276 sfc_log_init(sa, "entry");
277
278 sfc_adapter_lock(sa);
279 sfc_stop(sa);
280 sfc_adapter_unlock(sa);
281
282 sfc_log_init(sa, "done");
283 }
284
285 static int
286 sfc_dev_set_link_up(struct rte_eth_dev *dev)
287 {
288 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
289 int rc;
290
291 sfc_log_init(sa, "entry");
292
293 sfc_adapter_lock(sa);
294 rc = sfc_start(sa);
295 sfc_adapter_unlock(sa);
296
297 SFC_ASSERT(rc >= 0);
298 return -rc;
299 }
300
301 static int
302 sfc_dev_set_link_down(struct rte_eth_dev *dev)
303 {
304 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
305
306 sfc_log_init(sa, "entry");
307
308 sfc_adapter_lock(sa);
309 sfc_stop(sa);
310 sfc_adapter_unlock(sa);
311
312 return 0;
313 }
314
315 static void
316 sfc_dev_close(struct rte_eth_dev *dev)
317 {
318 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
319
320 sfc_log_init(sa, "entry");
321
322 sfc_adapter_lock(sa);
323 switch (sa->state) {
324 case SFC_ADAPTER_STARTED:
325 sfc_stop(sa);
326 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
327 /* FALLTHROUGH */
328 case SFC_ADAPTER_CONFIGURED:
329 sfc_close(sa);
330 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
331 /* FALLTHROUGH */
332 case SFC_ADAPTER_INITIALIZED:
333 break;
334 default:
335 sfc_err(sa, "unexpected adapter state %u on close", sa->state);
336 break;
337 }
338 sfc_adapter_unlock(sa);
339
340 sfc_log_init(sa, "done");
341 }
342
343 static void
344 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
345 boolean_t enabled)
346 {
347 struct sfc_port *port;
348 boolean_t *toggle;
349 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
350 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
351 const char *desc = (allmulti) ? "all-multi" : "promiscuous";
352
353 sfc_adapter_lock(sa);
354
355 port = &sa->port;
356 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
357
358 if (*toggle != enabled) {
359 *toggle = enabled;
360
361 if (sfc_sa2shared(sa)->isolated) {
362 sfc_warn(sa, "isolated mode is active on the port");
363 sfc_warn(sa, "the change is to be applied on the next "
364 "start provided that isolated mode is "
365 "disabled prior the next start");
366 } else if ((sa->state == SFC_ADAPTER_STARTED) &&
367 (sfc_set_rx_mode(sa) != 0)) {
368 *toggle = !(enabled);
369 sfc_warn(sa, "Failed to %s %s mode",
370 ((enabled) ? "enable" : "disable"), desc);
371 }
372 }
373
374 sfc_adapter_unlock(sa);
375 }
376
377 static void
378 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
379 {
380 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
381 }
382
383 static void
384 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
385 {
386 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
387 }
388
389 static void
390 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
391 {
392 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
393 }
394
395 static void
396 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
397 {
398 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
399 }
400
401 static int
402 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
403 uint16_t nb_rx_desc, unsigned int socket_id,
404 const struct rte_eth_rxconf *rx_conf,
405 struct rte_mempool *mb_pool)
406 {
407 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
408 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
409 int rc;
410
411 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
412 rx_queue_id, nb_rx_desc, socket_id);
413
414 sfc_adapter_lock(sa);
415
416 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
417 rx_conf, mb_pool);
418 if (rc != 0)
419 goto fail_rx_qinit;
420
421 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp;
422
423 sfc_adapter_unlock(sa);
424
425 return 0;
426
427 fail_rx_qinit:
428 sfc_adapter_unlock(sa);
429 SFC_ASSERT(rc > 0);
430 return -rc;
431 }
432
433 static void
434 sfc_rx_queue_release(void *queue)
435 {
436 struct sfc_dp_rxq *dp_rxq = queue;
437 struct sfc_rxq *rxq;
438 struct sfc_adapter *sa;
439 unsigned int sw_index;
440
441 if (dp_rxq == NULL)
442 return;
443
444 rxq = sfc_rxq_by_dp_rxq(dp_rxq);
445 sa = rxq->evq->sa;
446 sfc_adapter_lock(sa);
447
448 sw_index = dp_rxq->dpq.queue_id;
449
450 sfc_log_init(sa, "RxQ=%u", sw_index);
451
452 sfc_rx_qfini(sa, sw_index);
453
454 sfc_adapter_unlock(sa);
455 }
456
457 static int
458 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
459 uint16_t nb_tx_desc, unsigned int socket_id,
460 const struct rte_eth_txconf *tx_conf)
461 {
462 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
463 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
464 int rc;
465
466 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
467 tx_queue_id, nb_tx_desc, socket_id);
468
469 sfc_adapter_lock(sa);
470
471 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
472 if (rc != 0)
473 goto fail_tx_qinit;
474
475 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp;
476
477 sfc_adapter_unlock(sa);
478 return 0;
479
480 fail_tx_qinit:
481 sfc_adapter_unlock(sa);
482 SFC_ASSERT(rc > 0);
483 return -rc;
484 }
485
486 static void
487 sfc_tx_queue_release(void *queue)
488 {
489 struct sfc_dp_txq *dp_txq = queue;
490 struct sfc_txq *txq;
491 unsigned int sw_index;
492 struct sfc_adapter *sa;
493
494 if (dp_txq == NULL)
495 return;
496
497 txq = sfc_txq_by_dp_txq(dp_txq);
498 sw_index = dp_txq->dpq.queue_id;
499
500 SFC_ASSERT(txq->evq != NULL);
501 sa = txq->evq->sa;
502
503 sfc_log_init(sa, "TxQ = %u", sw_index);
504
505 sfc_adapter_lock(sa);
506
507 sfc_tx_qfini(sa, sw_index);
508
509 sfc_adapter_unlock(sa);
510 }
511
512 /*
513 * Some statistics are computed as A - B where A and B each increase
514 * monotonically with some hardware counter(s) and the counters are read
515 * asynchronously.
516 *
517 * If packet X is counted in A, but not counted in B yet, computed value is
518 * greater than real.
519 *
520 * If packet X is not counted in A at the moment of reading the counter,
521 * but counted in B at the moment of reading the counter, computed value
522 * is less than real.
523 *
524 * However, counter which grows backward is worse evil than slightly wrong
525 * value. So, let's try to guarantee that it never happens except may be
526 * the case when the MAC stats are zeroed as a result of a NIC reset.
527 */
528 static void
529 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
530 {
531 if ((int64_t)(newval - *stat) > 0 || newval == 0)
532 *stat = newval;
533 }
534
535 static int
536 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
537 {
538 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
539 struct sfc_port *port = &sa->port;
540 uint64_t *mac_stats;
541 int ret;
542
543 rte_spinlock_lock(&port->mac_stats_lock);
544
545 ret = sfc_port_update_mac_stats(sa);
546 if (ret != 0)
547 goto unlock;
548
549 mac_stats = port->mac_stats_buf;
550
551 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
552 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
553 stats->ipackets =
554 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
555 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
556 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
557 stats->opackets =
558 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
559 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
560 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
561 stats->ibytes =
562 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
563 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
564 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
565 stats->obytes =
566 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
567 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
568 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
569 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
570 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
571 } else {
572 stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
573 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
574 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
575 /*
576 * Take into account stats which are whenever supported
577 * on EF10. If some stat is not supported by current
578 * firmware variant or HW revision, it is guaranteed
579 * to be zero in mac_stats.
