]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/drivers/vdpa/mlx5/mlx5_vdpa_mem.c
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / dpdk / drivers / vdpa / mlx5 / mlx5_vdpa_mem.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2019 Mellanox Technologies, Ltd
3 */
4 #include <stdlib.h>
5
6 #include <rte_malloc.h>
7 #include <rte_errno.h>
8 #include <rte_common.h>
9 #include <rte_sched_common.h>
10
11 #include <mlx5_prm.h>
12 #include <mlx5_common.h>
13
14 #include "mlx5_vdpa_utils.h"
15 #include "mlx5_vdpa.h"
16
17 static int
18 mlx5_vdpa_pd_prepare(struct mlx5_vdpa_priv *priv)
19 {
20 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
21 if (priv->pd)
22 return 0;
23 priv->pd = mlx5_glue->alloc_pd(priv->ctx);
24 if (priv->pd == NULL) {
25 DRV_LOG(ERR, "Failed to allocate PD.");
26 return errno ? -errno : -ENOMEM;
27 }
28 struct mlx5dv_obj obj;
29 struct mlx5dv_pd pd_info;
30 int ret = 0;
31
32 obj.pd.in = priv->pd;
33 obj.pd.out = &pd_info;
34 ret = mlx5_glue->dv_init_obj(&obj, MLX5DV_OBJ_PD);
35 if (ret) {
36 DRV_LOG(ERR, "Fail to get PD object info.");
37 mlx5_glue->dealloc_pd(priv->pd);
38 priv->pd = NULL;
39 return -errno;
40 }
41 priv->pdn = pd_info.pdn;
42 return 0;
43 #else
44 (void)priv;
45 DRV_LOG(ERR, "Cannot get pdn - no DV support.");
46 return -ENOTSUP;
47 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
48 }
49
50 void
51 mlx5_vdpa_mem_dereg(struct mlx5_vdpa_priv *priv)
52 {
53 struct mlx5_vdpa_query_mr *entry;
54 struct mlx5_vdpa_query_mr *next;
55
56 entry = SLIST_FIRST(&priv->mr_list);
57 while (entry) {
58 next = SLIST_NEXT(entry, next);
59 claim_zero(mlx5_devx_cmd_destroy(entry->mkey));
60 if (!entry->is_indirect)
61 claim_zero(mlx5_glue->devx_umem_dereg(entry->umem));
62 SLIST_REMOVE(&priv->mr_list, entry, mlx5_vdpa_query_mr, next);
63 rte_free(entry);
64 entry = next;
65 }
66 SLIST_INIT(&priv->mr_list);
67 if (priv->null_mr) {
68 claim_zero(mlx5_glue->dereg_mr(priv->null_mr));
69 priv->null_mr = NULL;
70 }
71 if (priv->pd) {
72 claim_zero(mlx5_glue->dealloc_pd(priv->pd));
73 priv->pd = NULL;
74 }
75 if (priv->vmem) {
76 free(priv->vmem);
77 priv->vmem = NULL;
78 }
79 }
80
81 static int
82 mlx5_vdpa_regions_addr_cmp(const void *a, const void *b)
83 {
84 const struct rte_vhost_mem_region *region_a = a;
85 const struct rte_vhost_mem_region *region_b = b;
86
87 if (region_a->guest_phys_addr < region_b->guest_phys_addr)
88 return -1;
89 if (region_a->guest_phys_addr > region_b->guest_phys_addr)
90 return 1;
91 return 0;
92 }
93
94 #define KLM_NUM_MAX_ALIGN(sz) (RTE_ALIGN_CEIL(sz, MLX5_MAX_KLM_BYTE_COUNT) / \
95 MLX5_MAX_KLM_BYTE_COUNT)
96
97 /*
98 * Allocate and sort the region list and choose indirect mkey mode:
99 * 1. Calculate GCD, guest memory size and indirect mkey entries num per mode.
100 * 2. Align GCD to the maximum allowed size(2G) and to be power of 2.
101 * 2. Decide the indirect mkey mode according to the next rules:
102 * a. If both KLM_FBS entries number and KLM entries number are bigger
103 * than the maximum allowed(MLX5_DEVX_MAX_KLM_ENTRIES) - error.
