]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/tap/rte_eth_tap.c
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / tap / rte_eth_tap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2016-2017 Intel Corporation
3 */
4
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19 #include <rte_ethdev.h>
20 #include <rte_errno.h>
21 #include <rte_cycles.h>
22
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/socket.h>
26 #include <sys/ioctl.h>
27 #include <sys/utsname.h>
28 #include <sys/mman.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdbool.h>
32 #include <stdint.h>
33 #include <sys/uio.h>
34 #include <unistd.h>
35 #include <arpa/inet.h>
36 #include <net/if.h>
37 #include <linux/if_tun.h>
38 #include <linux/if_ether.h>
39 #include <fcntl.h>
40 #include <ctype.h>
41
42 #include <tap_rss.h>
43 #include <rte_eth_tap.h>
44 #include <tap_flow.h>
45 #include <tap_netlink.h>
46 #include <tap_tcmsgs.h>
47
48 /* Linux based path to the TUN device */
49 #define TUN_TAP_DEV_PATH "/dev/net/tun"
50 #define DEFAULT_TAP_NAME "dtap"
51 #define DEFAULT_TUN_NAME "dtun"
52
53 #define ETH_TAP_IFACE_ARG "iface"
54 #define ETH_TAP_REMOTE_ARG "remote"
55 #define ETH_TAP_MAC_ARG "mac"
56 #define ETH_TAP_MAC_FIXED "fixed"
57
58 #define ETH_TAP_USR_MAC_FMT "xx:xx:xx:xx:xx:xx"
59 #define ETH_TAP_CMP_MAC_FMT "0123456789ABCDEFabcdef"
60 #define ETH_TAP_MAC_ARG_FMT ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
61
62 #define TAP_GSO_MBUFS_PER_CORE 128
63 #define TAP_GSO_MBUF_SEG_SIZE 128
64 #define TAP_GSO_MBUF_CACHE_SIZE 4
65 #define TAP_GSO_MBUFS_NUM \
66 (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
67
68 /* IPC key for queue fds sync */
69 #define TAP_MP_KEY "tap_mp_sync_queues"
70
71 #define TAP_IOV_DEFAULT_MAX 1024
72
73 static int tap_devices_count;
74
75 static const char *valid_arguments[] = {
76 ETH_TAP_IFACE_ARG,
77 ETH_TAP_REMOTE_ARG,
78 ETH_TAP_MAC_ARG,
79 NULL
80 };
81
82 static volatile uint32_t tap_trigger; /* Rx trigger */
83
84 static struct rte_eth_link pmd_link = {
85 .link_speed = ETH_SPEED_NUM_10G,
86 .link_duplex = ETH_LINK_FULL_DUPLEX,
87 .link_status = ETH_LINK_DOWN,
88 .link_autoneg = ETH_LINK_FIXED,
89 };
90
91 static void
92 tap_trigger_cb(int sig __rte_unused)
93 {
94 /* Valid trigger values are nonzero */
95 tap_trigger = (tap_trigger + 1) | 0x80000000;
96 }
97
98 /* Specifies on what netdevices the ioctl should be applied */
99 enum ioctl_mode {
100 LOCAL_AND_REMOTE,
101 LOCAL_ONLY,
102 REMOTE_ONLY,
103 };
104
105 /* Message header to synchronize queues via IPC */
106 struct ipc_queues {
107 char port_name[RTE_DEV_NAME_MAX_LEN];
108 int rxq_count;
109 int txq_count;
110 /*
111 * The file descriptors are in the dedicated part
112 * of the Unix message to be translated by the kernel.
113 */
114 };
115
116 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
117
118 /**
119 * Tun/Tap allocation routine
120 *
121 * @param[in] pmd
122 * Pointer to private structure.
123 *
124 * @param[in] is_keepalive
125 * Keepalive flag
126 *
127 * @return
128 * -1 on failure, fd on success
129 */
130 static int
131 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
132 {
133 struct ifreq ifr;
134 #ifdef IFF_MULTI_QUEUE
135 unsigned int features;
136 #endif
137 int fd;
138
139 memset(&ifr, 0, sizeof(struct ifreq));
140
141 /*
142 * Do not set IFF_NO_PI as packet information header will be needed
143 * to check if a received packet has been truncated.
144 */
145 ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
146 IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
147 strlcpy(ifr.ifr_name, pmd->name, IFNAMSIZ);
148
149 fd = open(TUN_TAP_DEV_PATH, O_RDWR);
150 if (fd < 0) {
151 TAP_LOG(ERR, "Unable to open %s interface", TUN_TAP_DEV_PATH);
152 goto error;
153 }
154
155 #ifdef IFF_MULTI_QUEUE
156 /* Grab the TUN features to verify we can work multi-queue */
157 if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
158 TAP_LOG(ERR, "unable to get TUN/TAP features");
159 goto error;
160 }
161 TAP_LOG(DEBUG, "%s Features %08x", TUN_TAP_DEV_PATH, features);
162
163 if (features & IFF_MULTI_QUEUE) {
164 TAP_LOG(DEBUG, " Multi-queue support for %d queues",
165 RTE_PMD_TAP_MAX_QUEUES);
166 ifr.ifr_flags |= IFF_MULTI_QUEUE;
167 } else
168 #endif
169 {
170 ifr.ifr_flags |= IFF_ONE_QUEUE;
171 TAP_LOG(DEBUG, " Single queue only support");
172 }
173
174 /* Set the TUN/TAP configuration and set the name if needed */
175 if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
176 TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
177 ifr.ifr_name, strerror(errno));
178 goto error;
179 }
180
181 /*
182 * Name passed to kernel might be wildcard like dtun%d
183 * and need to find the resulting device.
184 */
185 TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
186 strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
187
188 if (is_keepalive) {
189 /*
190 * Detach the TUN/TAP keep-alive queue
191 * to avoid traffic through it
192 */
193 ifr.ifr_flags = IFF_DETACH_QUEUE;
194 if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
195 TAP_LOG(WARNING,
196 "Unable to detach keep-alive queue for %s: %s",
197 ifr.ifr_name, strerror(errno));
198 goto error;
199 }
200 }
201
202 /* Always set the file descriptor to non-blocking */
203 if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) {
204 TAP_LOG(WARNING,
205 "Unable to set %s to nonblocking: %s",
206 ifr.ifr_name, strerror(errno));
207 goto error;
208 }
209
210 /* Set up trigger to optimize empty Rx bursts */
211 errno = 0;
212 do {
213 struct sigaction sa;
214 int flags = fcntl(fd, F_GETFL);
215
216 if (flags == -1 || sigaction(SIGIO, NULL, &sa) == -1)
217 break;
218 if (sa.sa_handler != tap_trigger_cb) {
219 /*
220 * Make sure SIGIO is not already taken. This is done
221 * as late as possible to leave the application a
222 * chance to set up its own signal handler first.
223 */
224 if (sa.sa_handler != SIG_IGN &&
225 sa.sa_handler != SIG_DFL) {
226 errno = EBUSY;
227 break;
228 }
229 sa = (struct sigaction){
230 .sa_flags = SA_RESTART,
231 .sa_handler = tap_trigger_cb,
232 };
233 if (sigaction(SIGIO, &sa, NULL) == -1)
234 break;
235 }
236 /* Enable SIGIO on file descriptor */
237 fcntl(fd, F_SETFL, flags | O_ASYNC);
238 fcntl(fd, F_SETOWN, getpid());
239 } while (0);
240
241 if (errno) {
242 /* Disable trigger globally in case of error */
243 tap_trigger = 0;
244 TAP_LOG(WARNING, "Rx trigger disabled: %s",
245 strerror(errno));
246 }
247
248 return fd;
249
250 error:
251 if (fd >= 0)
252 close(fd);
253 return -1;
254 }
255
256 static void
257 tap_verify_csum(struct rte_mbuf *mbuf)
258 {
259 uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
260 uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
261 uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
262 unsigned int l2_len = sizeof(struct rte_ether_hdr);
263 unsigned int l3_len;
264 uint16_t cksum = 0;
265 void *l3_hdr;
266 void *l4_hdr;
267
268 if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
269 l2_len += 4;
270 else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
271 l2_len += 8;
272 /* Don't verify checksum for packets with discontinuous L2 header */
273 if (unlikely(l2_len + sizeof(struct rte_ipv4_hdr) >
274 rte_pktmbuf_data_len(mbuf)))
275 return;
276 l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
277 if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
278 struct rte_ipv4_hdr *iph = l3_hdr;
279
280 /* ihl contains the number of 4-byte words in the header */
281 l3_len = 4 * (iph->version_ihl & 0xf);
282 if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
283 return;
284 /* check that the total length reported by header is not
285 * greater than the total received size
286 */
287 if (l2_len + rte_be_to_cpu_16(iph->total_length) >
288 rte_pktmbuf_data_len(mbuf))
289 return;
290
291 cksum = ~rte_raw_cksum(iph, l3_len);
292 mbuf->ol_flags |= cksum ?
293 PKT_RX_IP_CKSUM_BAD :
294 PKT_RX_IP_CKSUM_GOOD;
295 } else if (l3 == RTE_PTYPE_L3_IPV6) {
296 struct rte_ipv6_hdr *iph = l3_hdr;
297
298 l3_len = sizeof(struct rte_ipv6_hdr);
299 /* check that the total length reported by header is not
300 * greater than the total received size
301 */
302 if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
303 rte_pktmbuf_data_len(mbuf))
304 return;
305 } else {
306 /* IPv6 extensions are not supported */
307 return;
308 }
309 if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
310 l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
311 /* Don't verify checksum for multi-segment packets. */
312 if (mbuf->nb_segs > 1)
313 return;
314 if (l3 == RTE_PTYPE_L3_IPV4)
315 cksum = ~rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
316 else if (l3 == RTE_PTYPE_L3_IPV6)
317 cksum = ~rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
318 mbuf->ol_flags |= cksum ?
319 PKT_RX_L4_CKSUM_BAD :
320 PKT_RX_L4_CKSUM_GOOD;
321 }
322 }
323
324 static uint64_t
325 tap_rx_offload_get_port_capa(void)
326 {
327 /*
328 * No specific port Rx offload capabilities.