580 */
581 stats->imissed =
582 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
583 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
584 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
585 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
586 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
587 mac_stats[EFX_MAC_PM_TRUNC_QBB] +
588 mac_stats[EFX_MAC_PM_DISCARD_QBB] +
589 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
590 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
591 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
592 stats->ierrors =
593 mac_stats[EFX_MAC_RX_FCS_ERRORS] +
594 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
595 mac_stats[EFX_MAC_RX_JABBER_PKTS];
596 /* no oerrors counters supported on EF10 */
597
598 /* Exclude missed, errors and pauses from Rx packets */
599 sfc_update_diff_stat(&port->ipackets,
600 mac_stats[EFX_MAC_RX_PKTS] -
601 mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
602 stats->imissed - stats->ierrors);
603 stats->ipackets = port->ipackets;
604 }
605
606 unlock:
607 rte_spinlock_unlock(&port->mac_stats_lock);
608 SFC_ASSERT(ret >= 0);
609 return -ret;
610 }
611
612 static void
613 sfc_stats_reset(struct rte_eth_dev *dev)
614 {
615 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
616 struct sfc_port *port = &sa->port;
617 int rc;
618
619 if (sa->state != SFC_ADAPTER_STARTED) {
620 /*
621 * The operation cannot be done if port is not started; it
622 * will be scheduled to be done during the next port start
623 */
624 port->mac_stats_reset_pending = B_TRUE;
625 return;
626 }
627
628 rc = sfc_port_reset_mac_stats(sa);
629 if (rc != 0)
630 sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
631 }
632
633 static int
634 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
635 unsigned int xstats_count)
636 {
637 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
638 struct sfc_port *port = &sa->port;
639 uint64_t *mac_stats;
640 int rc;
641 unsigned int i;
642 int nstats = 0;
643
644 rte_spinlock_lock(&port->mac_stats_lock);
645
646 rc = sfc_port_update_mac_stats(sa);
647 if (rc != 0) {
648 SFC_ASSERT(rc > 0);
649 nstats = -rc;
650 goto unlock;
651 }
652
653 mac_stats = port->mac_stats_buf;
654
655 for (i = 0; i < EFX_MAC_NSTATS; ++i) {
656 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
657 if (xstats != NULL && nstats < (int)xstats_count) {
658 xstats[nstats].id = nstats;
659 xstats[nstats].value = mac_stats[i];
660 }
661 nstats++;
662 }
663 }
664
665 unlock:
666 rte_spinlock_unlock(&port->mac_stats_lock);
667
668 return nstats;
669 }
670
671 static int
672 sfc_xstats_get_names(struct rte_eth_dev *dev,
673 struct rte_eth_xstat_name *xstats_names,
674 unsigned int xstats_count)
675 {
676 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
677 struct sfc_port *port = &sa->port;
678 unsigned int i;
679 unsigned int nstats = 0;
680
681 for (i = 0; i < EFX_MAC_NSTATS; ++i) {
682 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
683 if (xstats_names != NULL && nstats < xstats_count)
684 strlcpy(xstats_names[nstats].name,
685 efx_mac_stat_name(sa->nic, i),
686 sizeof(xstats_names[0].name));
687 nstats++;
688 }
689 }
690
691 return nstats;
692 }
693
694 static int
695 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
696 uint64_t *values, unsigned int n)
697 {
698 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
699 struct sfc_port *port = &sa->port;
700 uint64_t *mac_stats;
701 unsigned int nb_supported = 0;
702 unsigned int nb_written = 0;
703 unsigned int i;
704 int ret;
705 int rc;
706
707 if (unlikely(values == NULL) ||
708 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
709 return port->mac_stats_nb_supported;
710
711 rte_spinlock_lock(&port->mac_stats_lock);
712
713 rc = sfc_port_update_mac_stats(sa);
714 if (rc != 0) {
715 SFC_ASSERT(rc > 0);
716 ret = -rc;
717 goto unlock;
718 }
719
720 mac_stats = port->mac_stats_buf;
721
722 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
723 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
724 continue;
725
726 if ((ids == NULL) || (ids[nb_written] == nb_supported))
727 values[nb_written++] = mac_stats[i];
728
729 ++nb_supported;
730 }
731
732 ret = nb_written;
733
734 unlock:
735 rte_spinlock_unlock(&port->mac_stats_lock);
736
737 return ret;
738 }
739
740 static int
741 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
742 struct rte_eth_xstat_name *xstats_names,
743 const uint64_t *ids, unsigned int size)
744 {
745 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
746 struct sfc_port *port = &sa->port;
747 unsigned int nb_supported = 0;
748 unsigned int nb_written = 0;
749 unsigned int i;
750
751 if (unlikely(xstats_names == NULL) ||
752 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
753 return port->mac_stats_nb_supported;
754
755 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
756 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
757 continue;
758
759 if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
760 char *name = xstats_names[nb_written++].name;
761
762 strlcpy(name, efx_mac_stat_name(sa->nic, i),
763 sizeof(xstats_names[0].name));
764 }
765
766 ++nb_supported;
767 }
768
769 return nb_written;
770 }
771
772 static int
773 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
774 {
775 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
776 unsigned int wanted_fc, link_fc;
777
778 memset(fc_conf, 0, sizeof(*fc_conf));
779
780 sfc_adapter_lock(sa);
781
782 if (sa->state == SFC_ADAPTER_STARTED)
783 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
784 else
785 link_fc = sa->port.flow_ctrl;
786
787 switch (link_fc) {
788 case 0:
789 fc_conf->mode = RTE_FC_NONE;
790 break;
791 case EFX_FCNTL_RESPOND:
792 fc_conf->mode = RTE_FC_RX_PAUSE;
793 break;
794 case EFX_FCNTL_GENERATE:
795 fc_conf->mode = RTE_FC_TX_PAUSE;
796 break;
797 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
798 fc_conf->mode = RTE_FC_FULL;
799 break;
800 default:
801 sfc_err(sa, "%s: unexpected flow control value %#x",
802 __func__, link_fc);
803 }
804
805 fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
806
807 sfc_adapter_unlock(sa);
808
809 return 0;
810 }
811
812 static int
813 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
814 {
815 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
816 struct sfc_port *port = &sa->port;
817 unsigned int fcntl;
818 int rc;
819
820 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
821 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
822 fc_conf->mac_ctrl_frame_fwd != 0) {
823 sfc_err(sa, "unsupported flow control settings specified");
824 rc = EINVAL;
825 goto fail_inval;
826 }
827
828 switch (fc_conf->mode) {
829 case RTE_FC_NONE:
830 fcntl = 0;
831 break;
832 case RTE_FC_RX_PAUSE:
833 fcntl = EFX_FCNTL_RESPOND;
834 break;
835 case RTE_FC_TX_PAUSE:
836 fcntl = EFX_FCNTL_GENERATE;
837 break;
838 case RTE_FC_FULL:
839 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
840 break;
841 default:
