]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/sfc/sfc_ev.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / sfc / sfc_ev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 *
3 * Copyright (c) 2016-2018 Solarflare Communications Inc.
4 * All rights reserved.
5 *
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
8 */
9
10 #include <rte_debug.h>
11 #include <rte_cycles.h>
12 #include <rte_alarm.h>
13 #include <rte_branch_prediction.h>
14
15 #include "efx.h"
16
17 #include "sfc.h"
18 #include "sfc_debug.h"
19 #include "sfc_log.h"
20 #include "sfc_ev.h"
21 #include "sfc_rx.h"
22 #include "sfc_tx.h"
23 #include "sfc_kvargs.h"
24
25
26 /* Initial delay when waiting for event queue init complete event */
27 #define SFC_EVQ_INIT_BACKOFF_START_US (1)
28 /* Maximum delay between event queue polling attempts */
29 #define SFC_EVQ_INIT_BACKOFF_MAX_US (10 * 1000)
30 /* Event queue init approx timeout */
31 #define SFC_EVQ_INIT_TIMEOUT_US (2 * US_PER_S)
32
33 /* Management event queue polling period in microseconds */
34 #define SFC_MGMT_EV_QPOLL_PERIOD_US (US_PER_S)
35
36 static const char *
37 sfc_evq_type2str(enum sfc_evq_type type)
38 {
39 switch (type) {
40 case SFC_EVQ_TYPE_MGMT:
41 return "mgmt-evq";
42 case SFC_EVQ_TYPE_RX:
43 return "rx-evq";
44 case SFC_EVQ_TYPE_TX:
45 return "tx-evq";
46 default:
47 SFC_ASSERT(B_FALSE);
48 return NULL;
49 }
50 }
51
52 static boolean_t
53 sfc_ev_initialized(void *arg)
54 {
55 struct sfc_evq *evq = arg;
56
57 /* Init done events may be duplicated on SFN7xxx (SFC bug 31631) */
58 SFC_ASSERT(evq->init_state == SFC_EVQ_STARTING ||
59 evq->init_state == SFC_EVQ_STARTED);
60
61 evq->init_state = SFC_EVQ_STARTED;
62
63 return B_FALSE;
64 }
65
66 static boolean_t
67 sfc_ev_nop_rx(void *arg, uint32_t label, uint32_t id,
68 uint32_t size, uint16_t flags)
69 {
70 struct sfc_evq *evq = arg;
71
72 sfc_err(evq->sa,
73 "EVQ %u unexpected Rx event label=%u id=%#x size=%u flags=%#x",
74 evq->evq_index, label, id, size, flags);
75 return B_TRUE;
76 }
77
78 static boolean_t
79 sfc_ev_efx_rx(void *arg, __rte_unused uint32_t label, uint32_t id,
80 uint32_t size, uint16_t flags)
81 {
82 struct sfc_evq *evq = arg;
83 struct sfc_efx_rxq *rxq;
84 unsigned int stop;
85 unsigned int pending_id;
86 unsigned int delta;
87 unsigned int i;
88 struct sfc_efx_rx_sw_desc *rxd;
89
90 if (unlikely(evq->exception))
91 goto done;
92
93 rxq = sfc_efx_rxq_by_dp_rxq(evq->dp_rxq);
94
95 SFC_ASSERT(rxq != NULL);
96 SFC_ASSERT(rxq->evq == evq);
97 SFC_ASSERT(rxq->flags & SFC_EFX_RXQ_FLAG_STARTED);
98
99 stop = (id + 1) & rxq->ptr_mask;
100 pending_id = rxq->pending & rxq->ptr_mask;
101 delta = (stop >= pending_id) ? (stop - pending_id) :
102 (rxq->ptr_mask + 1 - pending_id + stop);
103
104 if (delta == 0) {
105 /*
106 * Rx event with no new descriptors done and zero length
107 * is used to abort scattered packet when there is no room
108 * for the tail.
