]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/examples/ip_reassembly/main.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / examples / ip_reassembly / main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <signal.h>
16 #include <sys/param.h>
17
18 #include <rte_common.h>
19 #include <rte_byteorder.h>
20 #include <rte_log.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_eal.h>
24 #include <rte_launch.h>
25 #include <rte_atomic.h>
26 #include <rte_cycles.h>
27 #include <rte_prefetch.h>
28 #include <rte_lcore.h>
29 #include <rte_per_lcore.h>
30 #include <rte_branch_prediction.h>
31 #include <rte_interrupts.h>
32 #include <rte_random.h>
33 #include <rte_debug.h>
34 #include <rte_ether.h>
35 #include <rte_ethdev.h>
36 #include <rte_mempool.h>
37 #include <rte_mbuf.h>
38 #include <rte_malloc.h>
39 #include <rte_ip.h>
40 #include <rte_tcp.h>
41 #include <rte_udp.h>
42 #include <rte_string_fns.h>
43 #include <rte_lpm.h>
44 #include <rte_lpm6.h>
45
46 #include <rte_ip_frag.h>
47
48 #define MAX_PKT_BURST 32
49
50
51 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1
52
53 #define MAX_JUMBO_PKT_LEN 9600
54
55 #define BUF_SIZE RTE_MBUF_DEFAULT_DATAROOM
56 #define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
57
58 #define NB_MBUF 8192
59 #define MEMPOOL_CACHE_SIZE 256
60
61 /* allow max jumbo frame 9.5 KB */
62 #define JUMBO_FRAME_MAX_SIZE 0x2600
63
64 #define MAX_FLOW_NUM UINT16_MAX
65 #define MIN_FLOW_NUM 1
66 #define DEF_FLOW_NUM 0x1000
67
68 /* TTL numbers are in ms. */
69 #define MAX_FLOW_TTL (3600 * MS_PER_S)
70 #define MIN_FLOW_TTL 1
71 #define DEF_FLOW_TTL MS_PER_S
72
73 #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG
74
75 /* Should be power of two. */
76 #define IP_FRAG_TBL_BUCKET_ENTRIES 16
77
78 static uint32_t max_flow_num = DEF_FLOW_NUM;
79 static uint32_t max_flow_ttl = DEF_FLOW_TTL;
80
81 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
82
83 #define NB_SOCKETS 8
84
85 /* Configure how many packets ahead to prefetch, when reading packets */
86 #define PREFETCH_OFFSET 3
87
88 /*
89 * Configurable number of RX/TX ring descriptors
90 */
91 #define RTE_TEST_RX_DESC_DEFAULT 1024
92 #define RTE_TEST_TX_DESC_DEFAULT 1024
93
94 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
95 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
96
97 /* ethernet addresses of ports */
98 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
99
100 #ifndef IPv4_BYTES
101 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
102 #define IPv4_BYTES(addr) \
103 (uint8_t) (((addr) >> 24) & 0xFF),\
104 (uint8_t) (((addr) >> 16) & 0xFF),\
105 (uint8_t) (((addr) >> 8) & 0xFF),\
106 (uint8_t) ((addr) & 0xFF)
107 #endif
108
109 #ifndef IPv6_BYTES
110 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
111 "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
112 #define IPv6_BYTES(addr) \
113 addr[0], addr[1], addr[2], addr[3], \
114 addr[4], addr[5], addr[6], addr[7], \
115 addr[8], addr[9], addr[10], addr[11],\
116 addr[12], addr[13],addr[14], addr[15]
117 #endif
118
119 #define IPV6_ADDR_LEN 16
120
121 /* mask of enabled ports */
122 static uint32_t enabled_port_mask = 0;
123
124 static int rx_queue_per_lcore = 1;
125
126 struct mbuf_table {
127 uint32_t len;
128 uint32_t head;
129 uint32_t tail;
