]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/examples/ipv4_multicast/main.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / examples / ipv4_multicast / main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_memory.h>
20 #include <rte_memcpy.h>
21 #include <rte_eal.h>
22 #include <rte_launch.h>
23 #include <rte_atomic.h>
24 #include <rte_cycles.h>
25 #include <rte_prefetch.h>
26 #include <rte_lcore.h>
27 #include <rte_per_lcore.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_interrupts.h>
30 #include <rte_random.h>
31 #include <rte_debug.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_mempool.h>
35 #include <rte_mbuf.h>
36 #include <rte_malloc.h>
37 #include <rte_fbk_hash.h>
38 #include <rte_ip.h>
39
40 #define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1
41
42 #define MAX_PORTS 16
43
44 #define MCAST_CLONE_PORTS 2
45 #define MCAST_CLONE_SEGS 2
46
47 #define PKT_MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
48 #define NB_PKT_MBUF 8192
49
50 #define HDR_MBUF_DATA_SIZE (2 * RTE_PKTMBUF_HEADROOM)
51 #define NB_HDR_MBUF (NB_PKT_MBUF * MAX_PORTS)
52
53 #define NB_CLONE_MBUF (NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)
54
55 /* allow max jumbo frame 9.5 KB */
56 #define JUMBO_FRAME_MAX_SIZE 0x2600
57
58 #define MAX_PKT_BURST 32
59 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
60
61 /* Configure how many packets ahead to prefetch, when reading packets */
62 #define PREFETCH_OFFSET 3
63
64 /*
65 * Construct Ethernet multicast address from IPv4 multicast address.
66 * Citing RFC 1112, section 6.4:
67 * "An IP host group address is mapped to an Ethernet multicast address
68 * by placing the low-order 23-bits of the IP address into the low-order
69 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
70 */
71 #define ETHER_ADDR_FOR_IPV4_MCAST(x) \
72 (rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
73
74 /*
75 * Configurable number of RX/TX ring descriptors
76 */
77 #define RTE_TEST_RX_DESC_DEFAULT 1024
78 #define RTE_TEST_TX_DESC_DEFAULT 1024
79 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
80 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
81
82 /* ethernet addresses of ports */
83 static struct ether_addr ports_eth_addr[MAX_PORTS];
84
85 /* mask of enabled ports */
86 static uint32_t enabled_port_mask = 0;
87
88 static uint16_t nb_ports;
89
90 static int rx_queue_per_lcore = 1;
91
92 struct mbuf_table {
93 uint16_t len;
94 struct rte_mbuf *m_table[MAX_PKT_BURST];
95 };
96
97 #define MAX_RX_QUEUE_PER_LCORE 16
98 #define MAX_TX_QUEUE_PER_PORT 16
99 struct lcore_queue_conf {
100 uint64_t tx_tsc;
101 uint16_t n_rx_queue;
102 uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
103 uint16_t tx_queue_id[MAX_PORTS];
104 struct mbuf_table tx_mbufs[MAX_PORTS];
105 } __rte_cache_aligned;
106 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
107
108 static struct rte_eth_conf port_conf = {
109 .rxmode = {
110 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
111 .split_hdr_size = 0,
112 .offloads = DEV_RX_OFFLOAD_JUMBO_FRAME,
113 },
114 .txmode = {
115 .mq_mode = ETH_MQ_TX_NONE,
116 .offloads = DEV_TX_OFFLOAD_MULTI_SEGS,
117 },
118 };
119
120 static struct rte_mempool *packet_pool, *header_pool, *clone_pool;
121
122
123 /* Multicast */
124 static struct rte_fbk_hash_params mcast_hash_params = {
125 .name = "MCAST_HASH",
126 .entries = 1024,
127 .entries_per_bucket = 4,
128 .socket_id = 0,
129 .hash_func = NULL,
130 .init_val = 0,
131 };
132
133 struct rte_fbk_hash_table *mcast_hash = NULL;
134
135 struct mcast_group_params {
136 uint32_t ip;
137 uint16_t port_mask;
138 };
139
