]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/net/virtio/virtqueue.h
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / virtio / virtqueue.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #ifndef _VIRTQUEUE_H_
6 #define _VIRTQUEUE_H_
7
8 #include <stdint.h>
9
10 #include <rte_atomic.h>
11 #include <rte_memory.h>
12 #include <rte_mempool.h>
13 #include <rte_net.h>
14
15 #include "virtio_pci.h"
16 #include "virtio_ring.h"
17 #include "virtio_logs.h"
18 #include "virtio_rxtx.h"
19
20 struct rte_mbuf;
21
22 #define DEFAULT_TX_FREE_THRESH 32
23 #define DEFAULT_RX_FREE_THRESH 32
24
25 #define VIRTIO_MBUF_BURST_SZ 64
26 /*
27 * Per virtio_ring.h in Linux.
28 * For virtio_pci on SMP, we don't need to order with respect to MMIO
29 * accesses through relaxed memory I/O windows, so smp_mb() et al are
30 * sufficient.
31 *
32 * For using virtio to talk to real devices (eg. vDPA) we do need real
33 * barriers.
34 */
35 static inline void
36 virtio_mb(uint8_t weak_barriers)
37 {
38 if (weak_barriers)
39 rte_smp_mb();
40 else
41 rte_mb();
42 }
43
44 static inline void
45 virtio_rmb(uint8_t weak_barriers)
46 {
47 if (weak_barriers)
48 rte_smp_rmb();
49 else
50 rte_cio_rmb();
51 }
52
53 static inline void
54 virtio_wmb(uint8_t weak_barriers)
55 {
56 if (weak_barriers)
57 rte_smp_wmb();
58 else
59 rte_cio_wmb();
60 }
61
62 static inline uint16_t
63 virtqueue_fetch_flags_packed(struct vring_packed_desc *dp,
64 uint8_t weak_barriers)
65 {
66 uint16_t flags;
67
68 if (weak_barriers) {
69 /* x86 prefers to using rte_smp_rmb over __atomic_load_n as it reports
70 * a better perf(~1.5%), which comes from the saved branch by the compiler.
71 * The if and else branch are identical with the smp and cio barriers both
72 * defined as compiler barriers on x86.
73 */
74 #ifdef RTE_ARCH_X86_64
75 flags = dp->flags;
76 rte_smp_rmb();
77 #else
78 flags = __atomic_load_n(&dp->flags, __ATOMIC_ACQUIRE);
79 #endif
80 } else {
81 flags = dp->flags;
82 rte_cio_rmb();
83 }
84
85 return flags;
86 }
87
88 static inline void
89 virtqueue_store_flags_packed(struct vring_packed_desc *dp,
90 uint16_t flags, uint8_t weak_barriers)
91 {
92 if (weak_barriers) {
93 /* x86 prefers to using rte_smp_wmb over __atomic_store_n as it reports
94 * a better perf(~1.5%), which comes from the saved branch by the compiler.
95 * The if and else branch are identical with the smp and cio barriers both
96 * defined as compiler barriers on x86.
97 */
98 #ifdef RTE_ARCH_X86_64
99 rte_smp_wmb();
100 dp->flags = flags;
101 #else
102 __atomic_store_n(&dp->flags, flags, __ATOMIC_RELEASE);
103 #endif
104 } else {
105 rte_cio_wmb();
106 dp->flags = flags;
107 }
108 }
109 #ifdef RTE_PMD_PACKET_PREFETCH
110 #define rte_packet_prefetch(p) rte_prefetch1(p)
111 #else
112 #define rte_packet_prefetch(p) do {} while(0)
113 #endif
114
115 #define VIRTQUEUE_MAX_NAME_SZ 32
116
117 #ifdef RTE_VIRTIO_USER
118 /**
119 * Return the physical address (or virtual address in case of
120 * virtio-user) of mbuf data buffer.
121 *
122 * The address is firstly casted to the word size (sizeof(uintptr_t))
123 * before casting it to uint64_t. This is to make it work with different
124 * combination of word size (64 bit and 32 bit) and virtio device
125 * (virtio-pci and virtio-user).