842 rc = EINVAL;
843 goto fail_inval;
844 }
845
846 sfc_adapter_lock(sa);
847
848 if (sa->state == SFC_ADAPTER_STARTED) {
849 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
850 if (rc != 0)
851 goto fail_mac_fcntl_set;
852 }
853
854 port->flow_ctrl = fcntl;
855 port->flow_ctrl_autoneg = fc_conf->autoneg;
856
857 sfc_adapter_unlock(sa);
858
859 return 0;
860
861 fail_mac_fcntl_set:
862 sfc_adapter_unlock(sa);
863 fail_inval:
864 SFC_ASSERT(rc > 0);
865 return -rc;
866 }
867
868 static int
869 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
870 {
871 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
872 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
873 boolean_t scatter_enabled;
874 const char *error;
875 unsigned int i;
876
877 for (i = 0; i < sas->rxq_count; i++) {
878 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
879 continue;
880
881 scatter_enabled = (sas->rxq_info[i].type_flags &
882 EFX_RXQ_FLAG_SCATTER);
883
884 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
885 encp->enc_rx_prefix_size,
886 scatter_enabled, &error)) {
887 sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
888 error);
889 return EINVAL;
890 }
891 }
892
893 return 0;
894 }
895
896 static int
897 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
898 {
899 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
900 size_t pdu = EFX_MAC_PDU(mtu);
901 size_t old_pdu;
902 int rc;
903
904 sfc_log_init(sa, "mtu=%u", mtu);
905
906 rc = EINVAL;
907 if (pdu < EFX_MAC_PDU_MIN) {
908 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
909 (unsigned int)mtu, (unsigned int)pdu,
910 EFX_MAC_PDU_MIN);
911 goto fail_inval;
912 }
913 if (pdu > EFX_MAC_PDU_MAX) {
914 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
915 (unsigned int)mtu, (unsigned int)pdu,
916 EFX_MAC_PDU_MAX);
917 goto fail_inval;
918 }
919
920 sfc_adapter_lock(sa);
921
922 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
923 if (rc != 0)
924 goto fail_check_scatter;
925
926 if (pdu != sa->port.pdu) {
927 if (sa->state == SFC_ADAPTER_STARTED) {
928 sfc_stop(sa);
929
930 old_pdu = sa->port.pdu;
931 sa->port.pdu = pdu;
932 rc = sfc_start(sa);
933 if (rc != 0)
934 goto fail_start;
935 } else {
936 sa->port.pdu = pdu;
937 }
938 }
939
940 /*
941 * The driver does not use it, but other PMDs update jumbo frame
942 * flag and max_rx_pkt_len when MTU is set.
943 */
944 if (mtu > ETHER_MAX_LEN) {
945 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
946 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
947 }
948
949 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
950
951 sfc_adapter_unlock(sa);
952
953 sfc_log_init(sa, "done");
954 return 0;
955
956 fail_start:
957 sa->port.pdu = old_pdu;
958 if (sfc_start(sa) != 0)
959 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
960 "PDU max size - port is stopped",
961 (unsigned int)pdu, (unsigned int)old_pdu);
962
963 fail_check_scatter:
964 sfc_adapter_unlock(sa);
965
966 fail_inval:
967 sfc_log_init(sa, "failed %d", rc);
968 SFC_ASSERT(rc > 0);
969 return -rc;
970 }
971 static int
972 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
973 {
974 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
975 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
976 struct sfc_port *port = &sa->port;
977 struct ether_addr *old_addr = &dev->data->mac_addrs[0];
978 int rc = 0;
979
980 sfc_adapter_lock(sa);
981
982 /*
983 * Copy the address to the device private data so that
984 * it could be recalled in the case of adapter restart.
985 */
986 ether_addr_copy(mac_addr, &port->default_mac_addr);
987
988 /*
989 * Neither of the two following checks can return
990 * an error. The new MAC address is preserved in
991 * the device private data and can be activated
992 * on the next port start if the user prevents
993 * isolated mode from being enabled.
994 */
995 if (sfc_sa2shared(sa)->isolated) {
996 sfc_warn(sa, "isolated mode is active on the port");
997 sfc_warn(sa, "will not set MAC address");
998 goto unlock;
999 }
1000
1001 if (sa->state != SFC_ADAPTER_STARTED) {
1002 sfc_notice(sa, "the port is not started");
1003 sfc_notice(sa, "the new MAC address will be set on port start");
1004
1005 goto unlock;
1006 }
1007
1008 if (encp->enc_allow_set_mac_with_installed_filters) {
1009 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1010 if (rc != 0) {
1011 sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1012 goto unlock;
1013 }
1014
1015 /*
1016 * Changing the MAC address by means of MCDI request
1017 * has no effect on received traffic, therefore
1018 * we also need to update unicast filters
1019 */
1020 rc = sfc_set_rx_mode(sa);
1021 if (rc != 0) {
1022 sfc_err(sa, "cannot set filter (rc = %u)", rc);
1023 /* Rollback the old address */
1024 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1025 (void)sfc_set_rx_mode(sa);
1026 }
1027 } else {
1028 sfc_warn(sa, "cannot set MAC address with filters installed");
1029 sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1030 sfc_warn(sa, "(some traffic may be dropped)");
1031
1032 /*
1033 * Since setting MAC address with filters installed is not
1034 * allowed on the adapter, the new MAC address will be set
1035 * by means of adapter restart. sfc_start() shall retrieve
1036 * the new address from the device private data and set it.
1037 */
1038 sfc_stop(sa);
1039 rc = sfc_start(sa);
1040 if (rc != 0)
1041 sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1042 }
1043
1044 unlock:
1045 if (rc != 0)
1046 ether_addr_copy(old_addr, &port->default_mac_addr);
1047
1048 sfc_adapter_unlock(sa);
1049
1050 SFC_ASSERT(rc >= 0);
1051 return -rc;
1052 }
1053
1054
1055 static int
1056 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
1057 uint32_t nb_mc_addr)
1058 {
1059 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1060 struct sfc_port *port = &sa->port;
1061 uint8_t *mc_addrs = port->mcast_addrs;
1062 int rc;
1063 unsigned int i;
1064
1065 if (sfc_sa2shared(sa)->isolated) {
1066 sfc_err(sa, "isolated mode is active on the port");
1067 sfc_err(sa, "will not set multicast address list");
1068 return -ENOTSUP;
1069 }
1070
1071 if (mc_addrs == NULL)
1072 return -ENOBUFS;
1073
1074 if (nb_mc_addr > port->max_mcast_addrs) {
1075 sfc_err(sa, "too many multicast addresses: %u > %u",
1076 nb_mc_addr, port->max_mcast_addrs);
1077 return -EINVAL;
1078 }
1079
1080 for (i = 0; i < nb_mc_addr; ++i) {
1081 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1082 EFX_MAC_ADDR_LEN);
1083 mc_addrs += EFX_MAC_ADDR_LEN;
1084 }
1085
1086 port->nb_mcast_addrs = nb_mc_addr;
1087
1088 if (sa->state != SFC_ADAPTER_STARTED)
1089 return 0;
1090
1091 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1092 port->nb_mcast_addrs);
1093 if (rc != 0)
1094 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1095
1096 SFC_ASSERT(rc >= 0);
1097 return -rc;
1098 }
1099
1100 /*
1101 * The function is used by the secondary process as well. It must not
1102 * use any process-local pointers from the adapter data.