140 static struct mcast_group_params mcast_group_table[] = {
141 {IPv4(224,0,0,101), 0x1},
142 {IPv4(224,0,0,102), 0x2},
143 {IPv4(224,0,0,103), 0x3},
144 {IPv4(224,0,0,104), 0x4},
145 {IPv4(224,0,0,105), 0x5},
146 {IPv4(224,0,0,106), 0x6},
147 {IPv4(224,0,0,107), 0x7},
148 {IPv4(224,0,0,108), 0x8},
149 {IPv4(224,0,0,109), 0x9},
150 {IPv4(224,0,0,110), 0xA},
151 {IPv4(224,0,0,111), 0xB},
152 {IPv4(224,0,0,112), 0xC},
153 {IPv4(224,0,0,113), 0xD},
154 {IPv4(224,0,0,114), 0xE},
155 {IPv4(224,0,0,115), 0xF},
156 };
157
158 #define N_MCAST_GROUPS \
159 (sizeof (mcast_group_table) / sizeof (mcast_group_table[0]))
160
161
162 /* Send burst of packets on an output interface */
163 static void
164 send_burst(struct lcore_queue_conf *qconf, uint16_t port)
165 {
166 struct rte_mbuf **m_table;
167 uint16_t n, queueid;
168 int ret;
169
170 queueid = qconf->tx_queue_id[port];
171 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
172 n = qconf->tx_mbufs[port].len;
173
174 ret = rte_eth_tx_burst(port, queueid, m_table, n);
175 while (unlikely (ret < n)) {
176 rte_pktmbuf_free(m_table[ret]);
177 ret++;
178 }
179
180 qconf->tx_mbufs[port].len = 0;
181 }
182
183 /* Get number of bits set. */
184 static inline uint32_t
185 bitcnt(uint32_t v)
186 {
187 uint32_t n;
188
189 for (n = 0; v != 0; v &= v - 1, n++)
190 ;
191
192 return n;
193 }
194
195 /**
196 * Create the output multicast packet based on the given input packet.
197 * There are two approaches for creating outgoing packet, though both
198 * are based on data zero-copy idea, they differ in few details:
199 * First one creates a clone of the input packet, e.g - walk though all
200 * segments of the input packet, and for each of them create a new packet
201 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
202 * for more details). Then new mbuf is allocated for the packet header
203 * and is prepended to the 'clone' mbuf.
204 * Second approach doesn't make a clone, it just increment refcnt for all
205 * input packet segments. Then it allocates new mbuf for the packet header
206 * and prepends it to the input packet.
207 * Basically first approach reuses only input packet's data, but creates
208 * it's own copy of packet's metadata. Second approach reuses both input's
209 * packet data and metadata.
210 * The advantage of first approach - is that each outgoing packet has it's
211 * own copy of metadata, so we can safely modify data pointer of the
212 * input packet. That allows us to skip creation if the output packet for
213 * the last destination port, but instead modify input packet's header inplace,
214 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
215 * The advantage of second approach - less work for each outgoing packet,
216 * e.g: we skip "clone" operation completely. Though it comes with a price -
217 * input packet's metadata has to be intact. So for N destination ports we
218 * need to invoke mcast_out_pkt N times.
219 * So for small number of outgoing ports (and segments in the input packet)
220 * first approach will be faster.
221 * As number of outgoing ports (and/or input segments) will grow,
222 * second way will become more preferable.
223 *
224 * @param pkt
225 * Input packet mbuf.
226 * @param use_clone
227 * Control which of the two approaches described above should be used:
228 * - 0 - use second approach:
229 * Don't "clone" input packet.
230 * Prepend new header directly to the input packet
231 * - 1 - use first approach:
232 * Make a "clone" of input packet first.
233 * Prepend new header to the clone of the input packet
234 * @return
235 * - The pointer to the new outgoing packet.
236 * - NULL if operation failed.
