]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/virtio/virtio_pci.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / virtio / virtio_pci.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4 #include <stdint.h>
5
6 #ifdef RTE_EXEC_ENV_LINUXAPP
7 #include <dirent.h>
8 #include <fcntl.h>
9 #endif
10
11 #include <rte_io.h>
12 #include <rte_bus.h>
13
14 #include "virtio_pci.h"
15 #include "virtio_logs.h"
16 #include "virtqueue.h"
17
18 /*
19 * Following macros are derived from linux/pci_regs.h, however,
20 * we can't simply include that header here, as there is no such
21 * file for non-Linux platform.
22 */
23 #define PCI_CAPABILITY_LIST 0x34
24 #define PCI_CAP_ID_VNDR 0x09
25 #define PCI_CAP_ID_MSIX 0x11
26
27 /*
28 * The remaining space is defined by each driver as the per-driver
29 * configuration space.
30 */
31 #define VIRTIO_PCI_CONFIG(hw) \
32 (((hw)->use_msix == VIRTIO_MSIX_ENABLED) ? 24 : 20)
33
34 static inline int
35 check_vq_phys_addr_ok(struct virtqueue *vq)
36 {
37 /* Virtio PCI device VIRTIO_PCI_QUEUE_PF register is 32bit,
38 * and only accepts 32 bit page frame number.
39 * Check if the allocated physical memory exceeds 16TB.
40 */
41 if ((vq->vq_ring_mem + vq->vq_ring_size - 1) >>
42 (VIRTIO_PCI_QUEUE_ADDR_SHIFT + 32)) {
43 PMD_INIT_LOG(ERR, "vring address shouldn't be above 16TB!");
44 return 0;
45 }
46
47 return 1;
48 }
49
50 /*
51 * Since we are in legacy mode:
52 * http://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf
53 *
54 * "Note that this is possible because while the virtio header is PCI (i.e.
55 * little) endian, the device-specific region is encoded in the native endian of
56 * the guest (where such distinction is applicable)."
57 *
58 * For powerpc which supports both, qemu supposes that cpu is big endian and
59 * enforces this for the virtio-net stuff.
60 */
61 static void
62 legacy_read_dev_config(struct virtio_hw *hw, size_t offset,
63 void *dst, int length)
64 {
65 #ifdef RTE_ARCH_PPC_64
66 int size;
67
68 while (length > 0) {
69 if (length >= 4) {
70 size = 4;
71 rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
72 VIRTIO_PCI_CONFIG(hw) + offset);
73 *(uint32_t *)dst = rte_be_to_cpu_32(*(uint32_t *)dst);
74 } else if (length >= 2) {
75 size = 2;
76 rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
77 VIRTIO_PCI_CONFIG(hw) + offset);
78 *(uint16_t *)dst = rte_be_to_cpu_16(*(uint16_t *)dst);
79 } else {
80 size = 1;
81 rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
82 VIRTIO_PCI_CONFIG(hw) + offset);
83 }
84
85 dst = (char *)dst + size;
86 offset += size;
87 length -= size;
88 }
89 #else
90 rte_pci_ioport_read(VTPCI_IO(hw), dst, length,
91 VIRTIO_PCI_CONFIG(hw) + offset);
92 #endif
93 }
94
95 static void
96 legacy_write_dev_config(struct virtio_hw *hw, size_t offset,
97 const void *src, int length)
98 {
99 #ifdef RTE_ARCH_PPC_64
100 union {
101 uint32_t u32;
102 uint16_t u16;
103 } tmp;
104 int size;
105
106 while (length > 0) {
107 if (length >= 4) {
108 size = 4;
109 tmp.u32 = rte_cpu_to_be_32(*(const uint32_t *)src);
110 rte_pci_ioport_write(VTPCI_IO(hw), &tmp.u32, size,
111 VIRTIO_PCI_CONFIG(hw) + offset);
112 } else if (length >= 2) {
113 size = 2;
114 tmp.u16 = rte_cpu_to_be_16(*(const uint16_t *)src);
115 rte_pci_ioport_write(VTPCI_IO(hw), &tmp.u16, size,
116 VIRTIO_PCI_CONFIG(hw) + offset);
117 } else {
118 size = 1;
119 rte_pci_ioport_write(VTPCI_IO(hw), src, size,