126 */
127 #define VIRTIO_MBUF_ADDR(mb, vq) \
128 ((uint64_t)(*(uintptr_t *)((uintptr_t)(mb) + (vq)->offset)))
129 #else
130 #define VIRTIO_MBUF_ADDR(mb, vq) ((mb)->buf_iova)
131 #endif
132
133 /**
134 * Return the physical address (or virtual address in case of
135 * virtio-user) of mbuf data buffer, taking care of mbuf data offset
136 */
137 #define VIRTIO_MBUF_DATA_DMA_ADDR(mb, vq) \
138 (VIRTIO_MBUF_ADDR(mb, vq) + (mb)->data_off)
139
140 #define VTNET_SQ_RQ_QUEUE_IDX 0
141 #define VTNET_SQ_TQ_QUEUE_IDX 1
142 #define VTNET_SQ_CQ_QUEUE_IDX 2
143
144 enum { VTNET_RQ = 0, VTNET_TQ = 1, VTNET_CQ = 2 };
145 /**
146 * The maximum virtqueue size is 2^15. Use that value as the end of
147 * descriptor chain terminator since it will never be a valid index
148 * in the descriptor table. This is used to verify we are correctly
149 * handling vq_free_cnt.
150 */
151 #define VQ_RING_DESC_CHAIN_END 32768
152
153 /**
154 * Control the RX mode, ie. promiscuous, allmulti, etc...
155 * All commands require an "out" sg entry containing a 1 byte
156 * state value, zero = disable, non-zero = enable. Commands
157 * 0 and 1 are supported with the VIRTIO_NET_F_CTRL_RX feature.
158 * Commands 2-5 are added with VIRTIO_NET_F_CTRL_RX_EXTRA.
159 */
160 #define VIRTIO_NET_CTRL_RX 0
161 #define VIRTIO_NET_CTRL_RX_PROMISC 0
162 #define VIRTIO_NET_CTRL_RX_ALLMULTI 1
163 #define VIRTIO_NET_CTRL_RX_ALLUNI 2
164 #define VIRTIO_NET_CTRL_RX_NOMULTI 3
165 #define VIRTIO_NET_CTRL_RX_NOUNI 4
166 #define VIRTIO_NET_CTRL_RX_NOBCAST 5
167
168 /**
169 * Control the MAC
170 *
171 * The MAC filter table is managed by the hypervisor, the guest should
172 * assume the size is infinite. Filtering should be considered
173 * non-perfect, ie. based on hypervisor resources, the guest may
174 * received packets from sources not specified in the filter list.
175 *
176 * In addition to the class/cmd header, the TABLE_SET command requires
177 * two out scatterlists. Each contains a 4 byte count of entries followed
178 * by a concatenated byte stream of the ETH_ALEN MAC addresses. The
179 * first sg list contains unicast addresses, the second is for multicast.
180 * This functionality is present if the VIRTIO_NET_F_CTRL_RX feature
181 * is available.
182 *
183 * The ADDR_SET command requests one out scatterlist, it contains a
184 * 6 bytes MAC address. This functionality is present if the
185 * VIRTIO_NET_F_CTRL_MAC_ADDR feature is available.
186 */
187 struct virtio_net_ctrl_mac {
188 uint32_t entries;
189 uint8_t macs[][RTE_ETHER_ADDR_LEN];
190 } __rte_packed;
191
192 #define VIRTIO_NET_CTRL_MAC 1
193 #define VIRTIO_NET_CTRL_MAC_TABLE_SET 0
194 #define VIRTIO_NET_CTRL_MAC_ADDR_SET 1
195
196 /**
197 * Control VLAN filtering
198 *
199 * The VLAN filter table is controlled via a simple ADD/DEL interface.
200 * VLAN IDs not added may be filtered by the hypervisor. Del is the
201 * opposite of add. Both commands expect an out entry containing a 2
202 * byte VLAN ID. VLAN filtering is available with the
203 * VIRTIO_NET_F_CTRL_VLAN feature bit.
204 */
205 #define VIRTIO_NET_CTRL_VLAN 2
206 #define VIRTIO_NET_CTRL_VLAN_ADD 0
207 #define VIRTIO_NET_CTRL_VLAN_DEL 1
208
209 /*
210 * Control link announce acknowledgement
211 *
212 * The command VIRTIO_NET_CTRL_ANNOUNCE_ACK is used to indicate that
213 * driver has recevied the notification; device would clear the
214 * VIRTIO_NET_S_ANNOUNCE bit in the status field after it receives
215 * this command.