329 */
330 return 0;
331 }
332
333 static uint64_t
334 tap_rx_offload_get_queue_capa(void)
335 {
336 return DEV_RX_OFFLOAD_SCATTER |
337 DEV_RX_OFFLOAD_IPV4_CKSUM |
338 DEV_RX_OFFLOAD_UDP_CKSUM |
339 DEV_RX_OFFLOAD_TCP_CKSUM;
340 }
341
342 static void
343 tap_rxq_pool_free(struct rte_mbuf *pool)
344 {
345 struct rte_mbuf *mbuf = pool;
346 uint16_t nb_segs = 1;
347
348 if (mbuf == NULL)
349 return;
350
351 while (mbuf->next) {
352 mbuf = mbuf->next;
353 nb_segs++;
354 }
355 pool->nb_segs = nb_segs;
356 rte_pktmbuf_free(pool);
357 }
358
359 /* Callback to handle the rx burst of packets to the correct interface and
360 * file descriptor(s) in a multi-queue setup.
361 */
362 static uint16_t
363 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
364 {
365 struct rx_queue *rxq = queue;
366 struct pmd_process_private *process_private;
367 uint16_t num_rx;
368 unsigned long num_rx_bytes = 0;
369 uint32_t trigger = tap_trigger;
370
371 if (trigger == rxq->trigger_seen)
372 return 0;
373
374 process_private = rte_eth_devices[rxq->in_port].process_private;
375 for (num_rx = 0; num_rx < nb_pkts; ) {
376 struct rte_mbuf *mbuf = rxq->pool;
377 struct rte_mbuf *seg = NULL;
378 struct rte_mbuf *new_tail = NULL;
379 uint16_t data_off = rte_pktmbuf_headroom(mbuf);
380 int len;
381
382 len = readv(process_private->rxq_fds[rxq->queue_id],
383 *rxq->iovecs,
384 1 + (rxq->rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ?
385 rxq->nb_rx_desc : 1));
386 if (len < (int)sizeof(struct tun_pi))
387 break;
388
389 /* Packet couldn't fit in the provided mbuf */
390 if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
391 rxq->stats.ierrors++;
392 continue;
393 }
394
395 len -= sizeof(struct tun_pi);
396
397 mbuf->pkt_len = len;
398 mbuf->port = rxq->in_port;
399 while (1) {
400 struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
401
402 if (unlikely(!buf)) {
403 rxq->stats.rx_nombuf++;
404 /* No new buf has been allocated: do nothing */
405 if (!new_tail || !seg)
406 goto end;
407
408 seg->next = NULL;
409 tap_rxq_pool_free(mbuf);
410
411 goto end;
412 }
413 seg = seg ? seg->next : mbuf;
414 if (rxq->pool == mbuf)
415 rxq->pool = buf;
416 if (new_tail)
417 new_tail->next = buf;
418 new_tail = buf;
419 new_tail->next = seg->next;
420
421 /* iovecs[0] is reserved for packet info (pi) */
422 (*rxq->iovecs)[mbuf->nb_segs].iov_len =
423 buf->buf_len - data_off;
424 (*rxq->iovecs)[mbuf->nb_segs].iov_base =
425 (char *)buf->buf_addr + data_off;
426
427 seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
428 seg->data_off = data_off;
429
430 len -= seg->data_len;
431 if (len <= 0)
432 break;
433 mbuf->nb_segs++;
434 /* First segment has headroom, not the others */
435 data_off = 0;
436 }
437 seg->next = NULL;
438 mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
439 RTE_PTYPE_ALL_MASK);
440 if (rxq->rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
441 tap_verify_csum(mbuf);
442
443 /* account for the receive frame */
444 bufs[num_rx++] = mbuf;
445 num_rx_bytes += mbuf->pkt_len;
446 }
447 end:
448 rxq->stats.ipackets += num_rx;
449 rxq->stats.ibytes += num_rx_bytes;
450
451 if (trigger && num_rx < nb_pkts)
452 rxq->trigger_seen = trigger;
453
454 return num_rx;
455 }
456
457 static uint64_t
458 tap_tx_offload_get_port_capa(void)
459 {
460 /*
461 * No specific port Tx offload capabilities.
462 */
463 return 0;
464 }
465
466 static uint64_t
467 tap_tx_offload_get_queue_capa(void)
468 {
469 return DEV_TX_OFFLOAD_MULTI_SEGS |
470 DEV_TX_OFFLOAD_IPV4_CKSUM |
471 DEV_TX_OFFLOAD_UDP_CKSUM |
472 DEV_TX_OFFLOAD_TCP_CKSUM |
473 DEV_TX_OFFLOAD_TCP_TSO;
474 }
475
476 /* Finalize l4 checksum calculation */
477 static void
478 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
479 uint32_t l4_raw_cksum)
480 {
481 if (l4_cksum) {
482 uint32_t cksum;
483
484 cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
485 cksum += l4_phdr_cksum;
486
487 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
488 cksum = (~cksum) & 0xffff;
489 if (cksum == 0)
490 cksum = 0xffff;
491 *l4_cksum = cksum;
492 }
493 }
494
495 /* Accumaulate L4 raw checksums */
496 static void
497 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
498 uint32_t *l4_raw_cksum)
499 {
500 if (l4_cksum == NULL)
501 return;
502
503 *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
504 }
505
506 /* L3 and L4 pseudo headers checksum offloads */
507 static void
508 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
509 unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
510 uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
511 {
512 void *l3_hdr = packet + l2_len;
513
514 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4)) {
515 struct rte_ipv4_hdr *iph = l3_hdr;
516 uint16_t cksum;
517
518 iph->hdr_checksum = 0;
519 cksum = rte_raw_cksum(iph, l3_len);
520 iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
521 }
522 if (ol_flags & PKT_TX_L4_MASK) {
523 void *l4_hdr;
524
525 l4_hdr = packet + l2_len + l3_len;
526 if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM)
527 *l4_cksum = &((struct rte_udp_hdr *)l4_hdr)->dgram_cksum;
528 else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM)
529 *l4_cksum = &((struct rte_tcp_hdr *)l4_hdr)->cksum;
530 else
531 return;
532 **l4_cksum = 0;
533 if (ol_flags & PKT_TX_IPV4)
534 *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
535 else
536 *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
537 *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
538 }
539 }
540
541 static inline int
542 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
543 struct rte_mbuf **pmbufs,
544 uint16_t *num_packets, unsigned long *num_tx_bytes)
545 {
546 int i;
547 uint16_t l234_hlen;
548 struct pmd_process_private *process_private;
549
550 process_private = rte_eth_devices[txq->out_port].process_private;
551
552 for (i = 0; i < num_mbufs; i++) {
553 struct rte_mbuf *mbuf = pmbufs[i];
554 struct iovec iovecs[mbuf->nb_segs + 2];
555 struct tun_pi pi = { .flags = 0, .proto = 0x00 };
556 struct rte_mbuf *seg = mbuf;
557 char m_copy[mbuf->data_len];
558 int proto;
559 int n;
560 int j;
561 int k; /* current index in iovecs for copying segments */
562 uint16_t seg_len; /* length of first segment */
563 uint16_t nb_segs;
564 uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
565 uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
566 uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
567 uint16_t is_cksum = 0; /* in case cksum should be offloaded */
568
569 l4_cksum = NULL;
570 if (txq->type == ETH_TUNTAP_TYPE_TUN) {
571 /*
572 * TUN and TAP are created with IFF_NO_PI disabled.
573 * For TUN PMD this mandatory as fields are used by
574 * Kernel tun.c to determine whether its IP or non IP
575 * packets.
576 *
577 * The logic fetches the first byte of data from mbuf
578 * then compares whether its v4 or v6. If first byte
579 * is 4 or 6, then protocol field is updated.
580 */
581 char *buff_data = rte_pktmbuf_mtod(seg, void *);
582 proto = (*buff_data & 0xf0);
583 pi.proto = (proto == 0x40) ?
584 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4) :
585 ((proto == 0x60) ?