109 */
110 if (unlikely(size != 0)) {
111 evq->exception = B_TRUE;
112 sfc_err(evq->sa,
113 "EVQ %u RxQ %u invalid RX abort "
114 "(id=%#x size=%u flags=%#x); needs restart",
115 evq->evq_index, rxq->dp.dpq.queue_id,
116 id, size, flags);
117 goto done;
118 }
119
120 /* Add discard flag to the first fragment */
121 rxq->sw_desc[pending_id].flags |= EFX_DISCARD;
122 /* Remove continue flag from the last fragment */
123 rxq->sw_desc[id].flags &= ~EFX_PKT_CONT;
124 } else if (unlikely(delta > rxq->batch_max)) {
125 evq->exception = B_TRUE;
126
127 sfc_err(evq->sa,
128 "EVQ %u RxQ %u completion out of order "
129 "(id=%#x delta=%u flags=%#x); needs restart",
130 evq->evq_index, rxq->dp.dpq.queue_id,
131 id, delta, flags);
132
133 goto done;
134 }
135
136 for (i = pending_id; i != stop; i = (i + 1) & rxq->ptr_mask) {
137 rxd = &rxq->sw_desc[i];
138
139 rxd->flags = flags;
140
141 SFC_ASSERT(size < (1 << 16));
142 rxd->size = (uint16_t)size;
143 }
144
145 rxq->pending += delta;
146
147 done:
148 return B_FALSE;
149 }
150
151 static boolean_t
152 sfc_ev_dp_rx(void *arg, __rte_unused uint32_t label, uint32_t id,
153 __rte_unused uint32_t size, __rte_unused uint16_t flags)
154 {
155 struct sfc_evq *evq = arg;
156 struct sfc_dp_rxq *dp_rxq;
157
158 dp_rxq = evq->dp_rxq;
159 SFC_ASSERT(dp_rxq != NULL);
160
161 SFC_ASSERT(evq->sa->dp_rx->qrx_ev != NULL);
162 return evq->sa->dp_rx->qrx_ev(dp_rxq, id);
163 }
164
165 static boolean_t
166 sfc_ev_nop_rx_ps(void *arg, uint32_t label, uint32_t id,
167 uint32_t pkt_count, uint16_t flags)
168 {
169 struct sfc_evq *evq = arg;
170
171 sfc_err(evq->sa,
172 "EVQ %u unexpected packed stream Rx event label=%u id=%#x pkt_count=%u flags=%#x",
173 evq->evq_index, label, id, pkt_count, flags);
174 return B_TRUE;
175 }
176
177 /* It is not actually used on datapath, but required on RxQ flush */
178 static boolean_t
179 sfc_ev_dp_rx_ps(void *arg, __rte_unused uint32_t label, uint32_t id,
180 __rte_unused uint32_t pkt_count, __rte_unused uint16_t flags)
181 {
182 struct sfc_evq *evq = arg;
183 struct sfc_dp_rxq *dp_rxq;
184
185 dp_rxq = evq->dp_rxq;
186 SFC_ASSERT(dp_rxq != NULL);
187
188 if (evq->sa->dp_rx->qrx_ps_ev != NULL)
189 return evq->sa->dp_rx->qrx_ps_ev(dp_rxq, id);
190 else
191 return B_FALSE;
192 }
193
194 static boolean_t
195 sfc_ev_nop_tx(void *arg, uint32_t label, uint32_t id)
196 {
197 struct sfc_evq *evq = arg;
198
199 sfc_err(evq->sa, "EVQ %u unexpected Tx event label=%u id=%#x",
200 evq->evq_index, label, id);
201 return B_TRUE;
202 }
203
204 static boolean_t
205 sfc_ev_tx(void *arg, __rte_unused uint32_t label, uint32_t id)
206 {
207 struct sfc_evq *evq = arg;
208 struct sfc_dp_txq *dp_txq;
209 struct sfc_efx_txq *txq;
210 unsigned int stop;
211 unsigned int delta;
212
213 dp_txq = evq->dp_txq;
214 SFC_ASSERT(dp_txq != NULL);
215
216 txq = sfc_efx_txq_by_dp_txq(dp_txq);
217 SFC_ASSERT(txq->evq == evq);
218