1103 */
1104 static void
1105 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1106 struct rte_eth_rxq_info *qinfo)
1107 {
1108 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1109 struct sfc_rxq_info *rxq_info;
1110
1111 SFC_ASSERT(rx_queue_id < sas->rxq_count);
1112
1113 rxq_info = &sas->rxq_info[rx_queue_id];
1114
1115 qinfo->mp = rxq_info->refill_mb_pool;
1116 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1117 qinfo->conf.rx_drop_en = 1;
1118 qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1119 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1120 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1121 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1122 qinfo->scattered_rx = 1;
1123 }
1124 qinfo->nb_desc = rxq_info->entries;
1125 }
1126
1127 /*
1128 * The function is used by the secondary process as well. It must not
1129 * use any process-local pointers from the adapter data.
1130 */
1131 static void
1132 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1133 struct rte_eth_txq_info *qinfo)
1134 {
1135 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1136 struct sfc_txq_info *txq_info;
1137
1138 SFC_ASSERT(tx_queue_id < sas->txq_count);
1139
1140 txq_info = &sas->txq_info[tx_queue_id];
1141
1142 memset(qinfo, 0, sizeof(*qinfo));
1143
1144 qinfo->conf.offloads = txq_info->offloads;
1145 qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1146 qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1147 qinfo->nb_desc = txq_info->entries;
1148 }
1149
1150 /*
1151 * The function is used by the secondary process as well. It must not
1152 * use any process-local pointers from the adapter data.
1153 */
1154 static uint32_t
1155 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1156 {
1157 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1158 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1159 struct sfc_rxq_info *rxq_info;
1160
1161 SFC_ASSERT(rx_queue_id < sas->rxq_count);
1162 rxq_info = &sas->rxq_info[rx_queue_id];
1163
1164 if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1165 return 0;
1166
1167 return sap->dp_rx->qdesc_npending(rxq_info->dp);
1168 }
1169
1170 /*
1171 * The function is used by the secondary process as well. It must not
1172 * use any process-local pointers from the adapter data.
1173 */
1174 static int
1175 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1176 {
1177 struct sfc_dp_rxq *dp_rxq = queue;
1178 const struct sfc_dp_rx *dp_rx;
1179
1180 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1181
1182 return offset < dp_rx->qdesc_npending(dp_rxq);
1183 }
1184
1185 /*
1186 * The function is used by the secondary process as well. It must not
1187 * use any process-local pointers from the adapter data.
1188 */
1189 static int
1190 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1191 {
1192 struct sfc_dp_rxq *dp_rxq = queue;
1193 const struct sfc_dp_rx *dp_rx;
1194
1195 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1196
1197 return dp_rx->qdesc_status(dp_rxq, offset);
1198 }
1199
1200 /*
1201 * The function is used by the secondary process as well. It must not
1202 * use any process-local pointers from the adapter data.
1203 */
1204 static int
1205 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1206 {
1207 struct sfc_dp_txq *dp_txq = queue;
1208 const struct sfc_dp_tx *dp_tx;
1209
1210 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1211
1212 return dp_tx->qdesc_status(dp_txq, offset);
1213 }
1214
1215 static int
1216 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1217 {
1218 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1219 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1220 int rc;
1221
1222 sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1223
1224 sfc_adapter_lock(sa);
1225
1226 rc = EINVAL;
1227 if (sa->state != SFC_ADAPTER_STARTED)
1228 goto fail_not_started;
1229
1230 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED)
1231 goto fail_not_setup;
1232
1233 rc = sfc_rx_qstart(sa, rx_queue_id);
1234 if (rc != 0)
1235 goto fail_rx_qstart;
1236
1237 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1238
1239 sfc_adapter_unlock(sa);
1240
1241 return 0;
1242
1243 fail_rx_qstart:
1244 fail_not_setup:
1245 fail_not_started:
1246 sfc_adapter_unlock(sa);
1247 SFC_ASSERT(rc > 0);
1248 return -rc;
1249 }
1250
1251 static int
1252 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1253 {
1254 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1255 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1256
1257 sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1258
1259 sfc_adapter_lock(sa);
1260 sfc_rx_qstop(sa, rx_queue_id);
1261
1262 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1263
1264 sfc_adapter_unlock(sa);
1265
1266 return 0;
1267 }
1268
1269 static int
1270 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1271 {
1272 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1273 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1274 int rc;
1275
1276 sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1277
1278 sfc_adapter_lock(sa);
1279
1280 rc = EINVAL;
1281 if (sa->state != SFC_ADAPTER_STARTED)
1282 goto fail_not_started;
1283
1284 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED)
1285 goto fail_not_setup;
1286
1287 rc = sfc_tx_qstart(sa, tx_queue_id);
1288 if (rc != 0)
1289 goto fail_tx_qstart;
1290
1291 sas->txq_info[tx_queue_id].deferred_started = B_TRUE;
1292
1293 sfc_adapter_unlock(sa);
1294 return 0;
1295
1296 fail_tx_qstart:
1297
1298 fail_not_setup:
1299 fail_not_started:
1300 sfc_adapter_unlock(sa);
1301 SFC_ASSERT(rc > 0);
1302 return -rc;
1303 }
1304
1305 static int
1306 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1307 {
1308 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1309 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1310
1311 sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1312
1313 sfc_adapter_lock(sa);
1314
1315 sfc_tx_qstop(sa, tx_queue_id);
1316
1317 sas->txq_info[tx_queue_id].deferred_started = B_FALSE;
1318
1319 sfc_adapter_unlock(sa);
1320 return 0;
1321 }
1322
1323 static efx_tunnel_protocol_t
1324 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1325 {
1326 switch (rte_type) {
1327 case RTE_TUNNEL_TYPE_VXLAN:
1328 return EFX_TUNNEL_PROTOCOL_VXLAN;
1329 case RTE_TUNNEL_TYPE_GENEVE:
1330 return EFX_TUNNEL_PROTOCOL_GENEVE;
1331 default:
1332 return EFX_TUNNEL_NPROTOS;
1333 }
1334 }
1335
1336 enum sfc_udp_tunnel_op_e {
1337 SFC_UDP_TUNNEL_ADD_PORT,
1338 SFC_UDP_TUNNEL_DEL_PORT,
1339 };
1340
1341 static int
1342 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1343 struct rte_eth_udp_tunnel *tunnel_udp,
1344 enum sfc_udp_tunnel_op_e op)
1345 {
1346 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1347 efx_tunnel_protocol_t tunnel_proto;
1348 int rc;
1349
1350 sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1351 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1352 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1353 tunnel_udp->udp_port, tunnel_udp->prot_type);
1354
1355 tunnel_proto =
1356 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1357 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1358 rc = ENOTSUP;
1359 goto fail_bad_proto;
1360 }
1361
1362 sfc_adapter_lock(sa);
1363
1364 switch (op) {
1365 case SFC_UDP_TUNNEL_ADD_PORT:
1366 rc = efx_tunnel_config_udp_add(sa->nic,
1367 tunnel_udp->udp_port,
1368 tunnel_proto);
1369 break;
1370 case SFC_UDP_TUNNEL_DEL_PORT:
1371 rc = efx_tunnel_config_udp_remove(sa->nic,
1372 tunnel_udp->udp_port,
1373 tunnel_proto);
1374 break;
1375 default:
1376 rc = EINVAL;
1377 goto fail_bad_op;
1378 }
1379
1380 if (rc != 0)
1381 goto fail_op;
1382
1383 if (sa->state == SFC_ADAPTER_STARTED) {
1384 rc = efx_tunnel_reconfigure(sa->nic);
1385 if (rc == EAGAIN) {
1386 /*
1387 * Configuration is accepted by FW and MC reboot
1388 * is initiated to apply the changes. MC reboot
1389 * will be handled in a usual way (MC reboot
1390 * event on management event queue and adapter
1391 * restart).