216 */
217 #define VIRTIO_NET_CTRL_ANNOUNCE 3
218 #define VIRTIO_NET_CTRL_ANNOUNCE_ACK 0
219
220 struct virtio_net_ctrl_hdr {
221 uint8_t class;
222 uint8_t cmd;
223 } __rte_packed;
224
225 typedef uint8_t virtio_net_ctrl_ack;
226
227 #define VIRTIO_NET_OK 0
228 #define VIRTIO_NET_ERR 1
229
230 #define VIRTIO_MAX_CTRL_DATA 2048
231
232 struct virtio_pmd_ctrl {
233 struct virtio_net_ctrl_hdr hdr;
234 virtio_net_ctrl_ack status;
235 uint8_t data[VIRTIO_MAX_CTRL_DATA];
236 };
237
238 struct vq_desc_extra {
239 void *cookie;
240 uint16_t ndescs;
241 uint16_t next;
242 };
243
244 struct virtqueue {
245 struct virtio_hw *hw; /**< virtio_hw structure pointer. */
246 union {
247 struct {
248 /**< vring keeping desc, used and avail */
249 struct vring ring;
250 } vq_split;
251
252 struct {
253 /**< vring keeping descs and events */
254 struct vring_packed ring;
255 bool used_wrap_counter;
256 uint16_t cached_flags; /**< cached flags for descs */
257 uint16_t event_flags_shadow;
258 } vq_packed;
259 };
260
261 uint16_t vq_used_cons_idx; /**< last consumed descriptor */
262 uint16_t vq_nentries; /**< vring desc numbers */
263 uint16_t vq_free_cnt; /**< num of desc available */
264 uint16_t vq_avail_idx; /**< sync until needed */
265 uint16_t vq_free_thresh; /**< free threshold */
266
267 void *vq_ring_virt_mem; /**< linear address of vring*/
268 unsigned int vq_ring_size;
269
270 union {
271 struct virtnet_rx rxq;
272 struct virtnet_tx txq;
273 struct virtnet_ctl cq;
274 };
275
276 rte_iova_t vq_ring_mem; /**< physical address of vring,
277 * or virtual address for virtio_user. */
278
279 /**
280 * Head of the free chain in the descriptor table. If
281 * there are no free descriptors, this will be set to
282 * VQ_RING_DESC_CHAIN_END.
283 */
284 uint16_t vq_desc_head_idx;
285 uint16_t vq_desc_tail_idx;
286 uint16_t vq_queue_index; /**< PCI queue index */
287 uint16_t offset; /**< relative offset to obtain addr in mbuf */
288 uint16_t *notify_addr;
289 struct rte_mbuf **sw_ring; /**< RX software ring. */
290 struct vq_desc_extra vq_descx[0];
291 };
292
293 /* If multiqueue is provided by host, then we suppport it. */
294 #define VIRTIO_NET_CTRL_MQ 4
295 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET 0
296 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN 1
297 #define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX 0x8000
298
299 /**
300 * This is the first element of the scatter-gather list. If you don't
301 * specify GSO or CSUM features, you can simply ignore the header.
302 */
303 struct virtio_net_hdr {
304 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /**< Use csum_start,csum_offset*/
305 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /**< Checksum is valid */
306 uint8_t flags;
307 #define VIRTIO_NET_HDR_GSO_NONE 0 /**< Not a GSO frame */
308 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /**< GSO frame, IPv4 TCP (TSO) */
309 #define VIRTIO_NET_HDR_GSO_UDP 3 /**< GSO frame, IPv4 UDP (UFO) */
310 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /**< GSO frame, IPv6 TCP */
311 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /**< TCP has ECN set */
312 uint8_t gso_type;
313 uint16_t hdr_len; /**< Ethernet + IP + tcp/udp hdrs */
314 uint16_t gso_size; /**< Bytes to append to hdr_len per frame */
315 uint16_t csum_start; /**< Position to start checksumming from */
316 uint16_t csum_offset; /**< Offset after that to place checksum */
317 };
318
319 /**
320 * This is the version of the header to use when the MRG_RXBUF
321 * feature has been negotiated.