219 if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_STARTED) == 0))
220 goto done;
221
222 stop = (id + 1) & txq->ptr_mask;
223 id = txq->pending & txq->ptr_mask;
224
225 delta = (stop >= id) ? (stop - id) : (txq->ptr_mask + 1 - id + stop);
226
227 txq->pending += delta;
228
229 done:
230 return B_FALSE;
231 }
232
233 static boolean_t
234 sfc_ev_dp_tx(void *arg, __rte_unused uint32_t label, uint32_t id)
235 {
236 struct sfc_evq *evq = arg;
237 struct sfc_dp_txq *dp_txq;
238
239 dp_txq = evq->dp_txq;
240 SFC_ASSERT(dp_txq != NULL);
241
242 SFC_ASSERT(evq->sa->dp_tx->qtx_ev != NULL);
243 return evq->sa->dp_tx->qtx_ev(dp_txq, id);
244 }
245
246 static boolean_t
247 sfc_ev_exception(void *arg, uint32_t code, __rte_unused uint32_t data)
248 {
249 struct sfc_evq *evq = arg;
250
251 if (code == EFX_EXCEPTION_UNKNOWN_SENSOREVT)
252 return B_FALSE;
253
254 evq->exception = B_TRUE;
255 sfc_warn(evq->sa,
256 "hardware exception %s (code=%u, data=%#x) on EVQ %u;"
257 " needs recovery",
258 (code == EFX_EXCEPTION_RX_RECOVERY) ? "RX_RECOVERY" :
259 (code == EFX_EXCEPTION_RX_DSC_ERROR) ? "RX_DSC_ERROR" :
260 (code == EFX_EXCEPTION_TX_DSC_ERROR) ? "TX_DSC_ERROR" :
261 (code == EFX_EXCEPTION_FWALERT_SRAM) ? "FWALERT_SRAM" :
262 (code == EFX_EXCEPTION_UNKNOWN_FWALERT) ? "UNKNOWN_FWALERT" :
263 (code == EFX_EXCEPTION_RX_ERROR) ? "RX_ERROR" :
264 (code == EFX_EXCEPTION_TX_ERROR) ? "TX_ERROR" :
265 (code == EFX_EXCEPTION_EV_ERROR) ? "EV_ERROR" :
266 "UNKNOWN",
267 code, data, evq->evq_index);
268
269 return B_TRUE;
270 }
271
272 static boolean_t
273 sfc_ev_nop_rxq_flush_done(void *arg, uint32_t rxq_hw_index)
274 {
275 struct sfc_evq *evq = arg;
276
277 sfc_err(evq->sa, "EVQ %u unexpected RxQ %u flush done",
278 evq->evq_index, rxq_hw_index);
279 return B_TRUE;
280 }
281
282 static boolean_t
283 sfc_ev_rxq_flush_done(void *arg, __rte_unused uint32_t rxq_hw_index)
284 {
285 struct sfc_evq *evq = arg;
286 struct sfc_dp_rxq *dp_rxq;
287 struct sfc_rxq *rxq;
288
289 dp_rxq = evq->dp_rxq;
290 SFC_ASSERT(dp_rxq != NULL);
291
292 rxq = sfc_rxq_by_dp_rxq(dp_rxq);
293 SFC_ASSERT(rxq != NULL);
294 SFC_ASSERT(rxq->hw_index == rxq_hw_index);
295 SFC_ASSERT(rxq->evq == evq);
296 sfc_rx_qflush_done(rxq);
297
298 return B_FALSE;
299 }
300
301 static boolean_t
302 sfc_ev_nop_rxq_flush_failed(void *arg, uint32_t rxq_hw_index)
303 {
304 struct sfc_evq *evq = arg;
305
306 sfc_err(evq->sa, "EVQ %u unexpected RxQ %u flush failed",
307 evq->evq_index, rxq_hw_index);
308 return B_TRUE;
309 }
310
311 static boolean_t
312 sfc_ev_rxq_flush_failed(void *arg, __rte_unused uint32_t rxq_hw_index)
313 {
314 struct sfc_evq *evq = arg;
315 struct sfc_dp_rxq *dp_rxq;
316 struct sfc_rxq *rxq;
317
318 dp_rxq = evq->dp_rxq;
319 SFC_ASSERT(dp_rxq != NULL);
320
321 rxq = sfc_rxq_by_dp_rxq(dp_rxq);
322 SFC_ASSERT(rxq != NULL);
323 SFC_ASSERT(rxq->hw_index == rxq_hw_index);
324 SFC_ASSERT(rxq->evq == evq);
325 sfc_rx_qflush_failed(rxq);
326