104 * b. KLM mode if KLM_FBS entries number is bigger than the maximum
105 * allowed(MLX5_DEVX_MAX_KLM_ENTRIES).
106 * c. KLM mode if GCD is smaller than the minimum allowed(4K).
107 * d. KLM mode if the total size of KLM entries is in one cache line
108 * and the total size of KLM_FBS entries is not in one cache line.
109 * e. Otherwise, KLM_FBS mode.
110 */
111 static struct rte_vhost_memory *
112 mlx5_vdpa_vhost_mem_regions_prepare(int vid, uint8_t *mode, uint64_t *mem_size,
113 uint64_t *gcd, uint32_t *entries_num)
114 {
115 struct rte_vhost_memory *mem;
116 uint64_t size;
117 uint64_t klm_entries_num = 0;
118 uint64_t klm_fbs_entries_num;
119 uint32_t i;
120 int ret = rte_vhost_get_mem_table(vid, &mem);
121
122 if (ret < 0) {
123 DRV_LOG(ERR, "Failed to get VM memory layout vid =%d.", vid);
124 rte_errno = EINVAL;
125 return NULL;
126 }
127 qsort(mem->regions, mem->nregions, sizeof(mem->regions[0]),
128 mlx5_vdpa_regions_addr_cmp);
129 *mem_size = (mem->regions[(mem->nregions - 1)].guest_phys_addr) +
130 (mem->regions[(mem->nregions - 1)].size) -
131 (mem->regions[0].guest_phys_addr);
132 *gcd = 0;
133 for (i = 0; i < mem->nregions; ++i) {
134 DRV_LOG(INFO, "Region %u: HVA 0x%" PRIx64 ", GPA 0x%" PRIx64
135 ", size 0x%" PRIx64 ".", i,
136 mem->regions[i].host_user_addr,
137 mem->regions[i].guest_phys_addr, mem->regions[i].size);
138 if (i > 0) {
139 /* Hole handle. */
140 size = mem->regions[i].guest_phys_addr -
141 (mem->regions[i - 1].guest_phys_addr +
142 mem->regions[i - 1].size);
143 *gcd = rte_get_gcd(*gcd, size);
144 klm_entries_num += KLM_NUM_MAX_ALIGN(size);
145 }
146 size = mem->regions[i].size;
147 *gcd = rte_get_gcd(*gcd, size);
148 klm_entries_num += KLM_NUM_MAX_ALIGN(size);
149 }
150 if (*gcd > MLX5_MAX_KLM_BYTE_COUNT)
151 *gcd = rte_get_gcd(*gcd, MLX5_MAX_KLM_BYTE_COUNT);
152 if (!RTE_IS_POWER_OF_2(*gcd)) {
153 uint64_t candidate_gcd = rte_align64prevpow2(*gcd);
154
155 while (candidate_gcd > 1 && (*gcd % candidate_gcd))
156 candidate_gcd /= 2;
157 DRV_LOG(DEBUG, "GCD 0x%" PRIx64 " is not power of 2. Adjusted "
158 "GCD is 0x%" PRIx64 ".", *gcd, candidate_gcd);
159 *gcd = candidate_gcd;
160 }
161 klm_fbs_entries_num = *mem_size / *gcd;
162 if (*gcd < MLX5_MIN_KLM_FIXED_BUFFER_SIZE || klm_fbs_entries_num >
163 MLX5_DEVX_MAX_KLM_ENTRIES ||
164 ((klm_entries_num * sizeof(struct mlx5_klm)) <=
165 RTE_CACHE_LINE_SIZE && (klm_fbs_entries_num *
166 sizeof(struct mlx5_klm)) >
167 RTE_CACHE_LINE_SIZE)) {
168 *mode = MLX5_MKC_ACCESS_MODE_KLM;
169 *entries_num = klm_entries_num;
170 DRV_LOG(INFO, "Indirect mkey mode is KLM.");
171 } else {
172 *mode = MLX5_MKC_ACCESS_MODE_KLM_FBS;
173 *entries_num = klm_fbs_entries_num;
174 DRV_LOG(INFO, "Indirect mkey mode is KLM Fixed Buffer Size.");
175 }
176 DRV_LOG(DEBUG, "Memory registration information: nregions = %u, "
177 "mem_size = 0x%" PRIx64 ", GCD = 0x%" PRIx64
178 ", klm_fbs_entries_num = 0x%" PRIx64 ", klm_entries_num = 0x%"
179 PRIx64 ".", mem->nregions, *mem_size, *gcd, klm_fbs_entries_num,
180 klm_entries_num);
181 if (*entries_num > MLX5_DEVX_MAX_KLM_ENTRIES) {
182 DRV_LOG(ERR, "Failed to prepare memory of vid %d - memory is "
183 "too fragmented.", vid);
184 free(mem);
185 return NULL;
186 }
187 return mem;
188 }
189
190 #define KLM_SIZE_MAX_ALIGN(sz) ((sz) > MLX5_MAX_KLM_BYTE_COUNT ? \
191 MLX5_MAX_KLM_BYTE_COUNT : (sz))
192
193 /*
194 * The target here is to group all the physical memory regions of the
195 * virtio device in one indirect mkey.