130 struct rte_mbuf *m_table[0];
131 };
132
133 struct rx_queue {
134 struct rte_ip_frag_tbl *frag_tbl;
135 struct rte_mempool *pool;
136 struct rte_lpm *lpm;
137 struct rte_lpm6 *lpm6;
138 uint16_t portid;
139 };
140
141 struct tx_lcore_stat {
142 uint64_t call;
143 uint64_t drop;
144 uint64_t queue;
145 uint64_t send;
146 };
147
148 #define MAX_RX_QUEUE_PER_LCORE 16
149 #define MAX_TX_QUEUE_PER_PORT 16
150 #define MAX_RX_QUEUE_PER_PORT 128
151
152 struct lcore_queue_conf {
153 uint16_t n_rx_queue;
154 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
155 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
156 struct rte_ip_frag_death_row death_row;
157 struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS];
158 struct tx_lcore_stat tx_stat;
159 } __rte_cache_aligned;
160 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
161
162 static struct rte_eth_conf port_conf = {
163 .rxmode = {
164 .mq_mode = ETH_MQ_RX_RSS,
165 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
166 .split_hdr_size = 0,
167 .offloads = (DEV_RX_OFFLOAD_CHECKSUM |
168 DEV_RX_OFFLOAD_JUMBO_FRAME),
169 },
170 .rx_adv_conf = {
171 .rss_conf = {
172 .rss_key = NULL,
173 .rss_hf = ETH_RSS_IP,
174 },
175 },
176 .txmode = {
177 .mq_mode = ETH_MQ_TX_NONE,
178 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
179 DEV_TX_OFFLOAD_MULTI_SEGS),
180 },
181 };
182
183 /*
184 * IPv4 forwarding table
185 */
186 struct l3fwd_ipv4_route {
187 uint32_t ip;
188 uint8_t depth;
189 uint8_t if_out;
190 };
191
192 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
193 {IPv4(100,10,0,0), 16, 0},
194 {IPv4(100,20,0,0), 16, 1},
195 {IPv4(100,30,0,0), 16, 2},
196 {IPv4(100,40,0,0), 16, 3},
197 {IPv4(100,50,0,0), 16, 4},
198 {IPv4(100,60,0,0), 16, 5},
199 {IPv4(100,70,0,0), 16, 6},
200 {IPv4(100,80,0,0), 16, 7},
201 };
202
203 /*
204 * IPv6 forwarding table
205 */
206
207 struct l3fwd_ipv6_route {
208 uint8_t ip[IPV6_ADDR_LEN];
209 uint8_t depth;
210 uint8_t if_out;
211 };
212
213 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
214 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
215 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
216 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
217 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
218 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
219 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
220 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
221 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
222 };
223
224 #define LPM_MAX_RULES 1024
225 #define LPM6_MAX_RULES 1024
226 #define LPM6_NUMBER_TBL8S (1 << 16)
227
228 struct rte_lpm6_config lpm6_config = {
229 .max_rules = LPM6_MAX_RULES,
230 .number_tbl8s = LPM6_NUMBER_TBL8S,
231 .flags = 0
232 };
233
234 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
235 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
236
237 #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT
238 #define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v))
239 #else
240 #define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0)
241 #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */
242
243 /*
244 * If number of queued packets reached given threahold, then
245 * send burst of packets on an output interface.