327 return B_FALSE;
328 }
329
330 static boolean_t
331 sfc_ev_nop_txq_flush_done(void *arg, uint32_t txq_hw_index)
332 {
333 struct sfc_evq *evq = arg;
334
335 sfc_err(evq->sa, "EVQ %u unexpected TxQ %u flush done",
336 evq->evq_index, txq_hw_index);
337 return B_TRUE;
338 }
339
340 static boolean_t
341 sfc_ev_txq_flush_done(void *arg, __rte_unused uint32_t txq_hw_index)
342 {
343 struct sfc_evq *evq = arg;
344 struct sfc_dp_txq *dp_txq;
345 struct sfc_txq *txq;
346
347 dp_txq = evq->dp_txq;
348 SFC_ASSERT(dp_txq != NULL);
349
350 txq = sfc_txq_by_dp_txq(dp_txq);
351 SFC_ASSERT(txq != NULL);
352 SFC_ASSERT(txq->hw_index == txq_hw_index);
353 SFC_ASSERT(txq->evq == evq);
354 sfc_tx_qflush_done(txq);
355
356 return B_FALSE;
357 }
358
359 static boolean_t
360 sfc_ev_software(void *arg, uint16_t magic)
361 {
362 struct sfc_evq *evq = arg;
363
364 sfc_err(evq->sa, "EVQ %u unexpected software event magic=%#.4x",
365 evq->evq_index, magic);
366 return B_TRUE;
367 }
368
369 static boolean_t
370 sfc_ev_sram(void *arg, uint32_t code)
371 {
372 struct sfc_evq *evq = arg;
373
374 sfc_err(evq->sa, "EVQ %u unexpected SRAM event code=%u",
375 evq->evq_index, code);
376 return B_TRUE;
377 }
378
379 static boolean_t
380 sfc_ev_wake_up(void *arg, uint32_t index)
381 {
382 struct sfc_evq *evq = arg;
383
384 sfc_err(evq->sa, "EVQ %u unexpected wake up event index=%u",
385 evq->evq_index, index);
386 return B_TRUE;
387 }
388
389 static boolean_t
390 sfc_ev_timer(void *arg, uint32_t index)
391 {
392 struct sfc_evq *evq = arg;
393
394 sfc_err(evq->sa, "EVQ %u unexpected timer event index=%u",
395 evq->evq_index, index);
396 return B_TRUE;
397 }
398
399 static boolean_t
400 sfc_ev_nop_link_change(void *arg, __rte_unused efx_link_mode_t link_mode)
401 {
402 struct sfc_evq *evq = arg;
403
404 sfc_err(evq->sa, "EVQ %u unexpected link change event",
405 evq->evq_index);
406 return B_TRUE;
407 }
408
409 static boolean_t
410 sfc_ev_link_change(void *arg, efx_link_mode_t link_mode)
411 {
412 struct sfc_evq *evq = arg;
413 struct sfc_adapter *sa = evq->sa;
414 struct rte_eth_link new_link;
415
416 sfc_port_link_mode_to_info(link_mode, &new_link);
417 if (rte_eth_linkstatus_set(sa->eth_dev, &new_link))
418 evq->sa->port.lsc_seq++;
419
420 return B_FALSE;
421 }
422
423 static const efx_ev_callbacks_t sfc_ev_callbacks = {
424 .eec_initialized = sfc_ev_initialized,
425 .eec_rx = sfc_ev_nop_rx,
426 .eec_rx_ps = sfc_ev_nop_rx_ps,
427 .eec_tx = sfc_ev_nop_tx,
428 .eec_exception = sfc_ev_exception,
429 .eec_rxq_flush_done = sfc_ev_nop_rxq_flush_done,
430 .eec_rxq_flush_failed = sfc_ev_nop_rxq_flush_failed,
431 .eec_txq_flush_done = sfc_ev_nop_txq_flush_done,
432 .eec_software = sfc_ev_software,
433 .eec_sram = sfc_ev_sram,
434 .eec_wake_up = sfc_ev_wake_up,
435 .eec_timer = sfc_ev_timer,
436 .eec_link_change = sfc_ev_link_change,
437 };
438
439 static const efx_ev_callbacks_t sfc_ev_callbacks_efx_rx = {