586 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6) :
587 0x00);
588 }
589
590 k = 0;
591 iovecs[k].iov_base = &pi;
592 iovecs[k].iov_len = sizeof(pi);
593 k++;
594
595 nb_segs = mbuf->nb_segs;
596 if (txq->csum &&
597 ((mbuf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4) ||
598 (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM ||
599 (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM))) {
600 is_cksum = 1;
601
602 /* Support only packets with at least layer 4
603 * header included in the first segment
604 */
605 seg_len = rte_pktmbuf_data_len(mbuf);
606 l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
607 if (seg_len < l234_hlen)
608 return -1;
609
610 /* To change checksums, work on a * copy of l2, l3
611 * headers + l4 pseudo header
612 */
613 rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
614 l234_hlen);
615 tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
616 mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
617 &l4_cksum, &l4_phdr_cksum,
618 &l4_raw_cksum);
619 iovecs[k].iov_base = m_copy;
620 iovecs[k].iov_len = l234_hlen;
621 k++;
622
623 /* Update next iovecs[] beyond l2, l3, l4 headers */
624 if (seg_len > l234_hlen) {
625 iovecs[k].iov_len = seg_len - l234_hlen;
626 iovecs[k].iov_base =
627 rte_pktmbuf_mtod(seg, char *) +
628 l234_hlen;
629 tap_tx_l4_add_rcksum(iovecs[k].iov_base,
630 iovecs[k].iov_len, l4_cksum,
631 &l4_raw_cksum);
632 k++;
633 nb_segs++;
634 }
635 seg = seg->next;
636 }
637
638 for (j = k; j <= nb_segs; j++) {
639 iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
640 iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
641 if (is_cksum)
642 tap_tx_l4_add_rcksum(iovecs[j].iov_base,
643 iovecs[j].iov_len, l4_cksum,
644 &l4_raw_cksum);
645 seg = seg->next;
646 }
647
648 if (is_cksum)
649 tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
650
651 /* copy the tx frame data */
652 n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
653 if (n <= 0)
654 return -1;
655
656 (*num_packets)++;
657 (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
658 }
659 return 0;
660 }
661
662 /* Callback to handle sending packets from the tap interface
663 */
664 static uint16_t
665 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
666 {
667 struct tx_queue *txq = queue;
668 uint16_t num_tx = 0;
669 uint16_t num_packets = 0;
670 unsigned long num_tx_bytes = 0;
671 uint32_t max_size;
672 int i;
673
674 if (unlikely(nb_pkts == 0))
675 return 0;
676
677 struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
678 max_size = *txq->mtu + (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + 4);
679 for (i = 0; i < nb_pkts; i++) {
680 struct rte_mbuf *mbuf_in = bufs[num_tx];
681 struct rte_mbuf **mbuf;
682 uint16_t num_mbufs = 0;
683 uint16_t tso_segsz = 0;
684 int ret;
685 int num_tso_mbufs;
686 uint16_t hdrs_len;
687 uint64_t tso;
688
689 tso = mbuf_in->ol_flags & PKT_TX_TCP_SEG;
690 if (tso) {
691 struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
692
693 /* TCP segmentation implies TCP checksum offload */
694 mbuf_in->ol_flags |= PKT_TX_TCP_CKSUM;
695
696 /* gso size is calculated without RTE_ETHER_CRC_LEN */
697 hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
698 mbuf_in->l4_len;
699 tso_segsz = mbuf_in->tso_segsz + hdrs_len;
700 if (unlikely(tso_segsz == hdrs_len) ||
701 tso_segsz > *txq->mtu) {
702 txq->stats.errs++;
703 break;
704 }
705 gso_ctx->gso_size = tso_segsz;
706 /* 'mbuf_in' packet to segment */
707 num_tso_mbufs = rte_gso_segment(mbuf_in,
708 gso_ctx, /* gso control block */
709 (struct rte_mbuf **)&gso_mbufs, /* out mbufs */
710 RTE_DIM(gso_mbufs)); /* max tso mbufs */
711
712 /* ret contains the number of new created mbufs */
713 if (num_tso_mbufs < 0)
714 break;
715
716 mbuf = gso_mbufs;
717 num_mbufs = num_tso_mbufs;
718 } else {
719 /* stats.errs will be incremented */
720 if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
721 break;
722
723 /* ret 0 indicates no new mbufs were created */
724 num_tso_mbufs = 0;
725 mbuf = &mbuf_in;
726 num_mbufs = 1;
727 }
728
729 ret = tap_write_mbufs(txq, num_mbufs, mbuf,
730 &num_packets, &num_tx_bytes);
731 if (ret == -1) {
732 txq->stats.errs++;
733 /* free tso mbufs */
734 if (num_tso_mbufs > 0)
735 rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
736 break;
737 }
738 num_tx++;
739 /* free original mbuf */
740 rte_pktmbuf_free(mbuf_in);
741 /* free tso mbufs */
742 if (num_tso_mbufs > 0)
743 rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
744 }
745
746 txq->stats.opackets += num_packets;
747 txq->stats.errs += nb_pkts - num_tx;
748 txq->stats.obytes += num_tx_bytes;
749
750 return num_tx;
751 }
752
753 static const char *
754 tap_ioctl_req2str(unsigned long request)
755 {
756 switch (request) {
757 case SIOCSIFFLAGS:
758 return "SIOCSIFFLAGS";
759 case SIOCGIFFLAGS:
760 return "SIOCGIFFLAGS";
761 case SIOCGIFHWADDR:
762 return "SIOCGIFHWADDR";
763 case SIOCSIFHWADDR:
764 return "SIOCSIFHWADDR";
765 case SIOCSIFMTU:
766 return "SIOCSIFMTU";
767 }
768 return "UNKNOWN";
769 }
770
771 static int
772 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
773 struct ifreq *ifr, int set, enum ioctl_mode mode)
774 {
775 short req_flags = ifr->ifr_flags;
776 int remote = pmd->remote_if_index &&
777 (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
778
779 if (!pmd->remote_if_index && mode == REMOTE_ONLY)
780 return 0;
781 /*
782 * If there is a remote netdevice, apply ioctl on it, then apply it on
783 * the tap netdevice.
784 */
785 apply:
786 if (remote)
787 strlcpy(ifr->ifr_name, pmd->remote_iface, IFNAMSIZ);
788 else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
789 strlcpy(ifr->ifr_name, pmd->name, IFNAMSIZ);
790 switch (request) {
791 case SIOCSIFFLAGS:
792 /* fetch current flags to leave other flags untouched */
793 if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
794 goto error;
795 if (set)
796 ifr->ifr_flags |= req_flags;
797 else
798 ifr->ifr_flags &= ~req_flags;
799 break;
800 case SIOCGIFFLAGS:
801 case SIOCGIFHWADDR:
802 case SIOCSIFHWADDR:
803 case SIOCSIFMTU:
804 break;
805 default:
806 TAP_LOG(WARNING, "%s: ioctl() called with wrong arg",
807 pmd->name);
808 return -EINVAL;
809 }
810 if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
811 goto error;
812 if (remote-- && mode == LOCAL_AND_REMOTE)
813 goto apply;
814 return 0;
815
816 error:
817 TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
818 tap_ioctl_req2str(request), strerror(errno), errno);
819 return -errno;
820 }
821
822 static int
823 tap_link_set_down(struct rte_eth_dev *dev)
824 {
825 struct pmd_internals *pmd = dev->data->dev_private;
826 struct ifreq ifr = { .ifr_flags = IFF_UP };
827
828 dev->data->dev_link.link_status = ETH_LINK_DOWN;
829 return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
830 }
831
832 static int
833 tap_link_set_up(struct rte_eth_dev *dev)
834 {
835 struct pmd_internals *pmd = dev->data->dev_private;
836 struct ifreq ifr = { .ifr_flags = IFF_UP };
837
838 dev->data->dev_link.link_status = ETH_LINK_UP;
839 return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
840 }
841
842 static int
843 tap_dev_start(struct rte_eth_dev *dev)
844 {
845 int err, i;
846
847 err = tap_intr_handle_set(dev, 1);
848 if (err)
849 return err;
850
851 err = tap_link_set_up(dev);
852 if (err)
853 return err;
854
855 for (i = 0; i < dev->data->nb_tx_queues; i++)
856 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
857 for (i = 0; i < dev->data->nb_rx_queues; i++)
858 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
859
860 return err;
861 }
862
863 /* This function gets called when the current port gets stopped.
864 */
865 static void
866 tap_dev_stop(struct rte_eth_dev *dev)
867 {
868 int i;
869
870 for (i = 0; i < dev->data->nb_tx_queues; i++)
871 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
872 for (i = 0; i < dev->data->nb_rx_queues; i++)
873 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
874
875 tap_intr_handle_set(dev, 0);
876 tap_link_set_down(dev);
877 }
878
879 static int
880 tap_dev_configure(struct rte_eth_dev *dev)
881 {
882 struct pmd_internals *pmd = dev->data->dev_private;
883
884 if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
885 TAP_LOG(ERR,
886 "%s: number of rx queues %d exceeds max num of queues %d",
887 dev->device->name,
888 dev->data->nb_rx_queues,
889 RTE_PMD_TAP_MAX_QUEUES);
890 return -1;
891 }
892 if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
893 TAP_LOG(ERR,
894 "%s: number of tx queues %d exceeds max num of queues %d",
895 dev->device->name,
896 dev->data->nb_tx_queues,
897 RTE_PMD_TAP_MAX_QUEUES);
898 return -1;
899 }
900
901 TAP_LOG(INFO, "%s: %s: TX configured queues number: %u",
902 dev->device->name, pmd->name, dev->data->nb_tx_queues);
903
904 TAP_LOG(INFO, "%s: %s: RX configured queues number: %u",
905 dev->device->name, pmd->name, dev->data->nb_rx_queues);
906
907 return 0;
908 }
909
910 static uint32_t
911 tap_dev_speed_capa(void)
912 {
913 uint32_t speed = pmd_link.link_speed;
914 uint32_t capa = 0;
915
916 if (speed >= ETH_SPEED_NUM_10M)
917 capa |= ETH_LINK_SPEED_10M;
918 if (speed >= ETH_SPEED_NUM_100M)
919 capa |= ETH_LINK_SPEED_100M;
920 if (speed >= ETH_SPEED_NUM_1G)
921 capa |= ETH_LINK_SPEED_1G;
922 if (speed >= ETH_SPEED_NUM_5G)
923 capa |= ETH_LINK_SPEED_2_5G;
924 if (speed >= ETH_SPEED_NUM_5G)
925 capa |= ETH_LINK_SPEED_5G;
926 if (speed >= ETH_SPEED_NUM_10G)
927 capa |= ETH_LINK_SPEED_10G;
928 if (speed >= ETH_SPEED_NUM_20G)
929 capa |= ETH_LINK_SPEED_20G;
930 if (speed >= ETH_SPEED_NUM_25G)