246 */
247 static inline uint32_t
248 send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port)
249 {
250 uint32_t fill, len, k, n;
251 struct mbuf_table *txmb;
252
253 txmb = qconf->tx_mbufs[port];
254 len = txmb->len;
255
256 if ((int32_t)(fill = txmb->head - txmb->tail) < 0)
257 fill += len;
258
259 if (fill >= thresh) {
260 n = RTE_MIN(len - txmb->tail, fill);
261
262 k = rte_eth_tx_burst(port, qconf->tx_queue_id[port],
263 txmb->m_table + txmb->tail, (uint16_t)n);
264
265 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1);
266 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k);
267
268 fill -= k;
269 if ((txmb->tail += k) == len)
270 txmb->tail = 0;
271 }
272
273 return fill;
274 }
275
276 /* Enqueue a single packet, and send burst if queue is filled */
277 static inline int
278 send_single_packet(struct rte_mbuf *m, uint16_t port)
279 {
280 uint32_t fill, lcore_id, len;
281 struct lcore_queue_conf *qconf;
282 struct mbuf_table *txmb;
283
284 lcore_id = rte_lcore_id();
285 qconf = &lcore_queue_conf[lcore_id];
286
287 txmb = qconf->tx_mbufs[port];
288 len = txmb->len;
289
290 fill = send_burst(qconf, MAX_PKT_BURST, port);
291
292 if (fill == len - 1) {
293 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1);
294 rte_pktmbuf_free(txmb->m_table[txmb->tail]);
295 if (++txmb->tail == len)
296 txmb->tail = 0;
297 }
298
299 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1);
300 txmb->m_table[txmb->head] = m;
301 if(++txmb->head == len)
302 txmb->head = 0;
303
304 return 0;
305 }
306
307 static inline void
308 reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue,
309 struct lcore_queue_conf *qconf, uint64_t tms)
310 {
311 struct ether_hdr *eth_hdr;
312 struct rte_ip_frag_tbl *tbl;
313 struct rte_ip_frag_death_row *dr;
314 struct rx_queue *rxq;
315 void *d_addr_bytes;
316 uint32_t next_hop;
317 uint16_t dst_port;
318
319 rxq = &qconf->rx_queue_list[queue];
320
321 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
322
323 dst_port = portid;
324
325 /* if packet is IPv4 */
326 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
327 struct ipv4_hdr *ip_hdr;
328 uint32_t ip_dst;
329
330 ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
331
332 /* if it is a fragmented packet, then try to reassemble. */
333 if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) {
334 struct rte_mbuf *mo;
335
336 tbl = rxq->frag_tbl;
337 dr = &qconf->death_row;
338
339 /* prepare mbuf: setup l2_len/l3_len. */
340 m->l2_len = sizeof(*eth_hdr);
341 m->l3_len = sizeof(*ip_hdr);
342
343 /* process this fragment. */
344 mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr);
345 if (mo == NULL)
346 /* no packet to send out. */
347 return;
348
349 /* we have our packet reassembled. */
350 if (mo != m) {
351 m = mo;
352 eth_hdr = rte_pktmbuf_mtod(m,
353 struct ether_hdr *);
354 ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
355 }
356 }
357 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
358
359 /* Find destination port */
360 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
361 (enabled_port_mask & 1 << next_hop) != 0) {
362 dst_port = next_hop;
363 }
364
365 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
366 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
367 /* if packet is IPv6 */
368 struct ipv6_extension_fragment *frag_hdr;
369 struct ipv6_hdr *ip_hdr;
370
371 ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
372
373 frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr);
374
375 if (frag_hdr != NULL) {
376 struct rte_mbuf *mo;
377
378 tbl = rxq->frag_tbl;
379 dr = &qconf->death_row;
380
381 /* prepare mbuf: setup l2_len/l3_len. */
382 m->l2_len = sizeof(*eth_hdr);
383 m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr);
384
385 mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr);
386 if (mo == NULL)
387 return;
388
389 if (mo != m) {
390 m = mo;
391 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
392 ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
393 }
394 }
395
396 /* Find destination port */
397 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
398 &next_hop) == 0 &&