440 .eec_initialized = sfc_ev_initialized,
441 .eec_rx = sfc_ev_efx_rx,
442 .eec_rx_ps = sfc_ev_nop_rx_ps,
443 .eec_tx = sfc_ev_nop_tx,
444 .eec_exception = sfc_ev_exception,
445 .eec_rxq_flush_done = sfc_ev_rxq_flush_done,
446 .eec_rxq_flush_failed = sfc_ev_rxq_flush_failed,
447 .eec_txq_flush_done = sfc_ev_nop_txq_flush_done,
448 .eec_software = sfc_ev_software,
449 .eec_sram = sfc_ev_sram,
450 .eec_wake_up = sfc_ev_wake_up,
451 .eec_timer = sfc_ev_timer,
452 .eec_link_change = sfc_ev_nop_link_change,
453 };
454
455 static const efx_ev_callbacks_t sfc_ev_callbacks_dp_rx = {
456 .eec_initialized = sfc_ev_initialized,
457 .eec_rx = sfc_ev_dp_rx,
458 .eec_rx_ps = sfc_ev_dp_rx_ps,
459 .eec_tx = sfc_ev_nop_tx,
460 .eec_exception = sfc_ev_exception,
461 .eec_rxq_flush_done = sfc_ev_rxq_flush_done,
462 .eec_rxq_flush_failed = sfc_ev_rxq_flush_failed,
463 .eec_txq_flush_done = sfc_ev_nop_txq_flush_done,
464 .eec_software = sfc_ev_software,
465 .eec_sram = sfc_ev_sram,
466 .eec_wake_up = sfc_ev_wake_up,
467 .eec_timer = sfc_ev_timer,
468 .eec_link_change = sfc_ev_nop_link_change,
469 };
470
471 static const efx_ev_callbacks_t sfc_ev_callbacks_efx_tx = {
472 .eec_initialized = sfc_ev_initialized,
473 .eec_rx = sfc_ev_nop_rx,
474 .eec_rx_ps = sfc_ev_nop_rx_ps,
475 .eec_tx = sfc_ev_tx,
476 .eec_exception = sfc_ev_exception,
477 .eec_rxq_flush_done = sfc_ev_nop_rxq_flush_done,
478 .eec_rxq_flush_failed = sfc_ev_nop_rxq_flush_failed,
479 .eec_txq_flush_done = sfc_ev_txq_flush_done,
480 .eec_software = sfc_ev_software,
481 .eec_sram = sfc_ev_sram,
482 .eec_wake_up = sfc_ev_wake_up,
483 .eec_timer = sfc_ev_timer,
484 .eec_link_change = sfc_ev_nop_link_change,
485 };
486
487 static const efx_ev_callbacks_t sfc_ev_callbacks_dp_tx = {
488 .eec_initialized = sfc_ev_initialized,
489 .eec_rx = sfc_ev_nop_rx,
490 .eec_rx_ps = sfc_ev_nop_rx_ps,
491 .eec_tx = sfc_ev_dp_tx,
492 .eec_exception = sfc_ev_exception,
493 .eec_rxq_flush_done = sfc_ev_nop_rxq_flush_done,
494 .eec_rxq_flush_failed = sfc_ev_nop_rxq_flush_failed,
495 .eec_txq_flush_done = sfc_ev_txq_flush_done,
496 .eec_software = sfc_ev_software,
497 .eec_sram = sfc_ev_sram,
498 .eec_wake_up = sfc_ev_wake_up,
499 .eec_timer = sfc_ev_timer,
500 .eec_link_change = sfc_ev_nop_link_change,
501 };
502
503
504 void
505 sfc_ev_qpoll(struct sfc_evq *evq)
506 {
507 SFC_ASSERT(evq->init_state == SFC_EVQ_STARTED ||
508 evq->init_state == SFC_EVQ_STARTING);
509
510 /* Synchronize the DMA memory for reading not required */
511
512 efx_ev_qpoll(evq->common, &evq->read_ptr, evq->callbacks, evq);
513
514 if (unlikely(evq->exception) && sfc_adapter_trylock(evq->sa)) {
515 struct sfc_adapter *sa = evq->sa;
516 int rc;
517
518 if (evq->dp_rxq != NULL) {
519 unsigned int rxq_sw_index;
520
521 rxq_sw_index = evq->dp_rxq->dpq.queue_id;
522
523 sfc_warn(sa,
524 "restart RxQ %u because of exception on its EvQ %u",
525 rxq_sw_index, evq->evq_index);
526
527 sfc_rx_qstop(sa, rxq_sw_index);