322 */
323 struct virtio_net_hdr_mrg_rxbuf {
324 struct virtio_net_hdr hdr;
325 uint16_t num_buffers; /**< Number of merged rx buffers */
326 };
327
328 /* Region reserved to allow for transmit header and indirect ring */
329 #define VIRTIO_MAX_TX_INDIRECT 8
330 struct virtio_tx_region {
331 struct virtio_net_hdr_mrg_rxbuf tx_hdr;
332 struct vring_desc tx_indir[VIRTIO_MAX_TX_INDIRECT]
333 __rte_aligned(16);
334 };
335
336 static inline int
337 desc_is_used(struct vring_packed_desc *desc, struct virtqueue *vq)
338 {
339 uint16_t used, avail, flags;
340
341 flags = virtqueue_fetch_flags_packed(desc, vq->hw->weak_barriers);
342 used = !!(flags & VRING_PACKED_DESC_F_USED);
343 avail = !!(flags & VRING_PACKED_DESC_F_AVAIL);
344
345 return avail == used && used == vq->vq_packed.used_wrap_counter;
346 }
347
348 static inline void
349 vring_desc_init_packed(struct virtqueue *vq, int n)
350 {
351 int i;
352 for (i = 0; i < n - 1; i++) {
353 vq->vq_packed.ring.desc[i].id = i;
354 vq->vq_descx[i].next = i + 1;
355 }
356 vq->vq_packed.ring.desc[i].id = i;
357 vq->vq_descx[i].next = VQ_RING_DESC_CHAIN_END;
358 }
359
360 /* Chain all the descriptors in the ring with an END */
361 static inline void
362 vring_desc_init_split(struct vring_desc *dp, uint16_t n)
363 {
364 uint16_t i;
365
366 for (i = 0; i < n - 1; i++)
367 dp[i].next = (uint16_t)(i + 1);
368 dp[i].next = VQ_RING_DESC_CHAIN_END;
369 }
370
371 /**
372 * Tell the backend not to interrupt us. Implementation for packed virtqueues.
373 */
374 static inline void
375 virtqueue_disable_intr_packed(struct virtqueue *vq)
376 {
377 if (vq->vq_packed.event_flags_shadow != RING_EVENT_FLAGS_DISABLE) {
378 vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_DISABLE;
379 vq->vq_packed.ring.driver->desc_event_flags =
380 vq->vq_packed.event_flags_shadow;
381 }
382 }
383
384 /**
385 * Tell the backend not to interrupt us. Implementation for split virtqueues.
386 */
387 static inline void
388 virtqueue_disable_intr_split(struct virtqueue *vq)
389 {
390 vq->vq_split.ring.avail->flags |= VRING_AVAIL_F_NO_INTERRUPT;
391 }
392
393 /**
394 * Tell the backend not to interrupt us.
395 */
396 static inline void
397 virtqueue_disable_intr(struct virtqueue *vq)
398 {
399 if (vtpci_packed_queue(vq->hw))
400 virtqueue_disable_intr_packed(vq);
401 else
402 virtqueue_disable_intr_split(vq);
403 }
404
405 /**
406 * Tell the backend to interrupt. Implementation for packed virtqueues.
407 */
408 static inline void
409 virtqueue_enable_intr_packed(struct virtqueue *vq)
410 {
411 if (vq->vq_packed.event_flags_shadow == RING_EVENT_FLAGS_DISABLE) {
412 vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_ENABLE;
413 vq->vq_packed.ring.driver->desc_event_flags =
414 vq->vq_packed.event_flags_shadow;
415 }
416 }
417
418 /**
419 * Tell the backend to interrupt. Implementation for split virtqueues.
420 */
421 static inline void
422 virtqueue_enable_intr_split(struct virtqueue *vq)
423 {
424 vq->vq_split.ring.avail->flags &= (~VRING_AVAIL_F_NO_INTERRUPT);
425 }
426
427 /**
428 * Tell the backend to interrupt us.
429 */
430 static inline void
431 virtqueue_enable_intr(struct virtqueue *vq)
432 {
433 if (vtpci_packed_queue(vq->hw))
434 virtqueue_enable_intr_packed(vq);
435 else
436 virtqueue_enable_intr_split(vq);
437 }
438
439 /**
440 * Dump virtqueue internal structures, for debug purpose only.
441 */
442 void virtqueue_dump(struct virtqueue *vq);
443 /**
444 * Get all mbufs to be freed.
445 */
446 struct rte_mbuf *virtqueue_detach_unused(struct virtqueue *vq);
447
448 /* Flush the elements in the used ring. */
449 void virtqueue_rxvq_flush(struct virtqueue *vq);
450
451 int virtqueue_rxvq_reset_packed(struct virtqueue *vq);
452
453 int virtqueue_txvq_reset_packed(struct virtqueue *vq);
454
455 static inline int
456 virtqueue_full(const struct virtqueue *vq)
457 {
458 return vq->vq_free_cnt == 0;
459 }
460
461 static inline int
462 virtio_get_queue_type(struct virtio_hw *hw, uint16_t vtpci_queue_idx)
463 {
464 if (vtpci_queue_idx == hw->max_queue_pairs * 2)
465 return VTNET_CQ;
466 else if (vtpci_queue_idx % 2 == 0)
467 return VTNET_RQ;
468 else
469 return VTNET_TQ;
470 }
471
472 /* virtqueue_nused has load-acquire or rte_cio_rmb insed */
473 static inline uint16_t
474 virtqueue_nused(const struct virtqueue *vq)
475 {
476 uint16_t idx;
477
478 if (vq->hw->weak_barriers) {
479 /**
480 * x86 prefers to using rte_smp_rmb over __atomic_load_n as it
481 * reports a slightly better perf, which comes from the saved
482 * branch by the compiler.