1392 */
1393 rc = 0;
1394 } else if (rc != 0) {
1395 goto fail_reconfigure;
1396 }
1397 }
1398
1399 sfc_adapter_unlock(sa);
1400 return 0;
1401
1402 fail_reconfigure:
1403 /* Remove/restore entry since the change makes the trouble */
1404 switch (op) {
1405 case SFC_UDP_TUNNEL_ADD_PORT:
1406 (void)efx_tunnel_config_udp_remove(sa->nic,
1407 tunnel_udp->udp_port,
1408 tunnel_proto);
1409 break;
1410 case SFC_UDP_TUNNEL_DEL_PORT:
1411 (void)efx_tunnel_config_udp_add(sa->nic,
1412 tunnel_udp->udp_port,
1413 tunnel_proto);
1414 break;
1415 }
1416
1417 fail_op:
1418 fail_bad_op:
1419 sfc_adapter_unlock(sa);
1420
1421 fail_bad_proto:
1422 SFC_ASSERT(rc > 0);
1423 return -rc;
1424 }
1425
1426 static int
1427 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1428 struct rte_eth_udp_tunnel *tunnel_udp)
1429 {
1430 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1431 }
1432
1433 static int
1434 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1435 struct rte_eth_udp_tunnel *tunnel_udp)
1436 {
1437 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1438 }
1439
1440 /*
1441 * The function is used by the secondary process as well. It must not
1442 * use any process-local pointers from the adapter data.
1443 */
1444 static int
1445 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1446 struct rte_eth_rss_conf *rss_conf)
1447 {
1448 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1449 struct sfc_rss *rss = &sas->rss;
1450
1451 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1452 return -ENOTSUP;
1453
1454 /*
1455 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1456 * hence, conversion is done here to derive a correct set of ETH_RSS
1457 * flags which corresponds to the active EFX configuration stored
1458 * locally in 'sfc_adapter' and kept up-to-date
1459 */
1460 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1461 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1462 if (rss_conf->rss_key != NULL)
1463 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1464
1465 return 0;
1466 }
1467
1468 static int
1469 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1470 struct rte_eth_rss_conf *rss_conf)
1471 {
1472 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1473 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1474 unsigned int efx_hash_types;
1475 int rc = 0;
1476
1477 if (sfc_sa2shared(sa)->isolated)
1478 return -ENOTSUP;
1479
1480 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1481 sfc_err(sa, "RSS is not available");
1482 return -ENOTSUP;
1483 }
1484
1485 if (rss->channels == 0) {
1486 sfc_err(sa, "RSS is not configured");
1487 return -EINVAL;
1488 }
1489
1490 if ((rss_conf->rss_key != NULL) &&
1491 (rss_conf->rss_key_len != sizeof(rss->key))) {
1492 sfc_err(sa, "RSS key size is wrong (should be %lu)",
1493 sizeof(rss->key));
1494 return -EINVAL;
1495 }
1496
1497 sfc_adapter_lock(sa);
1498
1499 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1500 if (rc != 0)
1501 goto fail_rx_hf_rte_to_efx;
1502
1503 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1504 rss->hash_alg, efx_hash_types, B_TRUE);
1505 if (rc != 0)
1506 goto fail_scale_mode_set;
1507
1508 if (rss_conf->rss_key != NULL) {
1509 if (sa->state == SFC_ADAPTER_STARTED) {
1510 rc = efx_rx_scale_key_set(sa->nic,
1511 EFX_RSS_CONTEXT_DEFAULT,
1512 rss_conf->rss_key,
1513 sizeof(rss->key));
1514 if (rc != 0)
1515 goto fail_scale_key_set;
1516 }
1517
1518 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1519 }
1520
1521 rss->hash_types = efx_hash_types;
1522
1523 sfc_adapter_unlock(sa);
1524
1525 return 0;
1526
1527 fail_scale_key_set:
1528 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1529 EFX_RX_HASHALG_TOEPLITZ,
1530 rss->hash_types, B_TRUE) != 0)
1531 sfc_err(sa, "failed to restore RSS mode");
1532
1533 fail_scale_mode_set:
1534 fail_rx_hf_rte_to_efx:
1535 sfc_adapter_unlock(sa);
1536 return -rc;
1537 }
1538
1539 /*
1540 * The function is used by the secondary process as well. It must not
1541 * use any process-local pointers from the adapter data.