528 rc = sfc_rx_qstart(sa, rxq_sw_index);
529 if (rc != 0)
530 sfc_err(sa, "cannot restart RxQ %u",
531 rxq_sw_index);
532 }
533
534 if (evq->dp_txq != NULL) {
535 unsigned int txq_sw_index;
536
537 txq_sw_index = evq->dp_txq->dpq.queue_id;
538
539 sfc_warn(sa,
540 "restart TxQ %u because of exception on its EvQ %u",
541 txq_sw_index, evq->evq_index);
542
543 sfc_tx_qstop(sa, txq_sw_index);
544 rc = sfc_tx_qstart(sa, txq_sw_index);
545 if (rc != 0)
546 sfc_err(sa, "cannot restart TxQ %u",
547 txq_sw_index);
548 }
549
550 if (evq->exception)
551 sfc_panic(sa, "unrecoverable exception on EvQ %u",
552 evq->evq_index);
553
554 sfc_adapter_unlock(sa);
555 }
556
557 /* Poll-mode driver does not re-prime the event queue for interrupts */
558 }
559
560 void
561 sfc_ev_mgmt_qpoll(struct sfc_adapter *sa)
562 {
563 if (rte_spinlock_trylock(&sa->mgmt_evq_lock)) {
564 if (sa->mgmt_evq_running)
565 sfc_ev_qpoll(sa->mgmt_evq);
566
567 rte_spinlock_unlock(&sa->mgmt_evq_lock);
568 }
569 }
570
571 int
572 sfc_ev_qprime(struct sfc_evq *evq)
573 {
574 SFC_ASSERT(evq->init_state == SFC_EVQ_STARTED);
575 return efx_ev_qprime(evq->common, evq->read_ptr);
576 }
577
578 /* Event queue HW index allocation scheme is described in sfc_ev.h. */
579 int
580 sfc_ev_qstart(struct sfc_evq *evq, unsigned int hw_index)
581 {
582 struct sfc_adapter *sa = evq->sa;
583 efsys_mem_t *esmp;
584 uint32_t evq_flags = sa->evq_flags;
585 unsigned int total_delay_us;
586 unsigned int delay_us;
587 int rc;
588
589 sfc_log_init(sa, "hw_index=%u", hw_index);
590
591 esmp = &evq->mem;
592
593 evq->evq_index = hw_index;
594
595 /* Clear all events */
596 (void)memset((void *)esmp->esm_base, 0xff, EFX_EVQ_SIZE(evq->entries));
597
598 if (sa->intr.lsc_intr && hw_index == sa->mgmt_evq_index)
599 evq_flags |= EFX_EVQ_FLAGS_NOTIFY_INTERRUPT;
600 else
601 evq_flags |= EFX_EVQ_FLAGS_NOTIFY_DISABLED;
602
603 /* Create the common code event queue */
604 rc = efx_ev_qcreate(sa->nic, hw_index, esmp, evq->entries,
605 0 /* unused on EF10 */, 0, evq_flags,
606 &evq->common);
607 if (rc != 0)
608 goto fail_ev_qcreate;
609
610 SFC_ASSERT(evq->dp_rxq == NULL || evq->dp_txq == NULL);
611 if (evq->dp_rxq != 0) {
612 if (strcmp(sa->dp_rx->dp.name, SFC_KVARG_DATAPATH_EFX) == 0)
613 evq->callbacks = &sfc_ev_callbacks_efx_rx;
614 else
615 evq->callbacks = &sfc_ev_callbacks_dp_rx;
616 } else if (evq->dp_txq != 0) {
617 if (strcmp(sa->dp_tx->dp.name, SFC_KVARG_DATAPATH_EFX) == 0)
618 evq->callbacks = &sfc_ev_callbacks_efx_tx;
619 else
620 evq->callbacks = &sfc_ev_callbacks_dp_tx;
621 } else {
622 evq->callbacks = &sfc_ev_callbacks;
623 }
624
625 evq->init_state = SFC_EVQ_STARTING;
626
627 /* Wait for the initialization event */
628 total_delay_us = 0;
629 delay_us = SFC_EVQ_INIT_BACKOFF_START_US;
630 do {
631 (void)sfc_ev_qpoll(evq);
632
633 /* Check to see if the initialization complete indication
634 * posted by the hardware.