120 VIRTIO_PCI_CONFIG(hw) + offset);
121 }
122
123 src = (const char *)src + size;
124 offset += size;
125 length -= size;
126 }
127 #else
128 rte_pci_ioport_write(VTPCI_IO(hw), src, length,
129 VIRTIO_PCI_CONFIG(hw) + offset);
130 #endif
131 }
132
133 static uint64_t
134 legacy_get_features(struct virtio_hw *hw)
135 {
136 uint32_t dst;
137
138 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 4, VIRTIO_PCI_HOST_FEATURES);
139 return dst;
140 }
141
142 static void
143 legacy_set_features(struct virtio_hw *hw, uint64_t features)
144 {
145 if ((features >> 32) != 0) {
146 PMD_DRV_LOG(ERR,
147 "only 32 bit features are allowed for legacy virtio!");
148 return;
149 }
150 rte_pci_ioport_write(VTPCI_IO(hw), &features, 4,
151 VIRTIO_PCI_GUEST_FEATURES);
152 }
153
154 static uint8_t
155 legacy_get_status(struct virtio_hw *hw)
156 {
157 uint8_t dst;
158
159 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 1, VIRTIO_PCI_STATUS);
160 return dst;
161 }
162
163 static void
164 legacy_set_status(struct virtio_hw *hw, uint8_t status)
165 {
166 rte_pci_ioport_write(VTPCI_IO(hw), &status, 1, VIRTIO_PCI_STATUS);
167 }
168
169 static void
170 legacy_reset(struct virtio_hw *hw)
171 {
172 legacy_set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
173 }
174
175 static uint8_t
176 legacy_get_isr(struct virtio_hw *hw)
177 {
178 uint8_t dst;
179
180 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 1, VIRTIO_PCI_ISR);
181 return dst;
182 }
183
184 /* Enable one vector (0) for Link State Intrerrupt */
185 static uint16_t
186 legacy_set_config_irq(struct virtio_hw *hw, uint16_t vec)
187 {
188 uint16_t dst;
189
190 rte_pci_ioport_write(VTPCI_IO(hw), &vec, 2, VIRTIO_MSI_CONFIG_VECTOR);
191 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_MSI_CONFIG_VECTOR);
192 return dst;
193 }
194
195 static uint16_t
196 legacy_set_queue_irq(struct virtio_hw *hw, struct virtqueue *vq, uint16_t vec)
197 {
198 uint16_t dst;
199
200 rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
201 VIRTIO_PCI_QUEUE_SEL);
202 rte_pci_ioport_write(VTPCI_IO(hw), &vec, 2, VIRTIO_MSI_QUEUE_VECTOR);
203 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_MSI_QUEUE_VECTOR);
204 return dst;
205 }
206
207 static uint16_t
208 legacy_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
209 {
210 uint16_t dst;
211
212 rte_pci_ioport_write(VTPCI_IO(hw), &queue_id, 2, VIRTIO_PCI_QUEUE_SEL);
213 rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_PCI_QUEUE_NUM);
214 return dst;
215 }
216
217 static int
218 legacy_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
219 {
220 uint32_t src;
221
222 if (!check_vq_phys_addr_ok(vq))
223 return -1;
224
225 rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
226 VIRTIO_PCI_QUEUE_SEL);
227 src = vq->vq_ring_mem >> VIRTIO_PCI_QUEUE_ADDR_SHIFT;
228 rte_pci_ioport_write(VTPCI_IO(hw), &src, 4, VIRTIO_PCI_QUEUE_PFN);
229
230 return 0;
231 }
232
233 static void
234 legacy_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
235 {
236 uint32_t src = 0;
237
238 rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
239 VIRTIO_PCI_QUEUE_SEL);
240 rte_pci_ioport_write(VTPCI_IO(hw), &src, 4, VIRTIO_PCI_QUEUE_PFN);
241 }
242
243 static void
244 legacy_notify_queue(struct virtio_hw *hw, struct virtqueue *vq)
245 {
246 rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
247 VIRTIO_PCI_QUEUE_NOTIFY);
248 }
249
250 const struct virtio_pci_ops legacy_ops = {