1542 */
1543 static int
1544 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1545 struct rte_eth_rss_reta_entry64 *reta_conf,
1546 uint16_t reta_size)
1547 {
1548 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1549 struct sfc_rss *rss = &sas->rss;
1550 int entry;
1551
1552 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1553 return -ENOTSUP;
1554
1555 if (rss->channels == 0)
1556 return -EINVAL;
1557
1558 if (reta_size != EFX_RSS_TBL_SIZE)
1559 return -EINVAL;
1560
1561 for (entry = 0; entry < reta_size; entry++) {
1562 int grp = entry / RTE_RETA_GROUP_SIZE;
1563 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1564
1565 if ((reta_conf[grp].mask >> grp_idx) & 1)
1566 reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1567 }
1568
1569 return 0;
1570 }
1571
1572 static int
1573 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1574 struct rte_eth_rss_reta_entry64 *reta_conf,
1575 uint16_t reta_size)
1576 {
1577 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1578 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1579 unsigned int *rss_tbl_new;
1580 uint16_t entry;
1581 int rc = 0;
1582
1583
1584 if (sfc_sa2shared(sa)->isolated)
1585 return -ENOTSUP;
1586
1587 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1588 sfc_err(sa, "RSS is not available");
1589 return -ENOTSUP;
1590 }
1591
1592 if (rss->channels == 0) {
1593 sfc_err(sa, "RSS is not configured");
1594 return -EINVAL;
1595 }
1596
1597 if (reta_size != EFX_RSS_TBL_SIZE) {
1598 sfc_err(sa, "RETA size is wrong (should be %u)",
1599 EFX_RSS_TBL_SIZE);
1600 return -EINVAL;
1601 }
1602
1603 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1604 if (rss_tbl_new == NULL)
1605 return -ENOMEM;
1606
1607 sfc_adapter_lock(sa);
1608
1609 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1610
1611 for (entry = 0; entry < reta_size; entry++) {
1612 int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1613 struct rte_eth_rss_reta_entry64 *grp;
1614
1615 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1616
1617 if (grp->mask & (1ull << grp_idx)) {
1618 if (grp->reta[grp_idx] >= rss->channels) {
1619 rc = EINVAL;
1620 goto bad_reta_entry;
1621 }
1622 rss_tbl_new[entry] = grp->reta[grp_idx];
1623 }
1624 }
1625
1626 if (sa->state == SFC_ADAPTER_STARTED) {
1627 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1628 rss_tbl_new, EFX_RSS_TBL_SIZE);
1629 if (rc != 0)
1630 goto fail_scale_tbl_set;
1631 }
1632
1633 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1634
1635 fail_scale_tbl_set:
1636 bad_reta_entry:
1637 sfc_adapter_unlock(sa);
1638
1639 rte_free(rss_tbl_new);
1640
1641 SFC_ASSERT(rc >= 0);
1642 return -rc;
1643 }
1644
1645 static int
1646 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1647 enum rte_filter_op filter_op,
1648 void *arg)
1649 {
1650 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1651 int rc = ENOTSUP;
1652
1653 sfc_log_init(sa, "entry");
1654
1655 switch (filter_type) {
1656 case RTE_ETH_FILTER_NONE:
1657 sfc_err(sa, "Global filters configuration not supported");
1658 break;
1659 case RTE_ETH_FILTER_MACVLAN:
1660 sfc_err(sa, "MACVLAN filters not supported");
1661 break;
1662 case RTE_ETH_FILTER_ETHERTYPE:
1663 sfc_err(sa, "EtherType filters not supported");
1664 break;
1665 case RTE_ETH_FILTER_FLEXIBLE:
1666 sfc_err(sa, "Flexible filters not supported");
1667 break;
1668 case RTE_ETH_FILTER_SYN:
1669 sfc_err(sa, "SYN filters not supported");
1670 break;
1671 case RTE_ETH_FILTER_NTUPLE:
1672 sfc_err(sa, "NTUPLE filters not supported");
1673 break;
1674 case RTE_ETH_FILTER_TUNNEL:
1675 sfc_err(sa, "Tunnel filters not supported");
1676 break;
1677 case RTE_ETH_FILTER_FDIR:
1678 sfc_err(sa, "Flow Director filters not supported");
1679 break;
1680 case RTE_ETH_FILTER_HASH:
1681 sfc_err(sa, "Hash filters not supported");
1682 break;
1683 case RTE_ETH_FILTER_GENERIC:
1684 if (filter_op != RTE_ETH_FILTER_GET) {
1685 rc = EINVAL;
1686 } else {
1687 *(const void **)arg = &sfc_flow_ops;
1688 rc = 0;
1689 }
1690 break;
1691 default:
1692 sfc_err(sa, "Unknown filter type %u", filter_type);
1693 break;
1694 }
1695
1696 sfc_log_init(sa, "exit: %d", -rc);
1697 SFC_ASSERT(rc >= 0);
1698 return -rc;
1699 }
1700
1701 static int
1702 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1703 {
1704 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1705
1706 /*
1707 * If Rx datapath does not provide callback to check mempool,
1708 * all pools are supported.
1709 */
1710 if (sap->dp_rx->pool_ops_supported == NULL)
1711 return 1;
1712
1713 return sap->dp_rx->pool_ops_supported(pool);
1714 }
1715
1716 static const struct eth_dev_ops sfc_eth_dev_ops = {
1717 .dev_configure = sfc_dev_configure,
1718 .dev_start = sfc_dev_start,
1719 .dev_stop = sfc_dev_stop,
1720 .dev_set_link_up = sfc_dev_set_link_up,
1721 .dev_set_link_down = sfc_dev_set_link_down,
1722 .dev_close = sfc_dev_close,
1723 .promiscuous_enable = sfc_dev_promisc_enable,
1724 .promiscuous_disable = sfc_dev_promisc_disable,
1725 .allmulticast_enable = sfc_dev_allmulti_enable,
1726 .allmulticast_disable = sfc_dev_allmulti_disable,
1727 .link_update = sfc_dev_link_update,
1728 .stats_get = sfc_stats_get,
1729 .stats_reset = sfc_stats_reset,
1730 .xstats_get = sfc_xstats_get,
1731 .xstats_reset = sfc_stats_reset,
1732 .xstats_get_names = sfc_xstats_get_names,
1733 .dev_infos_get = sfc_dev_infos_get,
1734 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
1735 .mtu_set = sfc_dev_set_mtu,
1736 .rx_queue_start = sfc_rx_queue_start,
1737 .rx_queue_stop = sfc_rx_queue_stop,
1738 .tx_queue_start = sfc_tx_queue_start,
1739 .tx_queue_stop = sfc_tx_queue_stop,
1740 .rx_queue_setup = sfc_rx_queue_setup,
1741 .rx_queue_release = sfc_rx_queue_release,
1742 .rx_queue_count = sfc_rx_queue_count,
1743 .rx_descriptor_done = sfc_rx_descriptor_done,
1744 .rx_descriptor_status = sfc_rx_descriptor_status,
1745 .tx_descriptor_status = sfc_tx_descriptor_status,
1746 .tx_queue_setup = sfc_tx_queue_setup,
1747 .tx_queue_release = sfc_tx_queue_release,
1748 .flow_ctrl_get = sfc_flow_ctrl_get,
1749 .flow_ctrl_set = sfc_flow_ctrl_set,
1750 .mac_addr_set = sfc_mac_addr_set,
1751 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add,
1752 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del,
1753 .reta_update = sfc_dev_rss_reta_update,
1754 .reta_query = sfc_dev_rss_reta_query,
1755 .rss_hash_update = sfc_dev_rss_hash_update,
1756 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
1757 .filter_ctrl = sfc_dev_filter_ctrl,
1758 .set_mc_addr_list = sfc_set_mc_addr_list,
1759 .rxq_info_get = sfc_rx_queue_info_get,
1760 .txq_info_get = sfc_tx_queue_info_get,
1761 .fw_version_get = sfc_fw_version_get,
1762 .xstats_get_by_id = sfc_xstats_get_by_id,
1763 .xstats_get_names_by_id = sfc_xstats_get_names_by_id,
1764 .pool_ops_supported = sfc_pool_ops_supported,
1765 };
1766
1767 /**
1768 * Duplicate a string in potentially shared memory required for
1769 * multi-process support.