399 (enabled_port_mask & 1 << next_hop) != 0) {
400 dst_port = next_hop;
401 }
402
403 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6);
404 }
405 /* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */
406
407 /* 02:00:00:00:00:xx */
408 d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
409 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
410
411 /* src addr */
412 ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
413
414 send_single_packet(m, dst_port);
415 }
416
417 /* main processing loop */
418 static int
419 main_loop(__attribute__((unused)) void *dummy)
420 {
421 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
422 unsigned lcore_id;
423 uint64_t diff_tsc, cur_tsc, prev_tsc;
424 int i, j, nb_rx;
425 uint16_t portid;
426 struct lcore_queue_conf *qconf;
427 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
428
429 prev_tsc = 0;
430
431 lcore_id = rte_lcore_id();
432 qconf = &lcore_queue_conf[lcore_id];
433
434 if (qconf->n_rx_queue == 0) {
435 RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id);
436 return 0;
437 }
438
439 RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id);
440
441 for (i = 0; i < qconf->n_rx_queue; i++) {
442
443 portid = qconf->rx_queue_list[i].portid;
444 RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%u\n", lcore_id,
445 portid);
446 }
447
448 while (1) {
449
450 cur_tsc = rte_rdtsc();
451
452 /*
453 * TX burst queue drain
454 */
455 diff_tsc = cur_tsc - prev_tsc;
456 if (unlikely(diff_tsc > drain_tsc)) {
457
458 /*
459 * This could be optimized (use queueid instead of
460 * portid), but it is not called so often
461 */
462 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
463 if ((enabled_port_mask & (1 << portid)) != 0)
464 send_burst(qconf, 1, portid);
465 }
466
467 prev_tsc = cur_tsc;
468 }
469
470 /*
471 * Read packet from RX queues
472 */
473 for (i = 0; i < qconf->n_rx_queue; ++i) {
474
475 portid = qconf->rx_queue_list[i].portid;
476
477 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
478 MAX_PKT_BURST);
479
480 /* Prefetch first packets */
481 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
482 rte_prefetch0(rte_pktmbuf_mtod(
483 pkts_burst[j], void *));
484 }
485
486 /* Prefetch and forward already prefetched packets */
487 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
488 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
489 j + PREFETCH_OFFSET], void *));
490 reassemble(pkts_burst[j], portid,
491 i, qconf, cur_tsc);
492 }
493
494 /* Forward remaining prefetched packets */
495 for (; j < nb_rx; j++) {
496 reassemble(pkts_burst[j], portid,
497 i, qconf, cur_tsc);
498 }
499
500 rte_ip_frag_free_death_row(&qconf->death_row,
501 PREFETCH_OFFSET);
502 }
503 }
504 }
505
506 /* display usage */
507 static void
508 print_usage(const char *prgname)
509 {
510 printf("%s [EAL options] -- -p PORTMASK [-q NQ]"
511 " [--max-pkt-len PKTLEN]"
512 " [--maxflows=<flows>] [--flowttl=<ttl>[(s|ms)]]\n"
513 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
514 " -q NQ: number of RX queues per lcore\n"
515 " --maxflows=<flows>: optional, maximum number of flows "
516 "supported\n"
517 " --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each "
518 "flow\n",
519 prgname);
520 }
521
522 static uint32_t
523 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val)
524 {
525 char *end;
526 uint64_t v;
527
528 /* parse decimal string */
529 errno = 0;
530 v = strtoul(str, &end, 10);
531 if (errno != 0 || *end != '\0')
532 return -EINVAL;
533
534 if (v < min || v > max)
535 return -EINVAL;
536
537 *val = (uint32_t)v;
538 return 0;
539 }
540
541 static int
542 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val)
543 {
544 char *end;
545 uint64_t v;
546
547 static const char frmt_sec[] = "s";
548 static const char frmt_msec[] = "ms";
549
550 /* parse decimal string */
551 errno = 0;
552 v = strtoul(str, &end, 10);
553 if (errno != 0)
554 return -EINVAL;
555
556 if (*end != '\0') {
557 if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0)
558 v *= MS_PER_S;
559 else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0)
560 return -EINVAL;
561 }
562
563 if (v < min || v > max)