251 .read_dev_cfg = legacy_read_dev_config,
252 .write_dev_cfg = legacy_write_dev_config,
253 .reset = legacy_reset,
254 .get_status = legacy_get_status,
255 .set_status = legacy_set_status,
256 .get_features = legacy_get_features,
257 .set_features = legacy_set_features,
258 .get_isr = legacy_get_isr,
259 .set_config_irq = legacy_set_config_irq,
260 .set_queue_irq = legacy_set_queue_irq,
261 .get_queue_num = legacy_get_queue_num,
262 .setup_queue = legacy_setup_queue,
263 .del_queue = legacy_del_queue,
264 .notify_queue = legacy_notify_queue,
265 };
266
267 static inline void
268 io_write64_twopart(uint64_t val, uint32_t *lo, uint32_t *hi)
269 {
270 rte_write32(val & ((1ULL << 32) - 1), lo);
271 rte_write32(val >> 32, hi);
272 }
273
274 static void
275 modern_read_dev_config(struct virtio_hw *hw, size_t offset,
276 void *dst, int length)
277 {
278 int i;
279 uint8_t *p;
280 uint8_t old_gen, new_gen;
281
282 do {
283 old_gen = rte_read8(&hw->common_cfg->config_generation);
284
285 p = dst;
286 for (i = 0; i < length; i++)
287 *p++ = rte_read8((uint8_t *)hw->dev_cfg + offset + i);
288
289 new_gen = rte_read8(&hw->common_cfg->config_generation);
290 } while (old_gen != new_gen);
291 }
292
293 static void
294 modern_write_dev_config(struct virtio_hw *hw, size_t offset,
295 const void *src, int length)
296 {
297 int i;
298 const uint8_t *p = src;
299
300 for (i = 0; i < length; i++)
301 rte_write8((*p++), (((uint8_t *)hw->dev_cfg) + offset + i));
302 }
303
304 static uint64_t
305 modern_get_features(struct virtio_hw *hw)
306 {
307 uint32_t features_lo, features_hi;
308
309 rte_write32(0, &hw->common_cfg->device_feature_select);
310 features_lo = rte_read32(&hw->common_cfg->device_feature);
311
312 rte_write32(1, &hw->common_cfg->device_feature_select);
313 features_hi = rte_read32(&hw->common_cfg->device_feature);
314
315 return ((uint64_t)features_hi << 32) | features_lo;
316 }
317
318 static void
319 modern_set_features(struct virtio_hw *hw, uint64_t features)
320 {
321 rte_write32(0, &hw->common_cfg->guest_feature_select);
322 rte_write32(features & ((1ULL << 32) - 1),
323 &hw->common_cfg->guest_feature);
324
325 rte_write32(1, &hw->common_cfg->guest_feature_select);
326 rte_write32(features >> 32,
327 &hw->common_cfg->guest_feature);
328 }
329
330 static uint8_t
331 modern_get_status(struct virtio_hw *hw)
332 {
333 return rte_read8(&hw->common_cfg->device_status);
334 }
335
336 static void
337 modern_set_status(struct virtio_hw *hw, uint8_t status)
338 {
339 rte_write8(status, &hw->common_cfg->device_status);
340 }
341
342 static void
343 modern_reset(struct virtio_hw *hw)
344 {
345 modern_set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
346 modern_get_status(hw);
347 }
348
349 static uint8_t
350 modern_get_isr(struct virtio_hw *hw)
351 {
352 return rte_read8(hw->isr);
353 }
354
355 static uint16_t
356 modern_set_config_irq(struct virtio_hw *hw, uint16_t vec)
357 {
358 rte_write16(vec, &hw->common_cfg->msix_config);
359 return rte_read16(&hw->common_cfg->msix_config);
360 }
361
362 static uint16_t
363 modern_set_queue_irq(struct virtio_hw *hw, struct virtqueue *vq, uint16_t vec)
364 {
365 rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
366 rte_write16(vec, &hw->common_cfg->queue_msix_vector);
367 return rte_read16(&hw->common_cfg->queue_msix_vector);
368 }
369
370 static uint16_t
371 modern_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
372 {