931 capa |= ETH_LINK_SPEED_25G;
932 if (speed >= ETH_SPEED_NUM_40G)
933 capa |= ETH_LINK_SPEED_40G;
934 if (speed >= ETH_SPEED_NUM_50G)
935 capa |= ETH_LINK_SPEED_50G;
936 if (speed >= ETH_SPEED_NUM_56G)
937 capa |= ETH_LINK_SPEED_56G;
938 if (speed >= ETH_SPEED_NUM_100G)
939 capa |= ETH_LINK_SPEED_100G;
940
941 return capa;
942 }
943
944 static int
945 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
946 {
947 struct pmd_internals *internals = dev->data->dev_private;
948
949 dev_info->if_index = internals->if_index;
950 dev_info->max_mac_addrs = 1;
951 dev_info->max_rx_pktlen = (uint32_t)RTE_ETHER_MAX_VLAN_FRAME_LEN;
952 dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
953 dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
954 dev_info->min_rx_bufsize = 0;
955 dev_info->speed_capa = tap_dev_speed_capa();
956 dev_info->rx_queue_offload_capa = tap_rx_offload_get_queue_capa();
957 dev_info->rx_offload_capa = tap_rx_offload_get_port_capa() |
958 dev_info->rx_queue_offload_capa;
959 dev_info->tx_queue_offload_capa = tap_tx_offload_get_queue_capa();
960 dev_info->tx_offload_capa = tap_tx_offload_get_port_capa() |
961 dev_info->tx_queue_offload_capa;
962 dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
963 /*
964 * limitation: TAP supports all of IP, UDP and TCP hash
965 * functions together and not in partial combinations
966 */
967 dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
968
969 return 0;
970 }
971
972 static int
973 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
974 {
975 unsigned int i, imax;
976 unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
977 unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
978 unsigned long rx_nombuf = 0, ierrors = 0;
979 const struct pmd_internals *pmd = dev->data->dev_private;
980
981 /* rx queue statistics */
982 imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
983 dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
984 for (i = 0; i < imax; i++) {
985 tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
986 tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
987 rx_total += tap_stats->q_ipackets[i];
988 rx_bytes_total += tap_stats->q_ibytes[i];
989 rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
990 ierrors += pmd->rxq[i].stats.ierrors;
991 }
992
993 /* tx queue statistics */
994 imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
995 dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
996
997 for (i = 0; i < imax; i++) {
998 tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
999 tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
1000 tx_total += tap_stats->q_opackets[i];
1001 tx_err_total += pmd->txq[i].stats.errs;
1002 tx_bytes_total += tap_stats->q_obytes[i];
1003 }
1004
1005 tap_stats->ipackets = rx_total;
1006 tap_stats->ibytes = rx_bytes_total;
1007 tap_stats->ierrors = ierrors;
1008 tap_stats->rx_nombuf = rx_nombuf;
1009 tap_stats->opackets = tx_total;
1010 tap_stats->oerrors = tx_err_total;
1011 tap_stats->obytes = tx_bytes_total;
1012 return 0;
1013 }
1014
1015 static int
1016 tap_stats_reset(struct rte_eth_dev *dev)
1017 {
1018 int i;
1019 struct pmd_internals *pmd = dev->data->dev_private;
1020
1021 for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1022 pmd->rxq[i].stats.ipackets = 0;
1023 pmd->rxq[i].stats.ibytes = 0;
1024 pmd->rxq[i].stats.ierrors = 0;
1025 pmd->rxq[i].stats.rx_nombuf = 0;
1026
1027 pmd->txq[i].stats.opackets = 0;
1028 pmd->txq[i].stats.errs = 0;
1029 pmd->txq[i].stats.obytes = 0;
1030 }
1031
1032 return 0;
1033 }
1034
1035 static void
1036 tap_dev_close(struct rte_eth_dev *dev)
1037 {
1038 int i;
1039 struct pmd_internals *internals = dev->data->dev_private;
1040 struct pmd_process_private *process_private = dev->process_private;
1041 struct rx_queue *rxq;
1042
1043 tap_link_set_down(dev);
1044 if (internals->nlsk_fd != -1) {
1045 tap_flow_flush(dev, NULL);
1046 tap_flow_implicit_flush(internals, NULL);
1047 tap_nl_final(internals->nlsk_fd);
1048 internals->nlsk_fd = -1;
1049 }
1050
1051 for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1052 if (process_private->rxq_fds[i] != -1) {
1053 rxq = &internals->rxq[i];
1054 close(process_private->rxq_fds[i]);
1055 process_private->rxq_fds[i] = -1;
1056 tap_rxq_pool_free(rxq->pool);
1057 rte_free(rxq->iovecs);
1058 rxq->pool = NULL;
1059 rxq->iovecs = NULL;
1060 }
1061 if (process_private->txq_fds[i] != -1) {
1062 close(process_private->txq_fds[i]);
1063 process_private->txq_fds[i] = -1;
1064 }
1065 }
1066
1067 if (internals->remote_if_index) {
1068 /* Restore initial remote state */
1069 ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
1070 &internals->remote_initial_flags);
1071 }
1072
1073 if (internals->ka_fd != -1) {
1074 close(internals->ka_fd);
1075 internals->ka_fd = -1;
1076 }
1077 /*
1078 * Since TUN device has no more opened file descriptors
1079 * it will be removed from kernel
1080 */
1081 }
1082
1083 static void
1084 tap_rx_queue_release(void *queue)
1085 {
1086 struct rx_queue *rxq = queue;
1087 struct pmd_process_private *process_private;
1088
1089 if (!rxq)
1090 return;
1091 process_private = rte_eth_devices[rxq->in_port].process_private;
1092 if (process_private->rxq_fds[rxq->queue_id] != -1) {
1093 close(process_private->rxq_fds[rxq->queue_id]);
1094 process_private->rxq_fds[rxq->queue_id] = -1;
1095 tap_rxq_pool_free(rxq->pool);
1096 rte_free(rxq->iovecs);
1097 rxq->pool = NULL;
1098 rxq->iovecs = NULL;
1099 }
1100 }
1101
1102 static void
1103 tap_tx_queue_release(void *queue)
1104 {
1105 struct tx_queue *txq = queue;
1106 struct pmd_process_private *process_private;
1107
1108 if (!txq)
1109 return;
1110 process_private = rte_eth_devices[txq->out_port].process_private;
1111
1112 if (process_private->txq_fds[txq->queue_id] != -1) {
1113 close(process_private->txq_fds[txq->queue_id]);
1114 process_private->txq_fds[txq->queue_id] = -1;
1115 }
1116 }
1117
1118 static int
1119 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1120 {
1121 struct rte_eth_link *dev_link = &dev->data->dev_link;
1122 struct pmd_internals *pmd = dev->data->dev_private;
1123 struct ifreq ifr = { .ifr_flags = 0 };
1124
1125 if (pmd->remote_if_index) {
1126 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1127 if (!(ifr.ifr_flags & IFF_UP) ||
1128 !(ifr.ifr_flags & IFF_RUNNING)) {
1129 dev_link->link_status = ETH_LINK_DOWN;
1130 return 0;
1131 }
1132 }
1133 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1134 dev_link->link_status =
1135 ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1136 ETH_LINK_UP :
1137 ETH_LINK_DOWN);
1138 return 0;
1139 }
1140
1141 static int
1142 tap_promisc_enable(struct rte_eth_dev *dev)
1143 {
1144 struct pmd_internals *pmd = dev->data->dev_private;
1145 struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1146 int ret;
1147
1148 ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1149 if (ret != 0)
1150 return ret;
1151
1152 if (pmd->remote_if_index && !pmd->flow_isolate) {
1153 dev->data->promiscuous = 1;
1154 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1155 if (ret != 0) {
1156 /* Rollback promisc flag */
1157 tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1158 /*
1159 * rte_eth_dev_promiscuous_enable() rollback
1160 * dev->data->promiscuous in the case of failure.
1161 */
1162 return ret;
1163 }
1164 }
1165
1166 return 0;
1167 }
1168
1169 static int
1170 tap_promisc_disable(struct rte_eth_dev *dev)
1171 {
1172 struct pmd_internals *pmd = dev->data->dev_private;
1173 struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1174 int ret;
1175
1176 ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1177 if (ret != 0)
1178 return ret;
1179
1180 if (pmd->remote_if_index && !pmd->flow_isolate) {
1181 dev->data->promiscuous = 0;
1182 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1183 if (ret != 0) {
1184 /* Rollback promisc flag */
1185 tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1186 /*
1187 * rte_eth_dev_promiscuous_disable() rollback
1188 * dev->data->promiscuous in the case of failure.
1189 */
1190 return ret;
1191 }
1192 }
1193
1194 return 0;
1195 }
1196
1197 static int
1198 tap_allmulti_enable(struct rte_eth_dev *dev)
1199 {
1200 struct pmd_internals *pmd = dev->data->dev_private;
1201 struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1202 int ret;
1203
1204 ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1205 if (ret != 0)
1206 return ret;
1207
1208 if (pmd->remote_if_index && !pmd->flow_isolate) {
1209 dev->data->all_multicast = 1;
1210 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1211 if (ret != 0) {
1212 /* Rollback allmulti flag */
1213 tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1214 /*
1215 * rte_eth_dev_allmulticast_enable() rollback
1216 * dev->data->all_multicast in the case of failure.
1217 */
1218 return ret;
1219 }
1220 }
1221
1222 return 0;
1223 }
1224
1225 static int
1226 tap_allmulti_disable(struct rte_eth_dev *dev)
1227 {
1228 struct pmd_internals *pmd = dev->data->dev_private;
1229 struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1230 int ret;
1231
1232 ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1233 if (ret != 0)
1234 return ret;
1235
1236 if (pmd->remote_if_index && !pmd->flow_isolate) {
1237 dev->data->all_multicast = 0;
1238 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1239 if (ret != 0) {
1240 /* Rollback allmulti flag */
1241 tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1242 /*
1243 * rte_eth_dev_allmulticast_disable() rollback
1244 * dev->data->all_multicast in the case of failure.