564 return -EINVAL;
565
566 *val = (uint32_t)v;
567 return 0;
568 }
569
570 static int
571 parse_portmask(const char *portmask)
572 {
573 char *end = NULL;
574 unsigned long pm;
575
576 /* parse hexadecimal string */
577 pm = strtoul(portmask, &end, 16);
578 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
579 return -1;
580
581 if (pm == 0)
582 return -1;
583
584 return pm;
585 }
586
587 static int
588 parse_nqueue(const char *q_arg)
589 {
590 char *end = NULL;
591 unsigned long n;
592
593 printf("%p\n", q_arg);
594
595 /* parse hexadecimal string */
596 n = strtoul(q_arg, &end, 10);
597 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
598 return -1;
599 if (n == 0)
600 return -1;
601 if (n >= MAX_RX_QUEUE_PER_LCORE)
602 return -1;
603
604 return n;
605 }
606
607 /* Parse the argument given in the command line of the application */
608 static int
609 parse_args(int argc, char **argv)
610 {
611 int opt, ret;
612 char **argvopt;
613 int option_index;
614 char *prgname = argv[0];
615 static struct option lgopts[] = {
616 {"max-pkt-len", 1, 0, 0},
617 {"maxflows", 1, 0, 0},
618 {"flowttl", 1, 0, 0},
619 {NULL, 0, 0, 0}
620 };
621
622 argvopt = argv;
623
624 while ((opt = getopt_long(argc, argvopt, "p:q:",
625 lgopts, &option_index)) != EOF) {
626
627 switch (opt) {
628 /* portmask */
629 case 'p':
630 enabled_port_mask = parse_portmask(optarg);
631 if (enabled_port_mask == 0) {
632 printf("invalid portmask\n");
633 print_usage(prgname);
634 return -1;
635 }
636 break;
637
638 /* nqueue */
639 case 'q':
640 rx_queue_per_lcore = parse_nqueue(optarg);
641 if (rx_queue_per_lcore < 0) {
642 printf("invalid queue number\n");
643 print_usage(prgname);
644 return -1;
645 }
646 break;
647
648 /* long options */
649 case 0:
650 if (!strncmp(lgopts[option_index].name,
651 "maxflows", 8)) {
652 if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM,
653 MAX_FLOW_NUM,
654 &max_flow_num)) != 0) {
655 printf("invalid value: \"%s\" for "
656 "parameter %s\n",
657 optarg,
658 lgopts[option_index].name);
659 print_usage(prgname);
660 return ret;
661 }
662 }
663
664 if (!strncmp(lgopts[option_index].name, "flowttl", 7)) {
665 if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL,
666 MAX_FLOW_TTL,
667 &max_flow_ttl)) != 0) {
668 printf("invalid value: \"%s\" for "
669 "parameter %s\n",
670 optarg,
671 lgopts[option_index].name);
672 print_usage(prgname);
673 return ret;
674 }
675 }
676
677 break;
678
679 default:
680 print_usage(prgname);
681 return -1;
682 }
683 }
684
685 if (optind >= 0)
686 argv[optind-1] = prgname;
687
688 ret = optind-1;
689 optind = 1; /* reset getopt lib */
690 return ret;
691 }
692
693 static void
694 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
695 {
696 char buf[ETHER_ADDR_FMT_SIZE];
697 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
698 printf("%s%s", name, buf);
699 }
700
701 /* Check the link status of all ports in up to 9s, and print them finally */
702 static void
703 check_all_ports_link_status(uint32_t port_mask)
704 {
705 #define CHECK_INTERVAL 100 /* 100ms */
706 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
707 uint16_t portid;
708 uint8_t count, all_ports_up, print_flag = 0;
709 struct rte_eth_link link;
710
711 printf("\nChecking link status");
712 fflush(stdout);
713 for (count = 0; count <= MAX_CHECK_TIME; count++) {
714 all_ports_up = 1;
715 RTE_ETH_FOREACH_DEV(portid) {
716 if ((port_mask & (1 << portid)) == 0)
717 continue;
718 memset(&link, 0, sizeof(link));
719 rte_eth_link_get_nowait(portid, &link);
720 /* print link status if flag set */
721 if (print_flag == 1) {
722 if (link.link_status)
723 printf(
724 "Port%d Link Up. Speed %u Mbps - %s\n",
725 portid, link.link_speed,
726 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
727 ("full-duplex") : ("half-duplex\n"));
728 else
729 printf("Port %d Link Down\n", portid);
730 continue;
731 }
732 /* clear all_ports_up flag if any link down */
733 if (link.link_status == ETH_LINK_DOWN) {
734 all_ports_up = 0;
735 break;
736 }
737 }
738 /* after finally printing all link status, get out */
739 if (print_flag == 1)
740 break;
741
742 if (all_ports_up == 0) {