373 rte_write16(queue_id, &hw->common_cfg->queue_select);
374 return rte_read16(&hw->common_cfg->queue_size);
375 }
376
377 static int
378 modern_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
379 {
380 uint64_t desc_addr, avail_addr, used_addr;
381 uint16_t notify_off;
382
383 if (!check_vq_phys_addr_ok(vq))
384 return -1;
385
386 desc_addr = vq->vq_ring_mem;
387 avail_addr = desc_addr + vq->vq_nentries * sizeof(struct vring_desc);
388 used_addr = RTE_ALIGN_CEIL(avail_addr + offsetof(struct vring_avail,
389 ring[vq->vq_nentries]),
390 VIRTIO_PCI_VRING_ALIGN);
391
392 rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
393
394 io_write64_twopart(desc_addr, &hw->common_cfg->queue_desc_lo,
395 &hw->common_cfg->queue_desc_hi);
396 io_write64_twopart(avail_addr, &hw->common_cfg->queue_avail_lo,
397 &hw->common_cfg->queue_avail_hi);
398 io_write64_twopart(used_addr, &hw->common_cfg->queue_used_lo,
399 &hw->common_cfg->queue_used_hi);
400
401 notify_off = rte_read16(&hw->common_cfg->queue_notify_off);
402 vq->notify_addr = (void *)((uint8_t *)hw->notify_base +
403 notify_off * hw->notify_off_multiplier);
404
405 rte_write16(1, &hw->common_cfg->queue_enable);
406
407 PMD_INIT_LOG(DEBUG, "queue %u addresses:", vq->vq_queue_index);
408 PMD_INIT_LOG(DEBUG, "\t desc_addr: %" PRIx64, desc_addr);
409 PMD_INIT_LOG(DEBUG, "\t aval_addr: %" PRIx64, avail_addr);
410 PMD_INIT_LOG(DEBUG, "\t used_addr: %" PRIx64, used_addr);
411 PMD_INIT_LOG(DEBUG, "\t notify addr: %p (notify offset: %u)",
412 vq->notify_addr, notify_off);
413
414 return 0;
415 }
416
417 static void
418 modern_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
419 {
420 rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
421
422 io_write64_twopart(0, &hw->common_cfg->queue_desc_lo,
423 &hw->common_cfg->queue_desc_hi);
424 io_write64_twopart(0, &hw->common_cfg->queue_avail_lo,
425 &hw->common_cfg->queue_avail_hi);
426 io_write64_twopart(0, &hw->common_cfg->queue_used_lo,
427 &hw->common_cfg->queue_used_hi);
428
429 rte_write16(0, &hw->common_cfg->queue_enable);
430 }
431
432 static void
433 modern_notify_queue(struct virtio_hw *hw __rte_unused, struct virtqueue *vq)
434 {
435 rte_write16(vq->vq_queue_index, vq->notify_addr);
436 }
437
438 const struct virtio_pci_ops modern_ops = {
439 .read_dev_cfg = modern_read_dev_config,
440 .write_dev_cfg = modern_write_dev_config,
441 .reset = modern_reset,
442 .get_status = modern_get_status,
443 .set_status = modern_set_status,
444 .get_features = modern_get_features,
445 .set_features = modern_set_features,
446 .get_isr = modern_get_isr,
447 .set_config_irq = modern_set_config_irq,
448 .set_queue_irq = modern_set_queue_irq,
449 .get_queue_num = modern_get_queue_num,
450 .setup_queue = modern_setup_queue,
451 .del_queue = modern_del_queue,
452 .notify_queue = modern_notify_queue,
453 };
454
455
456 void
457 vtpci_read_dev_config(struct virtio_hw *hw, size_t offset,
458 void *dst, int length)
459 {
460 VTPCI_OPS(hw)->read_dev_cfg(hw, offset, dst, length);
461 }
462
463 void
464 vtpci_write_dev_config(struct virtio_hw *hw, size_t offset,
465 const void *src, int length)
466 {
467 VTPCI_OPS(hw)->write_dev_cfg(hw, offset, src, length);
468 }
469
470 uint64_t
471 vtpci_negotiate_features(struct virtio_hw *hw, uint64_t host_features)
472 {
473 uint64_t features;
474
475 /*
476 * Limit negotiated features to what the driver, virtqueue, and
477 * host all support.