635 */
636 if (evq->init_state == SFC_EVQ_STARTED)
637 goto done;
638
639 /* Give event queue some time to init */
640 rte_delay_us(delay_us);
641
642 total_delay_us += delay_us;
643
644 /* Exponential backoff */
645 delay_us *= 2;
646 if (delay_us > SFC_EVQ_INIT_BACKOFF_MAX_US)
647 delay_us = SFC_EVQ_INIT_BACKOFF_MAX_US;
648
649 } while (total_delay_us < SFC_EVQ_INIT_TIMEOUT_US);
650
651 rc = ETIMEDOUT;
652 goto fail_timedout;
653
654 done:
655 return 0;
656
657 fail_timedout:
658 evq->init_state = SFC_EVQ_INITIALIZED;
659 efx_ev_qdestroy(evq->common);
660
661 fail_ev_qcreate:
662 sfc_log_init(sa, "failed %d", rc);
663 return rc;
664 }
665
666 void
667 sfc_ev_qstop(struct sfc_evq *evq)
668 {
669 if (evq == NULL)
670 return;
671
672 sfc_log_init(evq->sa, "hw_index=%u", evq->evq_index);
673
674 if (evq->init_state != SFC_EVQ_STARTED)
675 return;
676
677 evq->init_state = SFC_EVQ_INITIALIZED;
678 evq->callbacks = NULL;
679 evq->read_ptr = 0;
680 evq->exception = B_FALSE;
681
682 efx_ev_qdestroy(evq->common);
683
684 evq->evq_index = 0;
685 }
686
687 static void
688 sfc_ev_mgmt_periodic_qpoll(void *arg)
689 {
690 struct sfc_adapter *sa = arg;
691 int rc;
692
693 sfc_ev_mgmt_qpoll(sa);
694
695 rc = rte_eal_alarm_set(SFC_MGMT_EV_QPOLL_PERIOD_US,
696 sfc_ev_mgmt_periodic_qpoll, sa);
697 if (rc == -ENOTSUP) {
698 sfc_warn(sa, "alarms are not supported");
699 sfc_warn(sa, "management EVQ must be polled indirectly using no-wait link status update");
700 } else if (rc != 0) {
701 sfc_err(sa,
702 "cannot rearm management EVQ polling alarm (rc=%d)",
703 rc);
704 }
705 }
706
707 static void
708 sfc_ev_mgmt_periodic_qpoll_start(struct sfc_adapter *sa)
709 {
710 sfc_ev_mgmt_periodic_qpoll(sa);
711 }
712
713 static void
714 sfc_ev_mgmt_periodic_qpoll_stop(struct sfc_adapter *sa)
715 {
716 rte_eal_alarm_cancel(sfc_ev_mgmt_periodic_qpoll, sa);
717 }
718
719 int
720 sfc_ev_start(struct sfc_adapter *sa)
721 {
722 int rc;
723
724 sfc_log_init(sa, "entry");
725
726 rc = efx_ev_init(sa->nic);
727 if (rc != 0)
728 goto fail_ev_init;
729
730 /* Start management EVQ used for global events */
731
732 /*
733 * Management event queue start polls the queue, but it cannot
734 * interfere with other polling contexts since mgmt_evq_running
735 * is false yet.
736 */
737 rc = sfc_ev_qstart(sa->mgmt_evq, sa->mgmt_evq_index);
738 if (rc != 0)
739 goto fail_mgmt_evq_start;
740
741 rte_spinlock_lock(&sa->mgmt_evq_lock);
742 sa->mgmt_evq_running = true;
743 rte_spinlock_unlock(&sa->mgmt_evq_lock);
744
745 if (sa->intr.lsc_intr) {
746 rc = sfc_ev_qprime(sa->mgmt_evq);
747 if (rc != 0)
748 goto fail_mgmt_evq_prime;
749 }
750
751 /*
752 * Start management EVQ polling. If interrupts are disabled
753 * (not used), it is required to process link status change
754 * and other device level events to avoid unrecoverable
755 * error because the event queue overflow.
756 */
757 sfc_ev_mgmt_periodic_qpoll_start(sa);
758
759 /*
760 * Rx/Tx event queues are started/stopped when corresponding
761 * Rx/Tx queue is started/stopped.