743 printf(".");
744 fflush(stdout);
745 rte_delay_ms(CHECK_INTERVAL);
746 }
747
748 /* set the print_flag if all ports up or timeout */
749 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
750 print_flag = 1;
751 printf("\ndone\n");
752 }
753 }
754 }
755
756 static int
757 init_routing_table(void)
758 {
759 struct rte_lpm *lpm;
760 struct rte_lpm6 *lpm6;
761 int socket, ret;
762 unsigned i;
763
764 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
765 if (socket_lpm[socket]) {
766 lpm = socket_lpm[socket];
767 /* populate the LPM table */
768 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
769 ret = rte_lpm_add(lpm,
770 l3fwd_ipv4_route_array[i].ip,
771 l3fwd_ipv4_route_array[i].depth,
772 l3fwd_ipv4_route_array[i].if_out);
773
774 if (ret < 0) {
775 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
776 "LPM table\n", i);
777 return -1;
778 }
779
780 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT
781 "/%d (port %d)\n",
782 socket,
783 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
784 l3fwd_ipv4_route_array[i].depth,
785 l3fwd_ipv4_route_array[i].if_out);
786 }
787 }
788
789 if (socket_lpm6[socket]) {
790 lpm6 = socket_lpm6[socket];
791 /* populate the LPM6 table */
792 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
793 ret = rte_lpm6_add(lpm6,
794 l3fwd_ipv6_route_array[i].ip,
795 l3fwd_ipv6_route_array[i].depth,
796 l3fwd_ipv6_route_array[i].if_out);
797
798 if (ret < 0) {
799 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
800 "LPM6 table\n", i);
801 return -1;
802 }
803
804 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT
805 "/%d (port %d)\n",
806 socket,
807 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
808 l3fwd_ipv6_route_array[i].depth,
809 l3fwd_ipv6_route_array[i].if_out);
810 }
811 }
812 }
813 return 0;
814 }
815
816 static int
817 setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket,
818 uint32_t port)
819 {
820 struct mbuf_table *mtb;
821 uint32_t n;
822 size_t sz;
823
824 n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST);
825 sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n;
826
827 if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE,
828 socket)) == NULL) {
829 RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u "
830 "failed to allocate %zu bytes\n",
831 __func__, lcore, port, sz);
832 return -1;
833 }
834
835 mtb->len = n;
836 qconf->tx_mbufs[port] = mtb;
837
838 return 0;
839 }
840
841 static int
842 setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue)
843 {
844 int socket;
845 uint32_t nb_mbuf;
846 uint64_t frag_cycles;
847 char buf[RTE_MEMPOOL_NAMESIZE];
848
849 socket = rte_lcore_to_socket_id(lcore);
850 if (socket == SOCKET_ID_ANY)
851 socket = 0;
852
853 frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S *
854 max_flow_ttl;
855
856 if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num,
857 IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles,
858 socket)) == NULL) {
859 RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on "
860 "lcore: %u for queue: %u failed\n",
861 max_flow_num, lcore, queue);
862 return -1;
863 }
864
865 /*
866 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM)>
867 * mbufs could be stored int the fragment table.
868 * Plus, each TX queue can hold up to <max_flow_num> packets.
869 */
870
871 nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM;
872 nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;
873 nb_mbuf *= 2; /* ipv4 and ipv6 */
874 nb_mbuf += nb_rxd + nb_txd;
875
876 nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);
877
878 snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
879
880 rxq->pool = rte_pktmbuf_pool_create(buf, nb_mbuf, MEMPOOL_CACHE_SIZE, 0,
881 MBUF_DATA_SIZE, socket);
882 if (rxq->pool == NULL) {
883 RTE_LOG(ERR, IP_RSMBL,
884 "rte_pktmbuf_pool_create(%s) failed", buf);
885 return -1;
886 }
887
888 return 0;
889 }
890
891 static int
892 init_mem(void)
893 {
894 char buf[PATH_MAX];
895 struct rte_lpm *lpm;
896 struct rte_lpm6 *lpm6;
897 struct rte_lpm_config lpm_config;
898 int socket;
899 unsigned lcore_id;
900
901 /* traverse through lcores and initialize structures on each socket */