196 * For KLM Fixed Buffer Size mode (HW find the translation entry in one
197 * read according to the guest phisical address):
198 * All the sub-direct mkeys of it must be in the same size, hence, each
199 * one of them should be in the GCD size of all the virtio memory
200 * regions and the holes between them.
201 * For KLM mode (each entry may be in different size so HW must iterate
202 * the entries):
203 * Each virtio memory region and each hole between them have one entry,
204 * just need to cover the maximum allowed size(2G) by splitting entries
205 * which their associated memory regions are bigger than 2G.
206 * It means that each virtio memory region may be mapped to more than
207 * one direct mkey in the 2 modes.
208 * All the holes of invalid memory between the virtio memory regions
209 * will be mapped to the null memory region for security.
210 */
211 int
212 mlx5_vdpa_mem_register(struct mlx5_vdpa_priv *priv)
213 {
214 struct mlx5_devx_mkey_attr mkey_attr;
215 struct mlx5_vdpa_query_mr *entry = NULL;
216 struct rte_vhost_mem_region *reg = NULL;
217 uint8_t mode;
218 uint32_t entries_num = 0;
219 uint32_t i;
220 uint64_t gcd;
221 uint64_t klm_size;
222 uint64_t mem_size;
223 uint64_t k;
224 int klm_index = 0;
225 int ret;
226 struct rte_vhost_memory *mem = mlx5_vdpa_vhost_mem_regions_prepare
227 (priv->vid, &mode, &mem_size, &gcd, &entries_num);
228 struct mlx5_klm klm_array[entries_num];
229
230 if (!mem)
231 return -rte_errno;
232 priv->vmem = mem;
233 ret = mlx5_vdpa_pd_prepare(priv);
234 if (ret)
235 goto error;
236 priv->null_mr = mlx5_glue->alloc_null_mr(priv->pd);
237 if (!priv->null_mr) {
238 DRV_LOG(ERR, "Failed to allocate null MR.");
239 ret = -errno;
240 goto error;
241 }
242 DRV_LOG(DEBUG, "Dump fill Mkey = %u.", priv->null_mr->lkey);
243 for (i = 0; i < mem->nregions; i++) {
244 reg = &mem->regions[i];
245 entry = rte_zmalloc(__func__, sizeof(*entry), 0);
246 if (!entry) {
247 ret = -ENOMEM;
248 DRV_LOG(ERR, "Failed to allocate mem entry memory.");
249 goto error;
250 }
251 entry->umem = mlx5_glue->devx_umem_reg(priv->ctx,
252 (void *)(uintptr_t)reg->host_user_addr,
253 reg->size, IBV_ACCESS_LOCAL_WRITE);
254 if (!entry->umem) {
255 DRV_LOG(ERR, "Failed to register Umem by Devx.");
256 ret = -errno;
257 goto error;
258 }
259 mkey_attr.addr = (uintptr_t)(reg->guest_phys_addr);
260 mkey_attr.size = reg->size;
261 mkey_attr.umem_id = entry->umem->umem_id;
262 mkey_attr.pd = priv->pdn;
263 mkey_attr.pg_access = 1;
264 mkey_attr.klm_array = NULL;
265 mkey_attr.klm_num = 0;
266 mkey_attr.relaxed_ordering = 0;