1770 *
1771 * strdup() allocates from process-local heap/memory.
1772 */
1773 static char *
1774 sfc_strdup(const char *str)
1775 {
1776 size_t size;
1777 char *copy;
1778
1779 if (str == NULL)
1780 return NULL;
1781
1782 size = strlen(str) + 1;
1783 copy = rte_malloc(__func__, size, 0);
1784 if (copy != NULL)
1785 rte_memcpy(copy, str, size);
1786
1787 return copy;
1788 }
1789
1790 static int
1791 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1792 {
1793 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1794 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1795 const struct sfc_dp_rx *dp_rx;
1796 const struct sfc_dp_tx *dp_tx;
1797 const efx_nic_cfg_t *encp;
1798 unsigned int avail_caps = 0;
1799 const char *rx_name = NULL;
1800 const char *tx_name = NULL;
1801 int rc;
1802
1803 switch (sa->family) {
1804 case EFX_FAMILY_HUNTINGTON:
1805 case EFX_FAMILY_MEDFORD:
1806 case EFX_FAMILY_MEDFORD2:
1807 avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1808 break;
1809 default:
1810 break;
1811 }
1812
1813 encp = efx_nic_cfg_get(sa->nic);
1814 if (encp->enc_rx_es_super_buffer_supported)
1815 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1816
1817 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1818 sfc_kvarg_string_handler, &rx_name);
1819 if (rc != 0)
1820 goto fail_kvarg_rx_datapath;
1821
1822 if (rx_name != NULL) {
1823 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1824 if (dp_rx == NULL) {
1825 sfc_err(sa, "Rx datapath %s not found", rx_name);
1826 rc = ENOENT;
1827 goto fail_dp_rx;
1828 }
1829 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1830 sfc_err(sa,
1831 "Insufficient Hw/FW capabilities to use Rx datapath %s",
1832 rx_name);
1833 rc = EINVAL;
1834 goto fail_dp_rx_caps;
1835 }
1836 } else {
1837 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1838 if (dp_rx == NULL) {
1839 sfc_err(sa, "Rx datapath by caps %#x not found",
1840 avail_caps);
1841 rc = ENOENT;
1842 goto fail_dp_rx;
1843 }
1844 }
1845
1846 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1847 if (sas->dp_rx_name == NULL) {
1848 rc = ENOMEM;
1849 goto fail_dp_rx_name;
1850 }
1851
1852 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1853
1854 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1855 sfc_kvarg_string_handler, &tx_name);
1856 if (rc != 0)
1857 goto fail_kvarg_tx_datapath;
1858
1859 if (tx_name != NULL) {
1860 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1861 if (dp_tx == NULL) {
1862 sfc_err(sa, "Tx datapath %s not found", tx_name);
1863 rc = ENOENT;
1864 goto fail_dp_tx;
1865 }
1866 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1867 sfc_err(sa,
1868 "Insufficient Hw/FW capabilities to use Tx datapath %s",
1869 tx_name);
1870 rc = EINVAL;
1871 goto fail_dp_tx_caps;
1872 }
1873 } else {
1874 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1875 if (dp_tx == NULL) {
1876 sfc_err(sa, "Tx datapath by caps %#x not found",
1877 avail_caps);
1878 rc = ENOENT;
1879 goto fail_dp_tx;
1880 }
1881 }
1882
1883 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
1884 if (sas->dp_tx_name == NULL) {
1885 rc = ENOMEM;
1886 goto fail_dp_tx_name;
1887 }
1888
1889 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
1890
1891 sa->priv.dp_rx = dp_rx;
1892 sa->priv.dp_tx = dp_tx;
1893
1894 dev->rx_pkt_burst = dp_rx->pkt_burst;
1895 dev->tx_pkt_prepare = dp_tx->pkt_prepare;
1896 dev->tx_pkt_burst = dp_tx->pkt_burst;
1897
1898 dev->dev_ops = &sfc_eth_dev_ops;
1899
1900 return 0;
1901
1902 fail_dp_tx_name:
1903 fail_dp_tx_caps:
1904 fail_dp_tx:
1905 fail_kvarg_tx_datapath:
1906 rte_free(sas->dp_rx_name);
1907 sas->dp_rx_name = NULL;
1908
1909 fail_dp_rx_name:
1910 fail_dp_rx_caps:
1911 fail_dp_rx:
1912 fail_kvarg_rx_datapath:
1913 return rc;
1914 }
1915
1916 static void
1917 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1918 {
1919 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1920 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1921
1922 dev->dev_ops = NULL;
1923 dev->tx_pkt_prepare = NULL;
1924 dev->rx_pkt_burst = NULL;
1925 dev->tx_pkt_burst = NULL;
1926
1927 rte_free(sas->dp_tx_name);
1928 sas->dp_tx_name = NULL;
1929 sa->priv.dp_tx = NULL;
1930
1931 rte_free(sas->dp_rx_name);
1932 sas->dp_rx_name = NULL;
1933 sa->priv.dp_rx = NULL;
1934 }
1935
1936 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1937 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get,
1938 .rx_queue_count = sfc_rx_queue_count,
1939 .rx_descriptor_done = sfc_rx_descriptor_done,
1940 .rx_descriptor_status = sfc_rx_descriptor_status,
1941 .tx_descriptor_status = sfc_tx_descriptor_status,
1942 .reta_query = sfc_dev_rss_reta_query,
1943 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get,
1944 .rxq_info_get = sfc_rx_queue_info_get,
1945 .txq_info_get = sfc_tx_queue_info_get,
1946 };
1947
1948 static int
1949 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
1950 {
1951 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1952 struct sfc_adapter_priv *sap;
1953 const struct sfc_dp_rx *dp_rx;
1954 const struct sfc_dp_tx *dp_tx;
1955 int rc;
1956
1957 /*
1958 * Allocate process private data from heap, since it should not
1959 * be located in shared memory allocated using rte_malloc() API.