483 * The if and else branches are identical with the smp and cio
484 * barriers both defined as compiler barriers on x86.
485 */
486 #ifdef RTE_ARCH_X86_64
487 idx = vq->vq_split.ring.used->idx;
488 rte_smp_rmb();
489 #else
490 idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx,
491 __ATOMIC_ACQUIRE);
492 #endif
493 } else {
494 idx = vq->vq_split.ring.used->idx;
495 rte_cio_rmb();
496 }
497 return idx - vq->vq_used_cons_idx;
498 }
499
500 void vq_ring_free_chain(struct virtqueue *vq, uint16_t desc_idx);
501 void vq_ring_free_chain_packed(struct virtqueue *vq, uint16_t used_idx);
502 void vq_ring_free_inorder(struct virtqueue *vq, uint16_t desc_idx,
503 uint16_t num);
504
505 static inline void
506 vq_update_avail_idx(struct virtqueue *vq)
507 {
508 if (vq->hw->weak_barriers) {
509 /* x86 prefers to using rte_smp_wmb over __atomic_store_n as
510 * it reports a slightly better perf, which comes from the
511 * saved branch by the compiler.
512 * The if and else branches are identical with the smp and
513 * cio barriers both defined as compiler barriers on x86.
514 */
515 #ifdef RTE_ARCH_X86_64
516 rte_smp_wmb();
517 vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
518 #else
519 __atomic_store_n(&vq->vq_split.ring.avail->idx,
520 vq->vq_avail_idx, __ATOMIC_RELEASE);
521 #endif
522 } else {
523 rte_cio_wmb();
524 vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
525 }
526 }
527
528 static inline void
529 vq_update_avail_ring(struct virtqueue *vq, uint16_t desc_idx)
530 {
531 uint16_t avail_idx;
532 /*
533 * Place the head of the descriptor chain into the next slot and make
534 * it usable to the host. The chain is made available now rather than
535 * deferring to virtqueue_notify() in the hopes that if the host is
536 * currently running on another CPU, we can keep it processing the new
537 * descriptor.
538 */
539 avail_idx = (uint16_t)(vq->vq_avail_idx & (vq->vq_nentries - 1));
540 if (unlikely(vq->vq_split.ring.avail->ring[avail_idx] != desc_idx))
541 vq->vq_split.ring.avail->ring[avail_idx] = desc_idx;
542 vq->vq_avail_idx++;
543 }
544
545 static inline int
546 virtqueue_kick_prepare(struct virtqueue *vq)
547 {
548 /*
549 * Ensure updated avail->idx is visible to vhost before reading
550 * the used->flags.
551 */
552 virtio_mb(vq->hw->weak_barriers);
553 return !(vq->vq_split.ring.used->flags & VRING_USED_F_NO_NOTIFY);
554 }
555
556 static inline int
557 virtqueue_kick_prepare_packed(struct virtqueue *vq)
558 {
559 uint16_t flags;
560
561 /*
562 * Ensure updated data is visible to vhost before reading the flags.
563 */
564 virtio_mb(vq->hw->weak_barriers);
565 flags = vq->vq_packed.ring.device->desc_event_flags;
566
567 return flags != RING_EVENT_FLAGS_DISABLE;
568 }
569
570 /*
571 * virtqueue_kick_prepare*() or the virtio_wmb() should be called
572 * before this function to be sure that all the data is visible to vhost.