267 entry->mkey = mlx5_devx_cmd_mkey_create(priv->ctx, &mkey_attr);
268 if (!entry->mkey) {
269 DRV_LOG(ERR, "Failed to create direct Mkey.");
270 ret = -rte_errno;
271 goto error;
272 }
273 entry->addr = (void *)(uintptr_t)(reg->host_user_addr);
274 entry->length = reg->size;
275 entry->is_indirect = 0;
276 if (i > 0) {
277 uint64_t sadd;
278 uint64_t empty_region_sz = reg->guest_phys_addr -
279 (mem->regions[i - 1].guest_phys_addr +
280 mem->regions[i - 1].size);
281
282 if (empty_region_sz > 0) {
283 sadd = mem->regions[i - 1].guest_phys_addr +
284 mem->regions[i - 1].size;
285 klm_size = mode == MLX5_MKC_ACCESS_MODE_KLM ?
286 KLM_SIZE_MAX_ALIGN(empty_region_sz) : gcd;
287 for (k = 0; k < empty_region_sz;
288 k += klm_size) {
289 klm_array[klm_index].byte_count =
290 k + klm_size > empty_region_sz ?
291 empty_region_sz - k : klm_size;
292 klm_array[klm_index].mkey =
293 priv->null_mr->lkey;
294 klm_array[klm_index].address = sadd + k;
295 klm_index++;
296 }
297 }
298 }
299 klm_size = mode == MLX5_MKC_ACCESS_MODE_KLM ?
300 KLM_SIZE_MAX_ALIGN(reg->size) : gcd;
301 for (k = 0; k < reg->size; k += klm_size) {
302 klm_array[klm_index].byte_count = k + klm_size >
303 reg->size ? reg->size - k : klm_size;
304 klm_array[klm_index].mkey = entry->mkey->id;
305 klm_array[klm_index].address = reg->guest_phys_addr + k;
306 klm_index++;
307 }
308 SLIST_INSERT_HEAD(&priv->mr_list, entry, next);
309 }
310 mkey_attr.addr = (uintptr_t)(mem->regions[0].guest_phys_addr);
311 mkey_attr.size = mem_size;
312 mkey_attr.pd = priv->pdn;
313 mkey_attr.umem_id = 0;
314 /* Must be zero for KLM mode. */
315 mkey_attr.log_entity_size = mode == MLX5_MKC_ACCESS_MODE_KLM_FBS ?
316 rte_log2_u64(gcd) : 0;
317 mkey_attr.pg_access = 0;
318 mkey_attr.klm_array = klm_array;
319 mkey_attr.klm_num = klm_index;
320 entry = rte_zmalloc(__func__, sizeof(*entry), 0);
321 if (!entry) {
322 DRV_LOG(ERR, "Failed to allocate memory for indirect entry.");
323 ret = -ENOMEM;
324 goto error;
325 }
326 entry->mkey = mlx5_devx_cmd_mkey_create(priv->ctx, &mkey_attr);
327 if (!entry->mkey) {
328 DRV_LOG(ERR, "Failed to create indirect Mkey.");
329 ret = -rte_errno;
330 goto error;
331 }
332 entry->is_indirect = 1;
333 SLIST_INSERT_HEAD(&priv->mr_list, entry, next);
334 priv->gpa_mkey_index = entry->mkey->id;
335 return 0;
336 error:
337 if (entry) {
338 if (entry->mkey)
339 mlx5_devx_cmd_destroy(entry->mkey);
340 if (entry->umem)
341 mlx5_glue->devx_umem_dereg(entry->umem);
342 rte_free(entry);
343 }
344 mlx5_vdpa_mem_dereg(priv);
345 rte_errno = -ret;
346 return ret;
347 }