762 */
763
764 return 0;
765
766 fail_mgmt_evq_prime:
767 sfc_ev_qstop(sa->mgmt_evq);
768
769 fail_mgmt_evq_start:
770 efx_ev_fini(sa->nic);
771
772 fail_ev_init:
773 sfc_log_init(sa, "failed %d", rc);
774 return rc;
775 }
776
777 void
778 sfc_ev_stop(struct sfc_adapter *sa)
779 {
780 sfc_log_init(sa, "entry");
781
782 sfc_ev_mgmt_periodic_qpoll_stop(sa);
783
784 rte_spinlock_lock(&sa->mgmt_evq_lock);
785 sa->mgmt_evq_running = false;
786 rte_spinlock_unlock(&sa->mgmt_evq_lock);
787
788 sfc_ev_qstop(sa->mgmt_evq);
789
790 efx_ev_fini(sa->nic);
791 }
792
793 int
794 sfc_ev_qinit(struct sfc_adapter *sa,
795 enum sfc_evq_type type, unsigned int type_index,
796 unsigned int entries, int socket_id, struct sfc_evq **evqp)
797 {
798 struct sfc_evq *evq;
799 int rc;
800
801 sfc_log_init(sa, "type=%s type_index=%u",
802 sfc_evq_type2str(type), type_index);
803
804 SFC_ASSERT(rte_is_power_of_2(entries));
805
806 rc = ENOMEM;
807 evq = rte_zmalloc_socket("sfc-evq", sizeof(*evq), RTE_CACHE_LINE_SIZE,
808 socket_id);
809 if (evq == NULL)
810 goto fail_evq_alloc;
811
812 evq->sa = sa;
813 evq->type = type;
814 evq->entries = entries;
815
816 /* Allocate DMA space */
817 rc = sfc_dma_alloc(sa, sfc_evq_type2str(type), type_index,
818 EFX_EVQ_SIZE(evq->entries), socket_id, &evq->mem);
819 if (rc != 0)
820 goto fail_dma_alloc;
821
822 evq->init_state = SFC_EVQ_INITIALIZED;
823
824 sa->evq_count++;
825
826 *evqp = evq;
827
828 return 0;
829
830 fail_dma_alloc:
831 rte_free(evq);
832
833 fail_evq_alloc:
834
835 sfc_log_init(sa, "failed %d", rc);
836 return rc;
837 }
838
839 void
840 sfc_ev_qfini(struct sfc_evq *evq)
841 {
842 struct sfc_adapter *sa = evq->sa;
843
844 SFC_ASSERT(evq->init_state == SFC_EVQ_INITIALIZED);
845
846 sfc_dma_free(sa, &evq->mem);
847
848 rte_free(evq);
849
850 SFC_ASSERT(sa->evq_count > 0);
851 sa->evq_count--;
852 }
853
854 static int
855 sfc_kvarg_perf_profile_handler(__rte_unused const char *key,
856 const char *value_str, void *opaque)
857 {
858 uint32_t *value = opaque;
859
860 if (strcasecmp(value_str, SFC_KVARG_PERF_PROFILE_THROUGHPUT) == 0)
861 *value = EFX_EVQ_FLAGS_TYPE_THROUGHPUT;
862 else if (strcasecmp(value_str, SFC_KVARG_PERF_PROFILE_LOW_LATENCY) == 0)
863 *value = EFX_EVQ_FLAGS_TYPE_LOW_LATENCY;
864 else if (strcasecmp(value_str, SFC_KVARG_PERF_PROFILE_AUTO) == 0)
865 *value = EFX_EVQ_FLAGS_TYPE_AUTO;
866 else
867 return -EINVAL;
868
869 return 0;
870 }
871
872 int
873 sfc_ev_attach(struct sfc_adapter *sa)
874 {
875 int rc;
876
877 sfc_log_init(sa, "entry");
878
879 sa->evq_flags = EFX_EVQ_FLAGS_TYPE_THROUGHPUT;
880 rc = sfc_kvargs_process(sa, SFC_KVARG_PERF_PROFILE,
881 sfc_kvarg_perf_profile_handler,
882 &sa->evq_flags);
883 if (rc != 0) {
884 sfc_err(sa, "invalid %s parameter value",
885 SFC_KVARG_PERF_PROFILE);
886 goto fail_kvarg_perf_profile;
887 }
888
889 sa->mgmt_evq_index = 0;
890 rte_spinlock_init(&sa->mgmt_evq_lock);
891
892 rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_MGMT, 0, SFC_MGMT_EVQ_ENTRIES,
893 sa->socket_id, &sa->mgmt_evq);
894 if (rc != 0)
895 goto fail_mgmt_evq_init;
896
897 /*
898 * Rx/Tx event queues are created/destroyed when corresponding
899 * Rx/Tx queue is created/destroyed.
900 */
901
902 return 0;
903
904 fail_mgmt_evq_init:
905
906 fail_kvarg_perf_profile:
907 sfc_log_init(sa, "failed %d", rc);
908 return rc;
909 }
910
911 void
912 sfc_ev_detach(struct sfc_adapter *sa)
913 {
914 sfc_log_init(sa, "entry");
915
916 sfc_ev_qfini(sa->mgmt_evq);
917
918 if (sa->evq_count != 0)
919 sfc_err(sa, "%u EvQs are not destroyed before detach",
920 sa->evq_count);
921 }