1245 */
1246 return ret;
1247 }
1248 }
1249
1250 return 0;
1251 }
1252
1253 static int
1254 tap_mac_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1255 {
1256 struct pmd_internals *pmd = dev->data->dev_private;
1257 enum ioctl_mode mode = LOCAL_ONLY;
1258 struct ifreq ifr;
1259 int ret;
1260
1261 if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1262 TAP_LOG(ERR, "%s: can't MAC address for TUN",
1263 dev->device->name);
1264 return -ENOTSUP;
1265 }
1266
1267 if (rte_is_zero_ether_addr(mac_addr)) {
1268 TAP_LOG(ERR, "%s: can't set an empty MAC address",
1269 dev->device->name);
1270 return -EINVAL;
1271 }
1272 /* Check the actual current MAC address on the tap netdevice */
1273 ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1274 if (ret < 0)
1275 return ret;
1276 if (rte_is_same_ether_addr(
1277 (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1278 mac_addr))
1279 return 0;
1280 /* Check the current MAC address on the remote */
1281 ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1282 if (ret < 0)
1283 return ret;
1284 if (!rte_is_same_ether_addr(
1285 (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1286 mac_addr))
1287 mode = LOCAL_AND_REMOTE;
1288 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1289 rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, RTE_ETHER_ADDR_LEN);
1290 ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1291 if (ret < 0)
1292 return ret;
1293 rte_memcpy(&pmd->eth_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1294 if (pmd->remote_if_index && !pmd->flow_isolate) {
1295 /* Replace MAC redirection rule after a MAC change */
1296 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1297 if (ret < 0) {
1298 TAP_LOG(ERR,
1299 "%s: Couldn't delete MAC redirection rule",
1300 dev->device->name);
1301 return ret;
1302 }
1303 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1304 if (ret < 0) {
1305 TAP_LOG(ERR,
1306 "%s: Couldn't add MAC redirection rule",
1307 dev->device->name);
1308 return ret;
1309 }
1310 }
1311
1312 return 0;
1313 }
1314
1315 static int
1316 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1317 {
1318 uint32_t gso_types;
1319 char pool_name[64];
1320
1321 /*
1322 * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE bytes
1323 * size per mbuf use this pool for both direct and indirect mbufs
1324 */
1325
1326 struct rte_mempool *mp; /* Mempool for GSO packets */
1327
1328 /* initialize GSO context */
1329 gso_types = DEV_TX_OFFLOAD_TCP_TSO;
1330 snprintf(pool_name, sizeof(pool_name), "mp_%s", dev->device->name);
1331 mp = rte_mempool_lookup((const char *)pool_name);
1332 if (!mp) {
1333 mp = rte_pktmbuf_pool_create(pool_name, TAP_GSO_MBUFS_NUM,
1334 TAP_GSO_MBUF_CACHE_SIZE, 0,
1335 RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1336 SOCKET_ID_ANY);
1337 if (!mp) {
1338 struct pmd_internals *pmd = dev->data->dev_private;
1339
1340 TAP_LOG(ERR,
1341 "%s: failed to create mbuf pool for device %s\n",
1342 pmd->name, dev->device->name);
1343 return -1;
1344 }
1345 }
1346
1347 gso_ctx->direct_pool = mp;
1348 gso_ctx->indirect_pool = mp;
1349 gso_ctx->gso_types = gso_types;
1350 gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1351 gso_ctx->flag = 0;
1352
1353 return 0;
1354 }
1355
1356 static int
1357 tap_setup_queue(struct rte_eth_dev *dev,
1358 struct pmd_internals *internals,
1359 uint16_t qid,
1360 int is_rx)
1361 {
1362 int ret;
1363 int *fd;
1364 int *other_fd;
1365 const char *dir;
1366 struct pmd_internals *pmd = dev->data->dev_private;
1367 struct pmd_process_private *process_private = dev->process_private;
1368 struct rx_queue *rx = &internals->rxq[qid];
1369 struct tx_queue *tx = &internals->txq[qid];
1370 struct rte_gso_ctx *gso_ctx;
1371
1372 if (is_rx) {
1373 fd = &process_private->rxq_fds[qid];
1374 other_fd = &process_private->txq_fds[qid];
1375 dir = "rx";
1376 gso_ctx = NULL;
1377 } else {
1378 fd = &process_private->txq_fds[qid];
1379 other_fd = &process_private->rxq_fds[qid];
1380 dir = "tx";
1381 gso_ctx = &tx->gso_ctx;
1382 }
1383 if (*fd != -1) {
1384 /* fd for this queue already exists */
1385 TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1386 pmd->name, *fd, dir, qid);
1387 gso_ctx = NULL;
1388 } else if (*other_fd != -1) {
1389 /* Only other_fd exists. dup it */
1390 *fd = dup(*other_fd);
1391 if (*fd < 0) {
1392 *fd = -1;
1393 TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1394 return -1;
1395 }
1396 TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1397 pmd->name, *other_fd, dir, qid, *fd);
1398 } else {
1399 /* Both RX and TX fds do not exist (equal -1). Create fd */
1400 *fd = tun_alloc(pmd, 0);
1401 if (*fd < 0) {
1402 *fd = -1; /* restore original value */
1403 TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1404 return -1;
1405 }
1406 TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1407 pmd->name, dir, qid, *fd);
1408 }
1409
1410 tx->mtu = &dev->data->mtu;
1411 rx->rxmode = &dev->data->dev_conf.rxmode;
1412 if (gso_ctx) {
1413 ret = tap_gso_ctx_setup(gso_ctx, dev);
1414 if (ret)
1415 return -1;
1416 }
1417
1418 tx->type = pmd->type;
1419
1420 return *fd;
1421 }
1422
1423 static int
1424 tap_rx_queue_setup(struct rte_eth_dev *dev,
1425 uint16_t rx_queue_id,
1426 uint16_t nb_rx_desc,
1427 unsigned int socket_id,
1428 const struct rte_eth_rxconf *rx_conf __rte_unused,
1429 struct rte_mempool *mp)
1430 {
1431 struct pmd_internals *internals = dev->data->dev_private;
1432 struct pmd_process_private *process_private = dev->process_private;
1433 struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1434 struct rte_mbuf **tmp = &rxq->pool;
1435 long iov_max = sysconf(_SC_IOV_MAX);
1436
1437 if (iov_max <= 0) {
1438 TAP_LOG(WARNING,
1439 "_SC_IOV_MAX is not defined. Using %d as default",
1440 TAP_IOV_DEFAULT_MAX);
1441 iov_max = TAP_IOV_DEFAULT_MAX;
1442 }
1443 uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1444 struct iovec (*iovecs)[nb_desc + 1];
1445 int data_off = RTE_PKTMBUF_HEADROOM;
1446 int ret = 0;
1447 int fd;
1448 int i;
1449
1450 if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1451 TAP_LOG(WARNING,
1452 "nb_rx_queues %d too small or mempool NULL",
1453 dev->data->nb_rx_queues);
1454 return -1;
1455 }
1456
1457 rxq->mp = mp;
1458 rxq->trigger_seen = 1; /* force initial burst */
1459 rxq->in_port = dev->data->port_id;
1460 rxq->queue_id = rx_queue_id;
1461 rxq->nb_rx_desc = nb_desc;
1462 iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1463 socket_id);
1464 if (!iovecs) {
1465 TAP_LOG(WARNING,
1466 "%s: Couldn't allocate %d RX descriptors",
1467 dev->device->name, nb_desc);
1468 return -ENOMEM;
1469 }
1470 rxq->iovecs = iovecs;
1471
1472 dev->data->rx_queues[rx_queue_id] = rxq;
1473 fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1474 if (fd == -1) {
1475 ret = fd;
1476 goto error;
1477 }
1478
1479 (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1480 (*rxq->iovecs)[0].iov_base = &rxq->pi;
1481
1482 for (i = 1; i <= nb_desc; i++) {
1483 *tmp = rte_pktmbuf_alloc(rxq->mp);
1484 if (!*tmp) {
1485 TAP_LOG(WARNING,
1486 "%s: couldn't allocate memory for queue %d",
1487 dev->device->name, rx_queue_id);
1488 ret = -ENOMEM;
1489 goto error;
1490 }
1491 (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1492 (*rxq->iovecs)[i].iov_base =
1493 (char *)(*tmp)->buf_addr + data_off;
1494 data_off = 0;
1495 tmp = &(*tmp)->next;
1496 }
1497
1498 TAP_LOG(DEBUG, " RX TUNTAP device name %s, qid %d on fd %d",
1499 internals->name, rx_queue_id,
1500 process_private->rxq_fds[rx_queue_id]);
1501
1502 return 0;
1503
1504 error:
1505 tap_rxq_pool_free(rxq->pool);
1506 rxq->pool = NULL;
1507 rte_free(rxq->iovecs);
1508 rxq->iovecs = NULL;
1509 return ret;
1510 }
1511
1512 static int
1513 tap_tx_queue_setup(struct rte_eth_dev *dev,
1514 uint16_t tx_queue_id,
1515 uint16_t nb_tx_desc __rte_unused,
1516 unsigned int socket_id __rte_unused,
1517 const struct rte_eth_txconf *tx_conf)
1518 {
1519 struct pmd_internals *internals = dev->data->dev_private;
1520 struct pmd_process_private *process_private = dev->process_private;
1521 struct tx_queue *txq;
1522 int ret;
1523 uint64_t offloads;
1524
1525 if (tx_queue_id >= dev->data->nb_tx_queues)
1526 return -1;
1527 dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1528 txq = dev->data->tx_queues[tx_queue_id];
1529 txq->out_port = dev->data->port_id;
1530 txq->queue_id = tx_queue_id;
1531
1532 offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1533 txq->csum = !!(offloads &
1534 (DEV_TX_OFFLOAD_IPV4_CKSUM |
1535 DEV_TX_OFFLOAD_UDP_CKSUM |
1536 DEV_TX_OFFLOAD_TCP_CKSUM));
1537
1538 ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1539 if (ret == -1)
1540 return -1;
1541 TAP_LOG(DEBUG,
1542 " TX TUNTAP device name %s, qid %d on fd %d csum %s",
1543 internals->name, tx_queue_id,
1544 process_private->txq_fds[tx_queue_id],
1545 txq->csum ? "on" : "off");
1546
1547 return 0;
1548 }
1549
1550 static int
1551 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1552 {
1553 struct pmd_internals *pmd = dev->data->dev_private;
1554 struct ifreq ifr = { .ifr_mtu = mtu };
1555 int err = 0;
1556
1557 err = tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1558 if (!err)
1559 dev->data->mtu = mtu;
1560
1561 return err;
1562 }
1563
1564 static int
1565 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1566 struct rte_ether_addr *mc_addr_set __rte_unused,
1567 uint32_t nb_mc_addr __rte_unused)
1568 {
1569 /*
1570 * Nothing to do actually: the tap has no filtering whatsoever, every
1571 * packet is received.