573 */
574 static inline void
575 virtqueue_notify(struct virtqueue *vq)
576 {
577 VTPCI_OPS(vq->hw)->notify_queue(vq->hw, vq);
578 }
579
580 #ifdef RTE_LIBRTE_VIRTIO_DEBUG_DUMP
581 #define VIRTQUEUE_DUMP(vq) do { \
582 uint16_t used_idx, nused; \
583 used_idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx, \
584 __ATOMIC_RELAXED); \
585 nused = (uint16_t)(used_idx - (vq)->vq_used_cons_idx); \
586 if (vtpci_packed_queue((vq)->hw)) { \
587 PMD_INIT_LOG(DEBUG, \
588 "VQ: - size=%d; free=%d; used_cons_idx=%d; avail_idx=%d;" \
589 " cached_flags=0x%x; used_wrap_counter=%d", \
590 (vq)->vq_nentries, (vq)->vq_free_cnt, (vq)->vq_used_cons_idx, \
591 (vq)->vq_avail_idx, (vq)->vq_packed.cached_flags, \
592 (vq)->vq_packed.used_wrap_counter); \
593 break; \
594 } \
595 PMD_INIT_LOG(DEBUG, \
596 "VQ: - size=%d; free=%d; used=%d; desc_head_idx=%d;" \
597 " avail.idx=%d; used_cons_idx=%d; used.idx=%d;" \
598 " avail.flags=0x%x; used.flags=0x%x", \
599 (vq)->vq_nentries, (vq)->vq_free_cnt, nused, (vq)->vq_desc_head_idx, \
600 (vq)->vq_split.ring.avail->idx, (vq)->vq_used_cons_idx, \
601 __atomic_load_n(&(vq)->vq_split.ring.used->idx, __ATOMIC_RELAXED), \
602 (vq)->vq_split.ring.avail->flags, (vq)->vq_split.ring.used->flags); \
603 } while (0)
604 #else
605 #define VIRTQUEUE_DUMP(vq) do { } while (0)
606 #endif
607
608 /* avoid write operation when necessary, to lessen cache issues */
609 #define ASSIGN_UNLESS_EQUAL(var, val) do { \
610 typeof(var) var_ = (var); \
611 typeof(val) val_ = (val); \
612 if ((var_) != (val_)) \
613 (var_) = (val_); \
614 } while (0)
615
616 #define virtqueue_clear_net_hdr(hdr) do { \
617 typeof(hdr) hdr_ = (hdr); \
618 ASSIGN_UNLESS_EQUAL((hdr_)->csum_start, 0); \
619 ASSIGN_UNLESS_EQUAL((hdr_)->csum_offset, 0); \
620 ASSIGN_UNLESS_EQUAL((hdr_)->flags, 0); \
621 ASSIGN_UNLESS_EQUAL((hdr_)->gso_type, 0); \
622 ASSIGN_UNLESS_EQUAL((hdr_)->gso_size, 0); \
623 ASSIGN_UNLESS_EQUAL((hdr_)->hdr_len, 0); \
624 } while (0)
625
626 static inline void
627 virtqueue_xmit_offload(struct virtio_net_hdr *hdr,
628 struct rte_mbuf *cookie,
629 bool offload)
630 {
631 if (offload) {
632 if (cookie->ol_flags & PKT_TX_TCP_SEG)
633 cookie->ol_flags |= PKT_TX_TCP_CKSUM;
634
635 switch (cookie->ol_flags & PKT_TX_L4_MASK) {
636 case PKT_TX_UDP_CKSUM:
637 hdr->csum_start = cookie->l2_len + cookie->l3_len;
638 hdr->csum_offset = offsetof(struct rte_udp_hdr,
639 dgram_cksum);
640 hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
641 break;
642
643 case PKT_TX_TCP_CKSUM:
644 hdr->csum_start = cookie->l2_len + cookie->l3_len;
645 hdr->csum_offset = offsetof(struct rte_tcp_hdr, cksum);
646 hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
647 break;
648
649 default:
650 ASSIGN_UNLESS_EQUAL(hdr->csum_start, 0);
651 ASSIGN_UNLESS_EQUAL(hdr->csum_offset, 0);
652 ASSIGN_UNLESS_EQUAL(hdr->flags, 0);
653 break;
654 }
655
656 /* TCP Segmentation Offload */
657 if (cookie->ol_flags & PKT_TX_TCP_SEG) {
658 hdr->gso_type = (cookie->ol_flags & PKT_TX_IPV6) ?