1960 */
1961 sap = calloc(1, sizeof(*sap));
1962 if (sap == NULL) {
1963 rc = ENOMEM;
1964 goto fail_alloc_priv;
1965 }
1966
1967 sap->logtype_main = logtype_main;
1968
1969 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
1970 if (dp_rx == NULL) {
1971 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
1972 "cannot find %s Rx datapath", sas->dp_rx_name);
1973 rc = ENOENT;
1974 goto fail_dp_rx;
1975 }
1976 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1977 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
1978 "%s Rx datapath does not support multi-process",
1979 sas->dp_rx_name);
1980 rc = EINVAL;
1981 goto fail_dp_rx_multi_process;
1982 }
1983
1984 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
1985 if (dp_tx == NULL) {
1986 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
1987 "cannot find %s Tx datapath", sas->dp_tx_name);
1988 rc = ENOENT;
1989 goto fail_dp_tx;
1990 }
1991 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1992 SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
1993 "%s Tx datapath does not support multi-process",
1994 sas->dp_tx_name);
1995 rc = EINVAL;
1996 goto fail_dp_tx_multi_process;
1997 }
1998
1999 sap->dp_rx = dp_rx;
2000 sap->dp_tx = dp_tx;
2001
2002 dev->process_private = sap;
2003 dev->rx_pkt_burst = dp_rx->pkt_burst;
2004 dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2005 dev->tx_pkt_burst = dp_tx->pkt_burst;
2006 dev->dev_ops = &sfc_eth_dev_secondary_ops;
2007
2008 return 0;
2009
2010 fail_dp_tx_multi_process:
2011 fail_dp_tx:
2012 fail_dp_rx_multi_process:
2013 fail_dp_rx:
2014 free(sap);
2015
2016 fail_alloc_priv:
2017 return rc;
2018 }
2019
2020 static void
2021 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
2022 {
2023 free(dev->process_private);
2024 dev->process_private = NULL;
2025 dev->dev_ops = NULL;
2026 dev->tx_pkt_prepare = NULL;
2027 dev->tx_pkt_burst = NULL;
2028 dev->rx_pkt_burst = NULL;
2029 }
2030
2031 static void
2032 sfc_register_dp(void)
2033 {
2034 /* Register once */
2035 if (TAILQ_EMPTY(&sfc_dp_head)) {
2036 /* Prefer EF10 datapath */
2037 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2038 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2039 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2040
2041 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2042 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2043 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2044 }
2045 }
2046
2047 static int
2048 sfc_eth_dev_init(struct rte_eth_dev *dev)
2049 {
2050 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2051 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2052 uint32_t logtype_main;
2053 struct sfc_adapter *sa;
2054 int rc;
2055 const efx_nic_cfg_t *encp;
2056 const struct ether_addr *from;
2057
2058 sfc_register_dp();
2059
2060 logtype_main = sfc_register_logtype(&pci_dev->addr,
2061 SFC_LOGTYPE_MAIN_STR,
2062 RTE_LOG_NOTICE);
2063
2064 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2065 return -sfc_eth_dev_secondary_init(dev, logtype_main);
2066
2067 /* Required for logging */
2068 sas->pci_addr = pci_dev->addr;
2069 sas->port_id = dev->data->port_id;
2070
2071 /*
2072 * Allocate process private data from heap, since it should not
2073 * be located in shared memory allocated using rte_malloc() API.
2074 */
2075 sa = calloc(1, sizeof(*sa));
2076 if (sa == NULL) {
2077 rc = ENOMEM;
2078 goto fail_alloc_sa;
2079 }
2080
2081 dev->process_private = sa;
2082
2083 /* Required for logging */
2084 sa->priv.shared = sas;
2085 sa->priv.logtype_main = logtype_main;
2086
2087 sa->eth_dev = dev;
2088
2089 /* Copy PCI device info to the dev->data */
2090 rte_eth_copy_pci_info(dev, pci_dev);
2091
2092 rc = sfc_kvargs_parse(sa);
2093 if (rc != 0)
2094 goto fail_kvargs_parse;
2095
2096 sfc_log_init(sa, "entry");
2097
2098 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
2099 if (dev->data->mac_addrs == NULL) {
2100 rc = ENOMEM;
2101 goto fail_mac_addrs;
2102 }
2103
2104 sfc_adapter_lock_init(sa);
2105 sfc_adapter_lock(sa);
2106
2107 sfc_log_init(sa, "probing");
2108 rc = sfc_probe(sa);
2109 if (rc != 0)
2110 goto fail_probe;
2111
2112 sfc_log_init(sa, "set device ops");
2113 rc = sfc_eth_dev_set_ops(dev);
2114 if (rc != 0)
2115 goto fail_set_ops;
2116
2117 sfc_log_init(sa, "attaching");
2118 rc = sfc_attach(sa);
2119 if (rc != 0)
2120 goto fail_attach;
2121
2122 encp = efx_nic_cfg_get(sa->nic);
2123
2124 /*
2125 * The arguments are really reverse order in comparison to
2126 * Linux kernel. Copy from NIC config to Ethernet device data.
2127 */
2128 from = (const struct ether_addr *)(encp->enc_mac_addr);
2129 ether_addr_copy(from, &dev->data->mac_addrs[0]);
2130
2131 sfc_adapter_unlock(sa);
2132
2133 sfc_log_init(sa, "done");
2134 return 0;
2135
2136 fail_attach:
2137 sfc_eth_dev_clear_ops(dev);
2138
2139 fail_set_ops:
2140 sfc_unprobe(sa);
2141
2142 fail_probe:
2143 sfc_adapter_unlock(sa);
2144 sfc_adapter_lock_fini(sa);
2145 rte_free(dev->data->mac_addrs);
2146 dev->data->mac_addrs = NULL;
2147
2148 fail_mac_addrs:
2149 sfc_kvargs_cleanup(sa);
2150
2151 fail_kvargs_parse:
2152 sfc_log_init(sa, "failed %d", rc);
2153 dev->process_private = NULL;
2154 free(sa);
2155
2156 fail_alloc_sa:
2157 SFC_ASSERT(rc > 0);
2158 return -rc;
2159 }
2160
2161 static int
2162 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2163 {
2164 struct sfc_adapter *sa;
2165
2166 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2167 sfc_eth_dev_secondary_clear_ops(dev);
2168 return 0;
2169 }
2170
2171 sa = sfc_adapter_by_eth_dev(dev);
2172 sfc_log_init(sa, "entry");
2173
2174 sfc_adapter_lock(sa);
2175
2176 sfc_eth_dev_clear_ops(dev);
2177
2178 sfc_detach(sa);
2179 sfc_unprobe(sa);
2180
2181 sfc_kvargs_cleanup(sa);
2182
2183 sfc_adapter_unlock(sa);
2184 sfc_adapter_lock_fini(sa);
2185
2186 sfc_log_init(sa, "done");
2187
2188 /* Required for logging, so cleanup last */
2189 sa->eth_dev = NULL;
2190
2191 dev->process_private = NULL;
2192 free(sa);
2193
2194 return 0;
2195 }
2196
2197 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2198 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2199 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2200 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2201 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2202 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2203 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2204 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2205 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2206 { .vendor_id = 0 /* sentinel */ }
2207 };
2208
2209 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2210 struct rte_pci_device *pci_dev)
2211 {
2212 return rte_eth_dev_pci_generic_probe(pci_dev,
2213 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2214 }
2215
2216 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2217 {
2218 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2219 }
2220
2221 static struct rte_pci_driver sfc_efx_pmd = {
2222 .id_table = pci_id_sfc_efx_map,
2223 .drv_flags =
2224 RTE_PCI_DRV_INTR_LSC |
2225 RTE_PCI_DRV_NEED_MAPPING,
2226 .probe = sfc_eth_dev_pci_probe,
2227 .remove = sfc_eth_dev_pci_remove,
2228 };
2229
2230 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2231 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2232 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2233 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2234 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2235 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2236 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2237 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2238 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2239 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2240
2241 RTE_INIT(sfc_driver_register_logtype)
2242 {
2243 int ret;
2244
2245 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2246 RTE_LOG_NOTICE);
2247 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2248 }