1572 */
1573 return 0;
1574 }
1575
1576 static int
1577 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1578 {
1579 struct rte_eth_dev *dev = arg;
1580 struct pmd_internals *pmd = dev->data->dev_private;
1581 struct ifinfomsg *info = NLMSG_DATA(nh);
1582
1583 if (nh->nlmsg_type != RTM_NEWLINK ||
1584 (info->ifi_index != pmd->if_index &&
1585 info->ifi_index != pmd->remote_if_index))
1586 return 0;
1587 return tap_link_update(dev, 0);
1588 }
1589
1590 static void
1591 tap_dev_intr_handler(void *cb_arg)
1592 {
1593 struct rte_eth_dev *dev = cb_arg;
1594 struct pmd_internals *pmd = dev->data->dev_private;
1595
1596 tap_nl_recv(pmd->intr_handle.fd, tap_nl_msg_handler, dev);
1597 }
1598
1599 static int
1600 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1601 {
1602 struct pmd_internals *pmd = dev->data->dev_private;
1603 int ret;
1604
1605 /* In any case, disable interrupt if the conf is no longer there. */
1606 if (!dev->data->dev_conf.intr_conf.lsc) {
1607 if (pmd->intr_handle.fd != -1) {
1608 goto clean;
1609 }
1610 return 0;
1611 }
1612 if (set) {
1613 pmd->intr_handle.fd = tap_nl_init(RTMGRP_LINK);
1614 if (unlikely(pmd->intr_handle.fd == -1))
1615 return -EBADF;
1616 return rte_intr_callback_register(
1617 &pmd->intr_handle, tap_dev_intr_handler, dev);
1618 }
1619
1620 clean:
1621 do {
1622 ret = rte_intr_callback_unregister(&pmd->intr_handle,
1623 tap_dev_intr_handler, dev);
1624 if (ret >= 0) {
1625 break;
1626 } else if (ret == -EAGAIN) {
1627 rte_delay_ms(100);
1628 } else {
1629 TAP_LOG(ERR, "intr callback unregister failed: %d",
1630 ret);
1631 break;
1632 }
1633 } while (true);
1634
1635 tap_nl_final(pmd->intr_handle.fd);
1636 pmd->intr_handle.fd = -1;
1637
1638 return 0;
1639 }
1640
1641 static int
1642 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1643 {
1644 int err;
1645
1646 err = tap_lsc_intr_handle_set(dev, set);
1647 if (err < 0) {
1648 if (!set)
1649 tap_rx_intr_vec_set(dev, 0);
1650 return err;
1651 }
1652 err = tap_rx_intr_vec_set(dev, set);
1653 if (err && set)
1654 tap_lsc_intr_handle_set(dev, 0);
1655 return err;
1656 }
1657
1658 static const uint32_t*
1659 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1660 {
1661 static const uint32_t ptypes[] = {
1662 RTE_PTYPE_INNER_L2_ETHER,
1663 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1664 RTE_PTYPE_INNER_L2_ETHER_QINQ,
1665 RTE_PTYPE_INNER_L3_IPV4,
1666 RTE_PTYPE_INNER_L3_IPV4_EXT,
1667 RTE_PTYPE_INNER_L3_IPV6,
1668 RTE_PTYPE_INNER_L3_IPV6_EXT,
1669 RTE_PTYPE_INNER_L4_FRAG,
1670 RTE_PTYPE_INNER_L4_UDP,
1671 RTE_PTYPE_INNER_L4_TCP,
1672 RTE_PTYPE_INNER_L4_SCTP,
1673 RTE_PTYPE_L2_ETHER,
1674 RTE_PTYPE_L2_ETHER_VLAN,
1675 RTE_PTYPE_L2_ETHER_QINQ,
1676 RTE_PTYPE_L3_IPV4,
1677 RTE_PTYPE_L3_IPV4_EXT,
1678 RTE_PTYPE_L3_IPV6_EXT,
1679 RTE_PTYPE_L3_IPV6,
1680 RTE_PTYPE_L4_FRAG,
1681 RTE_PTYPE_L4_UDP,
1682 RTE_PTYPE_L4_TCP,
1683 RTE_PTYPE_L4_SCTP,
1684 };
1685
1686 return ptypes;
1687 }
1688
1689 static int
1690 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1691 struct rte_eth_fc_conf *fc_conf)
1692 {
1693 fc_conf->mode = RTE_FC_NONE;
1694 return 0;
1695 }
1696
1697 static int
1698 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1699 struct rte_eth_fc_conf *fc_conf)
1700 {
1701 if (fc_conf->mode != RTE_FC_NONE)
1702 return -ENOTSUP;
1703 return 0;
1704 }
1705
1706 /**
1707 * DPDK callback to update the RSS hash configuration.
1708 *
1709 * @param dev
1710 * Pointer to Ethernet device structure.
1711 * @param[in] rss_conf
1712 * RSS configuration data.
1713 *
1714 * @return
1715 * 0 on success, a negative errno value otherwise and rte_errno is set.
1716 */
1717 static int
1718 tap_rss_hash_update(struct rte_eth_dev *dev,
1719 struct rte_eth_rss_conf *rss_conf)
1720 {
1721 if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1722 rte_errno = EINVAL;
1723 return -rte_errno;
1724 }
1725 if (rss_conf->rss_key && rss_conf->rss_key_len) {
1726 /*
1727 * Currently TAP RSS key is hard coded
1728 * and cannot be updated
1729 */
1730 TAP_LOG(ERR,
1731 "port %u RSS key cannot be updated",
1732 dev->data->port_id);
1733 rte_errno = EINVAL;
1734 return -rte_errno;
1735 }
1736 return 0;
1737 }
1738
1739 static int
1740 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1741 {
1742 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1743
1744 return 0;
1745 }
1746
1747 static int
1748 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1749 {
1750 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1751
1752 return 0;
1753 }
1754
1755 static int
1756 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1757 {
1758 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1759
1760 return 0;
1761 }
1762
1763 static int
1764 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1765 {
1766 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1767
1768 return 0;
1769 }
1770 static const struct eth_dev_ops ops = {
1771 .dev_start = tap_dev_start,
1772 .dev_stop = tap_dev_stop,
1773 .dev_close = tap_dev_close,
1774 .dev_configure = tap_dev_configure,
1775 .dev_infos_get = tap_dev_info,
1776 .rx_queue_setup = tap_rx_queue_setup,
1777 .tx_queue_setup = tap_tx_queue_setup,
1778 .rx_queue_start = tap_rx_queue_start,
1779 .tx_queue_start = tap_tx_queue_start,
1780 .rx_queue_stop = tap_rx_queue_stop,
1781 .tx_queue_stop = tap_tx_queue_stop,
1782 .rx_queue_release = tap_rx_queue_release,
1783 .tx_queue_release = tap_tx_queue_release,
1784 .flow_ctrl_get = tap_flow_ctrl_get,
1785 .flow_ctrl_set = tap_flow_ctrl_set,
1786 .link_update = tap_link_update,
1787 .dev_set_link_up = tap_link_set_up,
1788 .dev_set_link_down = tap_link_set_down,
1789 .promiscuous_enable = tap_promisc_enable,
1790 .promiscuous_disable = tap_promisc_disable,
1791 .allmulticast_enable = tap_allmulti_enable,
1792 .allmulticast_disable = tap_allmulti_disable,
1793 .mac_addr_set = tap_mac_set,
1794 .mtu_set = tap_mtu_set,
1795 .set_mc_addr_list = tap_set_mc_addr_list,
1796 .stats_get = tap_stats_get,
1797 .stats_reset = tap_stats_reset,
1798 .dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1799 .rss_hash_update = tap_rss_hash_update,
1800 .filter_ctrl = tap_dev_filter_ctrl,
1801 };
1802
1803 static const char *tuntap_types[ETH_TUNTAP_TYPE_MAX] = {
1804 "UNKNOWN", "TUN", "TAP"
1805 };
1806
1807 static int
1808 eth_dev_tap_create(struct rte_vdev_device *vdev, const char *tap_name,
1809 char *remote_iface, struct rte_ether_addr *mac_addr,
1810 enum rte_tuntap_type type)
1811 {
1812 int numa_node = rte_socket_id();
1813 struct rte_eth_dev *dev;
1814 struct pmd_internals *pmd;
1815 struct pmd_process_private *process_private;
1816 const char *tuntap_name = tuntap_types[type];
1817 struct rte_eth_dev_data *data;
1818 struct ifreq ifr;
1819 int i;
1820
1821 TAP_LOG(DEBUG, "%s device on numa %u", tuntap_name, rte_socket_id());
1822
1823 dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1824 if (!dev) {
1825 TAP_LOG(ERR, "%s Unable to allocate device struct",
1826 tuntap_name);
1827 goto error_exit_nodev;
1828 }
1829
1830 process_private = (struct pmd_process_private *)
1831 rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
1832 RTE_CACHE_LINE_SIZE, dev->device->numa_node);
1833
1834 if (process_private == NULL) {
1835 TAP_LOG(ERR, "Failed to alloc memory for process private");
1836 return -1;
1837 }
1838 pmd = dev->data->dev_private;
1839 dev->process_private = process_private;
1840 pmd->dev = dev;
1841 strlcpy(pmd->name, tap_name, sizeof(pmd->name));
1842 pmd->type = type;
1843 pmd->ka_fd = -1;
1844 pmd->nlsk_fd = -1;
1845
1846 pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1847 if (pmd->ioctl_sock == -1) {
1848 TAP_LOG(ERR,
1849 "%s Unable to get a socket for management: %s",
1850 tuntap_name, strerror(errno));
1851 goto error_exit;
1852 }
1853
1854 /* Setup some default values */
1855 data = dev->data;
1856 data->dev_private = pmd;
1857 data->dev_flags = RTE_ETH_DEV_INTR_LSC;
1858 data->numa_node = numa_node;
1859
1860 data->dev_link = pmd_link;
1861 data->mac_addrs = &pmd->eth_addr;
1862 /* Set the number of RX and TX queues */
1863 data->nb_rx_queues = 0;
1864 data->nb_tx_queues = 0;
1865
1866 dev->dev_ops = &ops;
1867 dev->rx_pkt_burst = pmd_rx_burst;
1868 dev->tx_pkt_burst = pmd_tx_burst;
1869
1870 pmd->intr_handle.type = RTE_INTR_HANDLE_EXT;
1871 pmd->intr_handle.fd = -1;
1872 dev->intr_handle = &pmd->intr_handle;
1873
1874 /* Presetup the fds to -1 as being not valid */
1875 for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1876 process_private->rxq_fds[i] = -1;
1877 process_private->txq_fds[i] = -1;
1878 }
1879
1880 if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1881 if (rte_is_zero_ether_addr(mac_addr))
1882 rte_eth_random_addr((uint8_t *)&pmd->eth_addr);
1883 else
1884 rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
1885 }
1886
1887 /*
1888 * Allocate a TUN device keep-alive file descriptor that will only be
1889 * closed when the TUN device itself is closed or removed.