902
903 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
904
905 if (rte_lcore_is_enabled(lcore_id) == 0)
906 continue;
907
908 socket = rte_lcore_to_socket_id(lcore_id);
909
910 if (socket == SOCKET_ID_ANY)
911 socket = 0;
912
913 if (socket_lpm[socket] == NULL) {
914 RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket);
915 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
916
917 lpm_config.max_rules = LPM_MAX_RULES;
918 lpm_config.number_tbl8s = 256;
919 lpm_config.flags = 0;
920
921 lpm = rte_lpm_create(buf, socket, &lpm_config);
922 if (lpm == NULL) {
923 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
924 return -1;
925 }
926 socket_lpm[socket] = lpm;
927 }
928
929 if (socket_lpm6[socket] == NULL) {
930 RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket);
931 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
932
933 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
934 if (lpm6 == NULL) {
935 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
936 return -1;
937 }
938 socket_lpm6[socket] = lpm6;
939 }
940 }
941
942 return 0;
943 }
944
945 static void
946 queue_dump_stat(void)
947 {
948 uint32_t i, lcore;
949 const struct lcore_queue_conf *qconf;
950
951 for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
952 if (rte_lcore_is_enabled(lcore) == 0)
953 continue;
954
955 qconf = &lcore_queue_conf[lcore];
956 for (i = 0; i < qconf->n_rx_queue; i++) {
957
958 fprintf(stdout, " -- lcoreid=%u portid=%u "
959 "frag tbl stat:\n",
960 lcore, qconf->rx_queue_list[i].portid);
961 rte_ip_frag_table_statistics_dump(stdout,
962 qconf->rx_queue_list[i].frag_tbl);
963 fprintf(stdout, "TX bursts:\t%" PRIu64 "\n"
964 "TX packets _queued:\t%" PRIu64 "\n"
965 "TX packets dropped:\t%" PRIu64 "\n"
966 "TX packets send:\t%" PRIu64 "\n",
967 qconf->tx_stat.call,
968 qconf->tx_stat.queue,
969 qconf->tx_stat.drop,
970 qconf->tx_stat.send);
971 }
972 }
973 }
974
975 static void
976 signal_handler(int signum)
977 {
978 queue_dump_stat();
979 if (signum != SIGUSR1)
980 rte_exit(0, "received signal: %d, exiting\n", signum);
981 }
982
983 int
984 main(int argc, char **argv)
985 {
986 struct lcore_queue_conf *qconf;
987 struct rte_eth_dev_info dev_info;
988 struct rte_eth_txconf *txconf;
989 struct rx_queue *rxq;
990 int ret, socket;
991 unsigned nb_ports;
992 uint16_t queueid;
993 unsigned lcore_id = 0, rx_lcore_id = 0;
994 uint32_t n_tx_queue, nb_lcores;
995 uint16_t portid;
996
997 /* init EAL */
998 ret = rte_eal_init(argc, argv);
999 if (ret < 0)
1000 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1001 argc -= ret;
1002 argv += ret;
1003
1004 /* parse application arguments (after the EAL ones) */
1005 ret = parse_args(argc, argv);
1006 if (ret < 0)
1007 rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n");
1008
1009 nb_ports = rte_eth_dev_count_avail();
1010 if (nb_ports == 0)
1011 rte_exit(EXIT_FAILURE, "No ports found!\n");
1012
1013 nb_lcores = rte_lcore_count();
1014
1015 /* initialize structures (mempools, lpm etc.) */
1016 if (init_mem() < 0)
1017 rte_panic("Cannot initialize memory structures!\n");
1018
1019 /* check if portmask has non-existent ports */
1020 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
1021 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
1022
1023 /* initialize all ports */
1024 RTE_ETH_FOREACH_DEV(portid) {
1025 struct rte_eth_rxconf rxq_conf;
1026 struct rte_eth_conf local_port_conf = port_conf;
1027
1028 /* skip ports that are not enabled */
1029 if ((enabled_port_mask & (1 << portid)) == 0) {
1030 printf("\nSkipping disabled port %d\n", portid);
1031 continue;
1032 }
1033
1034 qconf = &lcore_queue_conf[rx_lcore_id];
1035
1036 /* limit the frame size to the maximum supported by NIC */
1037 rte_eth_dev_info_get(portid, &dev_info);
1038 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
1039 dev_info.max_rx_pktlen,
1040 local_port_conf.rxmode.max_rx_pkt_len);
1041
1042 /* get the lcore_id for this port */
1043 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
1044 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
1045
1046 rx_lcore_id++;