659 VIRTIO_NET_HDR_GSO_TCPV6 :
660 VIRTIO_NET_HDR_GSO_TCPV4;
661 hdr->gso_size = cookie->tso_segsz;
662 hdr->hdr_len =
663 cookie->l2_len +
664 cookie->l3_len +
665 cookie->l4_len;
666 } else {
667 ASSIGN_UNLESS_EQUAL(hdr->gso_type, 0);
668 ASSIGN_UNLESS_EQUAL(hdr->gso_size, 0);
669 ASSIGN_UNLESS_EQUAL(hdr->hdr_len, 0);
670 }
671 }
672 }
673
674 static inline void
675 virtqueue_enqueue_xmit_packed(struct virtnet_tx *txvq, struct rte_mbuf *cookie,
676 uint16_t needed, int can_push, int in_order)
677 {
678 struct virtio_tx_region *txr = txvq->virtio_net_hdr_mz->addr;
679 struct vq_desc_extra *dxp;
680 struct virtqueue *vq = txvq->vq;
681 struct vring_packed_desc *start_dp, *head_dp;
682 uint16_t idx, id, head_idx, head_flags;
683 int16_t head_size = vq->hw->vtnet_hdr_size;
684 struct virtio_net_hdr *hdr;
685 uint16_t prev;
686 bool prepend_header = false;
687
688 id = in_order ? vq->vq_avail_idx : vq->vq_desc_head_idx;
689
690 dxp = &vq->vq_descx[id];
691 dxp->ndescs = needed;
692 dxp->cookie = cookie;
693
694 head_idx = vq->vq_avail_idx;
695 idx = head_idx;
696 prev = head_idx;
697 start_dp = vq->vq_packed.ring.desc;
698
699 head_dp = &vq->vq_packed.ring.desc[idx];
700 head_flags = cookie->next ? VRING_DESC_F_NEXT : 0;
701 head_flags |= vq->vq_packed.cached_flags;
702
703 if (can_push) {
704 /* prepend cannot fail, checked by caller */
705 hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *,
706 -head_size);
707 prepend_header = true;
708
709 /* if offload disabled, it is not zeroed below, do it now */
710 if (!vq->hw->has_tx_offload)
711 virtqueue_clear_net_hdr(hdr);
712 } else {
713 /* setup first tx ring slot to point to header
714 * stored in reserved region.
715 */
716 start_dp[idx].addr = txvq->virtio_net_hdr_mem +
717 RTE_PTR_DIFF(&txr[idx].tx_hdr, txr);
718 start_dp[idx].len = vq->hw->vtnet_hdr_size;
719 hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
720 idx++;
721 if (idx >= vq->vq_nentries) {
722 idx -= vq->vq_nentries;
723 vq->vq_packed.cached_flags ^=
724 VRING_PACKED_DESC_F_AVAIL_USED;
725 }
726 }
727
728 virtqueue_xmit_offload(hdr, cookie, vq->hw->has_tx_offload);
729
730 do {
731 uint16_t flags;
732
733 start_dp[idx].addr = VIRTIO_MBUF_DATA_DMA_ADDR(cookie, vq);
734 start_dp[idx].len = cookie->data_len;
735 if (prepend_header) {
736 start_dp[idx].addr -= head_size;
737 start_dp[idx].len += head_size;
738 prepend_header = false;
739 }
740
741 if (likely(idx != head_idx)) {
742 flags = cookie->next ? VRING_DESC_F_NEXT : 0;
743 flags |= vq->vq_packed.cached_flags;
744 start_dp[idx].flags = flags;
745 }
746 prev = idx;
747 idx++;
748 if (idx >= vq->vq_nentries) {
749 idx -= vq->vq_nentries;
750 vq->vq_packed.cached_flags ^=
751 VRING_PACKED_DESC_F_AVAIL_USED;
752 }
753 } while ((cookie = cookie->next) != NULL);
754
755 start_dp[prev].id = id;
756
757 vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - needed);
758 vq->vq_avail_idx = idx;
759
760 if (!in_order) {
761 vq->vq_desc_head_idx = dxp->next;
762 if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END)
763 vq->vq_desc_tail_idx = VQ_RING_DESC_CHAIN_END;
764 }
765
766 virtqueue_store_flags_packed(head_dp, head_flags,
767 vq->hw->weak_barriers);
768 }
769
770 static void
771 vq_ring_free_id_packed(struct virtqueue *vq, uint16_t id)
772 {
773 struct vq_desc_extra *dxp;
774
775 dxp = &vq->vq_descx[id];
776 vq->vq_free_cnt += dxp->ndescs;
777
778 if (vq->vq_desc_tail_idx == VQ_RING_DESC_CHAIN_END)
779 vq->vq_desc_head_idx = id;
780 else
781 vq->vq_descx[vq->vq_desc_tail_idx].next = id;
782
783 vq->vq_desc_tail_idx = id;
784 dxp->next = VQ_RING_DESC_CHAIN_END;
785 }
786
787 static void
788 virtio_xmit_cleanup_inorder_packed(struct virtqueue *vq, int num)
789 {
790 uint16_t used_idx, id, curr_id, free_cnt = 0;
791 uint16_t size = vq->vq_nentries;
792 struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
793 struct vq_desc_extra *dxp;
794
795 used_idx = vq->vq_used_cons_idx;
796 /* desc_is_used has a load-acquire or rte_cio_rmb inside
797 * and wait for used desc in virtqueue.