1890 * This keep-alive file descriptor will guarantee that the TUN device
1891 * exists even when all of its queues are closed
1892 */
1893 pmd->ka_fd = tun_alloc(pmd, 1);
1894 if (pmd->ka_fd == -1) {
1895 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
1896 goto error_exit;
1897 }
1898 TAP_LOG(DEBUG, "allocated %s", pmd->name);
1899
1900 ifr.ifr_mtu = dev->data->mtu;
1901 if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
1902 goto error_exit;
1903
1904 if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1905 memset(&ifr, 0, sizeof(struct ifreq));
1906 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1907 rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
1908 RTE_ETHER_ADDR_LEN);
1909 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
1910 goto error_exit;
1911 }
1912
1913 /*
1914 * Set up everything related to rte_flow:
1915 * - netlink socket
1916 * - tap / remote if_index
1917 * - mandatory QDISCs
1918 * - rte_flow actual/implicit lists
1919 * - implicit rules
1920 */
1921 pmd->nlsk_fd = tap_nl_init(0);
1922 if (pmd->nlsk_fd == -1) {
1923 TAP_LOG(WARNING, "%s: failed to create netlink socket.",
1924 pmd->name);
1925 goto disable_rte_flow;
1926 }
1927 pmd->if_index = if_nametoindex(pmd->name);
1928 if (!pmd->if_index) {
1929 TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
1930 goto disable_rte_flow;
1931 }
1932 if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
1933 TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
1934 pmd->name);
1935 goto disable_rte_flow;
1936 }
1937 if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
1938 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1939 pmd->name);
1940 goto disable_rte_flow;
1941 }
1942 LIST_INIT(&pmd->flows);
1943
1944 if (strlen(remote_iface)) {
1945 pmd->remote_if_index = if_nametoindex(remote_iface);
1946 if (!pmd->remote_if_index) {
1947 TAP_LOG(ERR, "%s: failed to get %s if_index.",
1948 pmd->name, remote_iface);
1949 goto error_remote;
1950 }
1951 strlcpy(pmd->remote_iface, remote_iface, RTE_ETH_NAME_MAX_LEN);
1952
1953 /* Save state of remote device */
1954 tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
1955
1956 /* Replicate remote MAC address */
1957 if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
1958 TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1959 pmd->name, pmd->remote_iface);
1960 goto error_remote;
1961 }
1962 rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
1963 RTE_ETHER_ADDR_LEN);
1964 /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
1965 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
1966 TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1967 pmd->name, remote_iface);
1968 goto error_remote;
1969 }
1970
1971 /*
1972 * Flush usually returns negative value because it tries to
1973 * delete every QDISC (and on a running device, one QDISC at
1974 * least is needed). Ignore negative return value.
1975 */
1976 qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
1977 if (qdisc_create_ingress(pmd->nlsk_fd,
1978 pmd->remote_if_index) < 0) {
1979 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1980 pmd->remote_iface);
1981 goto error_remote;
1982 }
1983 LIST_INIT(&pmd->implicit_flows);
1984 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
1985 tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
1986 tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
1987 tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
1988 TAP_LOG(ERR,
1989 "%s: failed to create implicit rules.",
1990 pmd->name);
1991 goto error_remote;
1992 }
1993 }
1994
1995 rte_eth_dev_probing_finish(dev);
1996 return 0;
1997
1998 disable_rte_flow:
1999 TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
2000 strerror(errno), errno);
2001 if (strlen(remote_iface)) {
2002 TAP_LOG(ERR, "Remote feature requires flow support.");
2003 goto error_exit;
2004 }
2005 rte_eth_dev_probing_finish(dev);
2006 return 0;
2007
2008 error_remote:
2009 TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
2010 strerror(errno), errno);
2011 tap_flow_implicit_flush(pmd, NULL);
2012
2013 error_exit:
2014 if (pmd->nlsk_fd != -1)
2015 close(pmd->nlsk_fd);
2016 if (pmd->ka_fd != -1)
2017 close(pmd->ka_fd);
2018 if (pmd->ioctl_sock != -1)
2019 close(pmd->ioctl_sock);
2020 /* mac_addrs must not be freed alone because part of dev_private */
2021 dev->data->mac_addrs = NULL;
2022 rte_eth_dev_release_port(dev);
2023
2024 error_exit_nodev:
2025 TAP_LOG(ERR, "%s Unable to initialize %s",
2026 tuntap_name, rte_vdev_device_name(vdev));
2027
2028 return -EINVAL;
2029 }
2030
2031 /* make sure name is a possible Linux network device name */
2032 static bool
2033 is_valid_iface(const char *name)
2034 {
2035 if (*name == '\0')
2036 return false;
2037
2038 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
2039 return false;
2040
2041 while (*name) {
2042 if (*name == '/' || *name == ':' || isspace(*name))
2043 return false;
2044 name++;
2045 }
2046 return true;
2047 }
2048
2049 static int
2050 set_interface_name(const char *key __rte_unused,
2051 const char *value,
2052 void *extra_args)
2053 {
2054 char *name = (char *)extra_args;
2055
2056 if (value) {
2057 if (!is_valid_iface(value)) {
2058 TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2059 value);
2060 return -1;
2061 }
2062 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2063 } else {
2064 /* use tap%d which causes kernel to choose next available */
2065 strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2066 }
2067 return 0;
2068 }
2069
2070 static int
2071 set_remote_iface(const char *key __rte_unused,
2072 const char *value,
2073 void *extra_args)
2074 {
2075 char *name = (char *)extra_args;
2076
2077 if (value) {
2078 if (!is_valid_iface(value)) {
2079 TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2080 value);
2081 return -1;
2082 }
2083 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2084 }
2085
2086 return 0;
2087 }
2088
2089 static int parse_user_mac(struct rte_ether_addr *user_mac,
2090 const char *value)
2091 {
2092 unsigned int index = 0;
2093 char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
2094
2095 if (user_mac == NULL || value == NULL)
2096 return 0;
2097
2098 strlcpy(mac_temp, value, sizeof(mac_temp));
2099 mac_byte = strtok(mac_temp, ":");
2100
2101 while ((mac_byte != NULL) &&
2102 (strlen(mac_byte) <= 2) &&
2103 (strlen(mac_byte) == strspn(mac_byte,
2104 ETH_TAP_CMP_MAC_FMT))) {
2105 user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
2106 mac_byte = strtok(NULL, ":");
2107 }
2108
2109 return index;
2110 }
2111
2112 static int
2113 set_mac_type(const char *key __rte_unused,
2114 const char *value,
2115 void *extra_args)
2116 {
2117 struct rte_ether_addr *user_mac = extra_args;
2118
2119 if (!value)
2120 return 0;
2121
2122 if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
2123 static int iface_idx;
2124
2125 /* fixed mac = 00:64:74:61:70:<iface_idx> */
2126 memcpy((char *)user_mac->addr_bytes, "\0dtap",
2127 RTE_ETHER_ADDR_LEN);
2128 user_mac->addr_bytes[RTE_ETHER_ADDR_LEN - 1] =
2129 iface_idx++ + '0';
2130 goto success;
2131 }
2132
2133 if (parse_user_mac(user_mac, value) != 6)
2134 goto error;
2135 success:
2136 TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
2137 return 0;
2138
2139 error:
2140 TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
2141 value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
2142 return -1;
2143 }
2144
2145 /*
2146 * Open a TUN interface device. TUN PMD
2147 * 1) sets tap_type as false
2148 * 2) intakes iface as argument.