478 */
479 features = host_features & hw->guest_features;
480 VTPCI_OPS(hw)->set_features(hw, features);
481
482 return features;
483 }
484
485 void
486 vtpci_reset(struct virtio_hw *hw)
487 {
488 VTPCI_OPS(hw)->set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
489 /* flush status write */
490 VTPCI_OPS(hw)->get_status(hw);
491 }
492
493 void
494 vtpci_reinit_complete(struct virtio_hw *hw)
495 {
496 vtpci_set_status(hw, VIRTIO_CONFIG_STATUS_DRIVER_OK);
497 }
498
499 void
500 vtpci_set_status(struct virtio_hw *hw, uint8_t status)
501 {
502 if (status != VIRTIO_CONFIG_STATUS_RESET)
503 status |= VTPCI_OPS(hw)->get_status(hw);
504
505 VTPCI_OPS(hw)->set_status(hw, status);
506 }
507
508 uint8_t
509 vtpci_get_status(struct virtio_hw *hw)
510 {
511 return VTPCI_OPS(hw)->get_status(hw);
512 }
513
514 uint8_t
515 vtpci_isr(struct virtio_hw *hw)
516 {
517 return VTPCI_OPS(hw)->get_isr(hw);
518 }
519
520 static void *
521 get_cfg_addr(struct rte_pci_device *dev, struct virtio_pci_cap *cap)
522 {
523 uint8_t bar = cap->bar;
524 uint32_t length = cap->length;
525 uint32_t offset = cap->offset;
526 uint8_t *base;
527
528 if (bar >= PCI_MAX_RESOURCE) {
529 PMD_INIT_LOG(ERR, "invalid bar: %u", bar);
530 return NULL;
531 }
532
533 if (offset + length < offset) {
534 PMD_INIT_LOG(ERR, "offset(%u) + length(%u) overflows",
535 offset, length);
536 return NULL;
537 }
538
539 if (offset + length > dev->mem_resource[bar].len) {
540 PMD_INIT_LOG(ERR,
541 "invalid cap: overflows bar space: %u > %" PRIu64,
542 offset + length, dev->mem_resource[bar].len);
543 return NULL;
544 }
545
546 base = dev->mem_resource[bar].addr;
547 if (base == NULL) {
548 PMD_INIT_LOG(ERR, "bar %u base addr is NULL", bar);
549 return NULL;
550 }
551
552 return base + offset;
553 }
554
555 #define PCI_MSIX_ENABLE 0x8000
556
557 static int
558 virtio_read_caps(struct rte_pci_device *dev, struct virtio_hw *hw)
559 {
560 uint8_t pos;
561 struct virtio_pci_cap cap;
562 int ret;
563
564 if (rte_pci_map_device(dev)) {
565 PMD_INIT_LOG(DEBUG, "failed to map pci device!");
566 return -1;
567 }
568
569 ret = rte_pci_read_config(dev, &pos, 1, PCI_CAPABILITY_LIST);
570 if (ret < 0) {
571 PMD_INIT_LOG(DEBUG, "failed to read pci capability list");
572 return -1;
573 }
574
575 while (pos) {
576 ret = rte_pci_read_config(dev, &cap, sizeof(cap), pos);
577 if (ret < 0) {
578 PMD_INIT_LOG(ERR,
579 "failed to read pci cap at pos: %x", pos);
580 break;
581 }
582
583 if (cap.cap_vndr == PCI_CAP_ID_MSIX) {
584 /* Transitional devices would also have this capability,
585 * that's why we also check if msix is enabled.
586 * 1st byte is cap ID; 2nd byte is the position of next
587 * cap; next two bytes are the flags.