1047 if (rx_lcore_id >= RTE_MAX_LCORE)
1048 rte_exit(EXIT_FAILURE, "Not enough cores\n");
1049
1050 qconf = &lcore_queue_conf[rx_lcore_id];
1051 }
1052
1053 socket = rte_lcore_to_socket_id(portid);
1054 if (socket == SOCKET_ID_ANY)
1055 socket = 0;
1056
1057 queueid = qconf->n_rx_queue;
1058 rxq = &qconf->rx_queue_list[queueid];
1059 rxq->portid = portid;
1060 rxq->lpm = socket_lpm[socket];
1061 rxq->lpm6 = socket_lpm6[socket];
1062
1063 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
1064 &nb_txd);
1065 if (ret < 0)
1066 rte_exit(EXIT_FAILURE,
1067 "Cannot adjust number of descriptors: err=%d, port=%d\n",
1068 ret, portid);
1069
1070 if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0)
1071 rte_exit(EXIT_FAILURE, "Failed to set up queue table\n");
1072 qconf->n_rx_queue++;
1073
1074 /* init port */
1075 printf("Initializing port %d ... ", portid );
1076 fflush(stdout);
1077
1078 n_tx_queue = nb_lcores;
1079 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1080 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1081 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
1082 local_port_conf.txmode.offloads |=
1083 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1084
1085 local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1086 dev_info.flow_type_rss_offloads;
1087 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1088 port_conf.rx_adv_conf.rss_conf.rss_hf) {
1089 printf("Port %u modified RSS hash function based on hardware support,"
1090 "requested:%#"PRIx64" configured:%#"PRIx64"\n",
1091 portid,
1092 port_conf.rx_adv_conf.rss_conf.rss_hf,
1093 local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1094 }
1095
1096 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
1097 &local_port_conf);
1098 if (ret < 0) {
1099 printf("\n");
1100 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1101 "err=%d, port=%d\n",
1102 ret, portid);
1103 }
1104
1105 /* init one RX queue */
1106 rxq_conf = dev_info.default_rxconf;
1107 rxq_conf.offloads = local_port_conf.rxmode.offloads;
1108 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1109 socket, &rxq_conf,
1110 rxq->pool);
1111 if (ret < 0) {
1112 printf("\n");
1113 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
1114 "err=%d, port=%d\n",
1115 ret, portid);
1116 }
1117
1118 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1119 print_ethaddr(" Address:", &ports_eth_addr[portid]);
1120 printf("\n");
1121
1122 /* init one TX queue per couple (lcore,port) */
1123 queueid = 0;
1124 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1125 if (rte_lcore_is_enabled(lcore_id) == 0)
1126 continue;
1127
1128 socket = (int) rte_lcore_to_socket_id(lcore_id);
1129
1130 printf("txq=%u,%d,%d ", lcore_id, queueid, socket);
1131 fflush(stdout);
1132
1133 txconf = &dev_info.default_txconf;
1134 txconf->offloads = local_port_conf.txmode.offloads;
1135
1136 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1137 socket, txconf);
1138 if (ret < 0)
1139 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
1140 "port=%d\n", ret, portid);
1141
1142 qconf = &lcore_queue_conf[lcore_id];
1143 qconf->tx_queue_id[portid] = queueid;
1144 setup_port_tbl(qconf, lcore_id, socket, portid);
1145 queueid++;
1146 }
1147 printf("\n");
1148 }
1149
1150 printf("\n");
1151
1152 /* start ports */
1153 RTE_ETH_FOREACH_DEV(portid) {
1154 if ((enabled_port_mask & (1 << portid)) == 0) {
1155 continue;
1156 }
1157 /* Start device */
1158 ret = rte_eth_dev_start(portid);
1159 if (ret < 0)
1160 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1161 ret, portid);
1162
1163 rte_eth_promiscuous_enable(portid);
1164 }
1165
1166 if (init_routing_table() < 0)
1167 rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1168
1169 check_all_ports_link_status(enabled_port_mask);
1170
1171 signal(SIGUSR1, signal_handler);
1172 signal(SIGTERM, signal_handler);
1173 signal(SIGINT, signal_handler);
1174
1175 /* launch per-lcore init on every lcore */
1176 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1177 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1178 if (rte_eal_wait_lcore(lcore_id) < 0)
1179 return -1;
1180 }
1181
1182 return 0;
1183 }