798 */
799 while (num > 0 && desc_is_used(&desc[used_idx], vq)) {
800 id = desc[used_idx].id;
801 do {
802 curr_id = used_idx;
803 dxp = &vq->vq_descx[used_idx];
804 used_idx += dxp->ndescs;
805 free_cnt += dxp->ndescs;
806 num -= dxp->ndescs;
807 if (used_idx >= size) {
808 used_idx -= size;
809 vq->vq_packed.used_wrap_counter ^= 1;
810 }
811 if (dxp->cookie != NULL) {
812 rte_pktmbuf_free(dxp->cookie);
813 dxp->cookie = NULL;
814 }
815 } while (curr_id != id);
816 }
817 vq->vq_used_cons_idx = used_idx;
818 vq->vq_free_cnt += free_cnt;
819 }
820
821 static void
822 virtio_xmit_cleanup_normal_packed(struct virtqueue *vq, int num)
823 {
824 uint16_t used_idx, id;
825 uint16_t size = vq->vq_nentries;
826 struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
827 struct vq_desc_extra *dxp;
828
829 used_idx = vq->vq_used_cons_idx;
830 /* desc_is_used has a load-acquire or rte_cio_rmb inside
831 * and wait for used desc in virtqueue.
832 */
833 while (num-- && desc_is_used(&desc[used_idx], vq)) {
834 id = desc[used_idx].id;
835 dxp = &vq->vq_descx[id];
836 vq->vq_used_cons_idx += dxp->ndescs;
837 if (vq->vq_used_cons_idx >= size) {
838 vq->vq_used_cons_idx -= size;
839 vq->vq_packed.used_wrap_counter ^= 1;
840 }
841 vq_ring_free_id_packed(vq, id);
842 if (dxp->cookie != NULL) {
843 rte_pktmbuf_free(dxp->cookie);
844 dxp->cookie = NULL;
845 }
846 used_idx = vq->vq_used_cons_idx;
847 }
848 }
849
850 /* Cleanup from completed transmits. */
851 static inline void
852 virtio_xmit_cleanup_packed(struct virtqueue *vq, int num, int in_order)
853 {
854 if (in_order)
855 virtio_xmit_cleanup_inorder_packed(vq, num);
856 else
857 virtio_xmit_cleanup_normal_packed(vq, num);
858 }
859
860 static inline void
861 virtio_xmit_cleanup(struct virtqueue *vq, uint16_t num)
862 {
863 uint16_t i, used_idx, desc_idx;
864 for (i = 0; i < num; i++) {
865 struct vring_used_elem *uep;
866 struct vq_desc_extra *dxp;
867
868 used_idx = (uint16_t)(vq->vq_used_cons_idx &
869 (vq->vq_nentries - 1));
870 uep = &vq->vq_split.ring.used->ring[used_idx];
871
872 desc_idx = (uint16_t)uep->id;
873 dxp = &vq->vq_descx[desc_idx];
874 vq->vq_used_cons_idx++;
875 vq_ring_free_chain(vq, desc_idx);
876
877 if (dxp->cookie != NULL) {
878 rte_pktmbuf_free(dxp->cookie);
879 dxp->cookie = NULL;
880 }
881 }
882 }
883
884 /* Cleanup from completed inorder transmits. */
885 static __rte_always_inline void
886 virtio_xmit_cleanup_inorder(struct virtqueue *vq, uint16_t num)
887 {
888 uint16_t i, idx = vq->vq_used_cons_idx;
889 int16_t free_cnt = 0;
890 struct vq_desc_extra *dxp = NULL;
891
892 if (unlikely(num == 0))
893 return;
894
895 for (i = 0; i < num; i++) {
896 dxp = &vq->vq_descx[idx++ & (vq->vq_nentries - 1)];
897 free_cnt += dxp->ndescs;
898 if (dxp->cookie != NULL) {
899 rte_pktmbuf_free(dxp->cookie);
900 dxp->cookie = NULL;
901 }
902 }
903
904 vq->vq_free_cnt += free_cnt;
905 vq->vq_used_cons_idx = idx;
906 }
907 #endif /* _VIRTQUEUE_H_ */