588 */
589 uint16_t flags = ((uint16_t *)&cap)[1];
590
591 if (flags & PCI_MSIX_ENABLE)
592 hw->use_msix = VIRTIO_MSIX_ENABLED;
593 else
594 hw->use_msix = VIRTIO_MSIX_DISABLED;
595 }
596
597 if (cap.cap_vndr != PCI_CAP_ID_VNDR) {
598 PMD_INIT_LOG(DEBUG,
599 "[%2x] skipping non VNDR cap id: %02x",
600 pos, cap.cap_vndr);
601 goto next;
602 }
603
604 PMD_INIT_LOG(DEBUG,
605 "[%2x] cfg type: %u, bar: %u, offset: %04x, len: %u",
606 pos, cap.cfg_type, cap.bar, cap.offset, cap.length);
607
608 switch (cap.cfg_type) {
609 case VIRTIO_PCI_CAP_COMMON_CFG:
610 hw->common_cfg = get_cfg_addr(dev, &cap);
611 break;
612 case VIRTIO_PCI_CAP_NOTIFY_CFG:
613 rte_pci_read_config(dev, &hw->notify_off_multiplier,
614 4, pos + sizeof(cap));
615 hw->notify_base = get_cfg_addr(dev, &cap);
616 break;
617 case VIRTIO_PCI_CAP_DEVICE_CFG:
618 hw->dev_cfg = get_cfg_addr(dev, &cap);
619 break;
620 case VIRTIO_PCI_CAP_ISR_CFG:
621 hw->isr = get_cfg_addr(dev, &cap);
622 break;
623 }
624
625 next:
626 pos = cap.cap_next;
627 }
628
629 if (hw->common_cfg == NULL || hw->notify_base == NULL ||
630 hw->dev_cfg == NULL || hw->isr == NULL) {
631 PMD_INIT_LOG(INFO, "no modern virtio pci device found.");
632 return -1;
633 }
634
635 PMD_INIT_LOG(INFO, "found modern virtio pci device.");
636
637 PMD_INIT_LOG(DEBUG, "common cfg mapped at: %p", hw->common_cfg);
638 PMD_INIT_LOG(DEBUG, "device cfg mapped at: %p", hw->dev_cfg);
639 PMD_INIT_LOG(DEBUG, "isr cfg mapped at: %p", hw->isr);
640 PMD_INIT_LOG(DEBUG, "notify base: %p, notify off multiplier: %u",
641 hw->notify_base, hw->notify_off_multiplier);
642
643 return 0;
644 }
645
646 /*
647 * Return -1:
648 * if there is error mapping with VFIO/UIO.
649 * if port map error when driver type is KDRV_NONE.
650 * if whitelisted but driver type is KDRV_UNKNOWN.
651 * Return 1 if kernel driver is managing the device.
652 * Return 0 on success.
653 */
654 int
655 vtpci_init(struct rte_pci_device *dev, struct virtio_hw *hw)
656 {
657 /*
658 * Try if we can succeed reading virtio pci caps, which exists
659 * only on modern pci device. If failed, we fallback to legacy
660 * virtio handling.
661 */
662 if (virtio_read_caps(dev, hw) == 0) {
663 PMD_INIT_LOG(INFO, "modern virtio pci detected.");
664 virtio_hw_internal[hw->port_id].vtpci_ops = &modern_ops;
665 hw->modern = 1;
666 return 0;
667 }
668
669 PMD_INIT_LOG(INFO, "trying with legacy virtio pci.");
670 if (rte_pci_ioport_map(dev, 0, VTPCI_IO(hw)) < 0) {
671 if (dev->kdrv == RTE_KDRV_UNKNOWN &&
672 (!dev->device.devargs ||
673 dev->device.devargs->bus !=
674 rte_bus_find_by_name("pci"))) {
675 PMD_INIT_LOG(INFO,
676 "skip kernel managed virtio device.");
677 return 1;
678 }
679 return -1;
680 }
681
682 virtio_hw_internal[hw->port_id].vtpci_ops = &legacy_ops;
683 hw->modern = 0;
684
685 return 0;
686 }
687
688 enum virtio_msix_status
689 vtpci_msix_detect(struct rte_pci_device *dev)
690 {
691 uint8_t pos;
692 struct virtio_pci_cap cap;
693 int ret;
694
695 ret = rte_pci_read_config(dev, &pos, 1, PCI_CAPABILITY_LIST);
696 if (ret < 0) {
697 PMD_INIT_LOG(DEBUG, "failed to read pci capability list");
698 return VIRTIO_MSIX_NONE;
699 }
700
701 while (pos) {
702 ret = rte_pci_read_config(dev, &cap, sizeof(cap), pos);
703 if (ret < 0) {
704 PMD_INIT_LOG(ERR,
705 "failed to read pci cap at pos: %x", pos);
706 break;
707 }
708
709 if (cap.cap_vndr == PCI_CAP_ID_MSIX) {
710 uint16_t flags = ((uint16_t *)&cap)[1];
711
712 if (flags & PCI_MSIX_ENABLE)
713 return VIRTIO_MSIX_ENABLED;
714 else
715 return VIRTIO_MSIX_DISABLED;
716 }
717
718 pos = cap.cap_next;
719 }
720
721 return VIRTIO_MSIX_NONE;
722 }