2149 * 3) as interface is virtual set speed to 10G
2150 */
2151 static int
2152 rte_pmd_tun_probe(struct rte_vdev_device *dev)
2153 {
2154 const char *name, *params;
2155 int ret;
2156 struct rte_kvargs *kvlist = NULL;
2157 char tun_name[RTE_ETH_NAME_MAX_LEN];
2158 char remote_iface[RTE_ETH_NAME_MAX_LEN];
2159 struct rte_eth_dev *eth_dev;
2160
2161 name = rte_vdev_device_name(dev);
2162 params = rte_vdev_device_args(dev);
2163 memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2164
2165 if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
2166 strlen(params) == 0) {
2167 eth_dev = rte_eth_dev_attach_secondary(name);
2168 if (!eth_dev) {
2169 TAP_LOG(ERR, "Failed to probe %s", name);
2170 return -1;
2171 }
2172 eth_dev->dev_ops = &ops;
2173 eth_dev->device = &dev->device;
2174 rte_eth_dev_probing_finish(eth_dev);
2175 return 0;
2176 }
2177
2178 /* use tun%d which causes kernel to choose next available */
2179 strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2180
2181 if (params && (params[0] != '\0')) {
2182 TAP_LOG(DEBUG, "parameters (%s)", params);
2183
2184 kvlist = rte_kvargs_parse(params, valid_arguments);
2185 if (kvlist) {
2186 if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2187 ret = rte_kvargs_process(kvlist,
2188 ETH_TAP_IFACE_ARG,
2189 &set_interface_name,
2190 tun_name);
2191
2192 if (ret == -1)
2193 goto leave;
2194 }
2195 }
2196 }
2197 pmd_link.link_speed = ETH_SPEED_NUM_10G;
2198
2199 TAP_LOG(DEBUG, "Initializing pmd_tun for %s", name);
2200
2201 ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
2202 ETH_TUNTAP_TYPE_TUN);
2203
2204 leave:
2205 if (ret == -1) {
2206 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2207 name, tun_name);
2208 }
2209 rte_kvargs_free(kvlist);
2210
2211 return ret;
2212 }
2213
2214 /* Request queue file descriptors from secondary to primary. */
2215 static int
2216 tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
2217 {
2218 int ret;
2219 struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
2220 struct rte_mp_msg request, *reply;
2221 struct rte_mp_reply replies;
2222 struct ipc_queues *request_param = (struct ipc_queues *)request.param;
2223 struct ipc_queues *reply_param;
2224 struct pmd_process_private *process_private = dev->process_private;
2225 int queue, fd_iterator;
2226
2227 /* Prepare the request */
2228 memset(&request, 0, sizeof(request));
2229 strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
2230 strlcpy(request_param->port_name, port_name,
2231 sizeof(request_param->port_name));
2232 request.len_param = sizeof(*request_param);
2233 /* Send request and receive reply */
2234 ret = rte_mp_request_sync(&request, &replies, &timeout);
2235 if (ret < 0 || replies.nb_received != 1) {
2236 TAP_LOG(ERR, "Failed to request queues from primary: %d",
2237 rte_errno);
2238 return -1;
2239 }
2240 reply = &replies.msgs[0];
2241 reply_param = (struct ipc_queues *)reply->param;
2242 TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
2243
2244 /* Attach the queues from received file descriptors */
2245 if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) {
2246 TAP_LOG(ERR, "Unexpected number of fds received");
2247 return -1;
2248 }
2249
2250 dev->data->nb_rx_queues = reply_param->rxq_count;
2251 dev->data->nb_tx_queues = reply_param->txq_count;
2252 fd_iterator = 0;
2253 for (queue = 0; queue < reply_param->rxq_count; queue++)
2254 process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
2255 for (queue = 0; queue < reply_param->txq_count; queue++)
2256 process_private->txq_fds[queue] = reply->fds[fd_iterator++];
2257 free(reply);
2258 return 0;
2259 }
2260
2261 /* Send the queue file descriptors from the primary process to secondary. */
2262 static int
2263 tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
2264 {
2265 struct rte_eth_dev *dev;
2266 struct pmd_process_private *process_private;
2267 struct rte_mp_msg reply;
2268 const struct ipc_queues *request_param =
2269 (const struct ipc_queues *)request->param;
2270 struct ipc_queues *reply_param =
2271 (struct ipc_queues *)reply.param;
2272 uint16_t port_id;
2273 int queue;
2274 int ret;
2275
2276 /* Get requested port */
2277 TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
2278 ret = rte_eth_dev_get_port_by_name(request_param->port_name, &port_id);
2279 if (ret) {
2280 TAP_LOG(ERR, "Failed to get port id for %s",
2281 request_param->port_name);
2282 return -1;
2283 }
2284 dev = &rte_eth_devices[port_id];
2285 process_private = dev->process_private;
2286
2287 /* Fill file descriptors for all queues */
2288 reply.num_fds = 0;
2289 reply_param->rxq_count = 0;
2290 if (dev->data->nb_rx_queues + dev->data->nb_tx_queues >
2291 RTE_MP_MAX_FD_NUM){
2292 TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds");
2293 return -1;
2294 }
2295
2296 for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
2297 reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
2298 reply_param->rxq_count++;
2299 }
2300 RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
2301
2302 reply_param->txq_count = 0;
2303 for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
2304 reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
2305 reply_param->txq_count++;
2306 }
2307 RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
2308
2309 /* Send reply */
2310 strlcpy(reply.name, request->name, sizeof(reply.name));
2311 strlcpy(reply_param->port_name, request_param->port_name,
2312 sizeof(reply_param->port_name));
2313 reply.len_param = sizeof(*reply_param);
2314 if (rte_mp_reply(&reply, peer) < 0) {
2315 TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
2316 return -1;
2317 }
2318 return 0;
2319 }
2320
2321 /* Open a TAP interface device.
2322 */
2323 static int
2324 rte_pmd_tap_probe(struct rte_vdev_device *dev)
2325 {
2326 const char *name, *params;
2327 int ret;
2328 struct rte_kvargs *kvlist = NULL;
2329 int speed;
2330 char tap_name[RTE_ETH_NAME_MAX_LEN];
2331 char remote_iface[RTE_ETH_NAME_MAX_LEN];
2332 struct rte_ether_addr user_mac = { .addr_bytes = {0} };
2333 struct rte_eth_dev *eth_dev;
2334 int tap_devices_count_increased = 0;
2335
2336 name = rte_vdev_device_name(dev);
2337 params = rte_vdev_device_args(dev);
2338
2339 if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
2340 eth_dev = rte_eth_dev_attach_secondary(name);
2341 if (!eth_dev) {
2342 TAP_LOG(ERR, "Failed to probe %s", name);
2343 return -1;
2344 }
2345 eth_dev->dev_ops = &ops;
2346 eth_dev->device = &dev->device;
2347 eth_dev->rx_pkt_burst = pmd_rx_burst;
2348 eth_dev->tx_pkt_burst = pmd_tx_burst;
2349 if (!rte_eal_primary_proc_alive(NULL)) {
2350 TAP_LOG(ERR, "Primary process is missing");
2351 return -1;
2352 }
2353 eth_dev->process_private = (struct pmd_process_private *)
2354 rte_zmalloc_socket(name,
2355 sizeof(struct pmd_process_private),
2356 RTE_CACHE_LINE_SIZE,
2357 eth_dev->device->numa_node);
2358 if (eth_dev->process_private == NULL) {
2359 TAP_LOG(ERR,
2360 "Failed to alloc memory for process private");
2361 return -1;
2362 }
2363
2364 ret = tap_mp_attach_queues(name, eth_dev);
2365 if (ret != 0)
2366 return -1;
2367 rte_eth_dev_probing_finish(eth_dev);
2368 return 0;
2369 }
2370
2371 speed = ETH_SPEED_NUM_10G;
2372
2373 /* use tap%d which causes kernel to choose next available */
2374 strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2375 memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2376
2377 if (params && (params[0] != '\0')) {
2378 TAP_LOG(DEBUG, "parameters (%s)", params);
2379
2380 kvlist = rte_kvargs_parse(params, valid_arguments);
2381 if (kvlist) {
2382 if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2383 ret = rte_kvargs_process(kvlist,
2384 ETH_TAP_IFACE_ARG,
2385 &set_interface_name,
2386 tap_name);
2387 if (ret == -1)
2388 goto leave;
2389 }
2390
2391 if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2392 ret = rte_kvargs_process(kvlist,
2393 ETH_TAP_REMOTE_ARG,
2394 &set_remote_iface,
2395 remote_iface);
2396 if (ret == -1)
2397 goto leave;
2398 }
2399
2400 if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2401 ret = rte_kvargs_process(kvlist,
2402 ETH_TAP_MAC_ARG,
2403 &set_mac_type,
2404 &user_mac);
2405 if (ret == -1)
2406 goto leave;
2407 }
2408 }
2409 }
2410 pmd_link.link_speed = speed;
2411
2412 TAP_LOG(DEBUG, "Initializing pmd_tap for %s", name);
2413
2414 /* Register IPC feed callback */
2415 if (!tap_devices_count) {
2416 ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
2417 if (ret < 0 && rte_errno != ENOTSUP) {
2418 TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
2419 strerror(rte_errno));
2420 goto leave;
2421 }
2422 }
2423 tap_devices_count++;
2424 tap_devices_count_increased = 1;
2425 ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2426 ETH_TUNTAP_TYPE_TAP);
2427
2428 leave:
2429 if (ret == -1) {
2430 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2431 name, tap_name);
2432 if (tap_devices_count_increased == 1) {
2433 if (tap_devices_count == 1)
2434 rte_mp_action_unregister(TAP_MP_KEY);
2435 tap_devices_count--;
2436 }
2437 }
2438 rte_kvargs_free(kvlist);
2439
2440 return ret;
2441 }
2442
2443 /* detach a TUNTAP device.
2444 */
2445 static int
2446 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2447 {
2448 struct rte_eth_dev *eth_dev = NULL;
2449 struct pmd_internals *internals;
2450
2451 /* find the ethdev entry */
2452 eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2453 if (!eth_dev)
2454 return -ENODEV;
2455
2456 /* mac_addrs must not be freed alone because part of dev_private */
2457 eth_dev->data->mac_addrs = NULL;
2458
2459 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2460 return rte_eth_dev_release_port(eth_dev);
2461
2462 tap_dev_close(eth_dev);
2463
2464 internals = eth_dev->data->dev_private;
2465 TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
2466 tuntap_types[internals->type], rte_socket_id());
2467
2468 close(internals->ioctl_sock);
2469 rte_free(eth_dev->process_private);
2470 if (tap_devices_count == 1)
2471 rte_mp_action_unregister(TAP_MP_KEY);
2472 tap_devices_count--;
2473 rte_eth_dev_release_port(eth_dev);
2474
2475 return 0;
2476 }
2477
2478 static struct rte_vdev_driver pmd_tun_drv = {
2479 .probe = rte_pmd_tun_probe,
2480 .remove = rte_pmd_tap_remove,
2481 };
2482
2483 static struct rte_vdev_driver pmd_tap_drv = {
2484 .probe = rte_pmd_tap_probe,
2485 .remove = rte_pmd_tap_remove,
2486 };
2487
2488 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2489 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2490 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2491 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2492 ETH_TAP_IFACE_ARG "=<string> ");
2493 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2494 ETH_TAP_IFACE_ARG "=<string> "
2495 ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2496 ETH_TAP_REMOTE_ARG "=<string>");
2497 int tap_logtype;
2498
2499 RTE_INIT(tap_init_log)
2500 {
2501 tap_logtype = rte_log_register("pmd.net.tap");
2502 if (tap_logtype >= 0)
2503 rte_log_set_level(tap_logtype, RTE_LOG_NOTICE);
2504 }