237 */
238 static inline struct rte_mbuf *
239 mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
240 {
241 struct rte_mbuf *hdr;
242
243 /* Create new mbuf for the header. */
244 if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
245 return NULL;
246
247 /* If requested, then make a new clone packet. */
248 if (use_clone != 0 &&
249 unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
250 rte_pktmbuf_free(hdr);
251 return NULL;
252 }
253
254 /* prepend new header */
255 hdr->next = pkt;
256
257 /* update header's fields */
258 hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
259 hdr->nb_segs = pkt->nb_segs + 1;
260
261 __rte_mbuf_sanity_check(hdr, 1);
262 return hdr;
263 }
264
265 /*
266 * Write new Ethernet header to the outgoing packet,
267 * and put it into the outgoing queue for the given port.
268 */
269 static inline void
270 mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr,
271 struct lcore_queue_conf *qconf, uint16_t port)
272 {
273 struct ether_hdr *ethdr;
274 uint16_t len;
275
276 /* Construct Ethernet header. */
277 ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
278 RTE_ASSERT(ethdr != NULL);
279
280 ether_addr_copy(dest_addr, &ethdr->d_addr);
281 ether_addr_copy(&ports_eth_addr[port], &ethdr->s_addr);
282 ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
283
284 /* Put new packet into the output queue */
285 len = qconf->tx_mbufs[port].len;
286 qconf->tx_mbufs[port].m_table[len] = pkt;
287 qconf->tx_mbufs[port].len = ++len;
288
289 /* Transmit packets */
290 if (unlikely(MAX_PKT_BURST == len))
291 send_burst(qconf, port);
292 }
293
294 /* Multicast forward of the input packet */
295 static inline void
296 mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
297 {
298 struct rte_mbuf *mc;
299 struct ipv4_hdr *iphdr;
300 uint32_t dest_addr, port_mask, port_num, use_clone;
301 int32_t hash;
302 uint16_t port;
303 union {
304 uint64_t as_int;
305 struct ether_addr as_addr;
306 } dst_eth_addr;
307
308 /* Remove the Ethernet header from the input packet */
309 iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
310 RTE_ASSERT(iphdr != NULL);
311
312 dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);
313
314 /*
315 * Check that it is a valid multicast address and
316 * we have some active ports assigned to it.
317 */
318 if(!IS_IPV4_MCAST(dest_addr) ||
319 (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
320 (port_mask = hash & enabled_port_mask) == 0) {
321 rte_pktmbuf_free(m);
322 return;
323 }
324
325 /* Calculate number of destination ports. */
326 port_num = bitcnt(port_mask);
327
328 /* Should we use rte_pktmbuf_clone() or not. */
329 use_clone = (port_num <= MCAST_CLONE_PORTS &&
330 m->nb_segs <= MCAST_CLONE_SEGS);
331
332 /* Mark all packet's segments as referenced port_num times */
333 if (use_clone == 0)
334 rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);
335
336 /* construct destination ethernet address */
337 dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);
338
339 for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
340
341 /* Prepare output packet and send it out. */
342 if ((port_mask & 1) != 0) {
343 if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
344 mcast_send_pkt(mc, &dst_eth_addr.as_addr,
345 qconf, port);
346 else if (use_clone == 0)
347 rte_pktmbuf_free(m);
348 }
349 }
350
351 /*
352 * If we making clone packets, then, for the last destination port,
353 * we can overwrite input packet's metadata.
354 */
355 if (use_clone != 0)
356 mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
357 else
358 rte_pktmbuf_free(m);
359 }
360
361 /* Send burst of outgoing packet, if timeout expires. */
362 static inline void
363 send_timeout_burst(struct lcore_queue_conf *qconf)
364 {
365 uint64_t cur_tsc;
366 uint16_t portid;
367 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
368
369 cur_tsc = rte_rdtsc();
370 if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
371 return;
372
373 for (portid = 0; portid < MAX_PORTS; portid++) {
374 if (qconf->tx_mbufs[portid].len != 0)
375 send_burst(qconf, portid);
376 }
377 qconf->tx_tsc = cur_tsc;
378 }
379
380 /* main processing loop */
381 static int
382 main_loop(__rte_unused void *dummy)
383 {
384 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
385 unsigned lcore_id;
386 int i, j, nb_rx;
387 uint16_t portid;
388 struct lcore_queue_conf *qconf;
389
390 lcore_id = rte_lcore_id();
391 qconf = &lcore_queue_conf[lcore_id];
392
393
394 if (qconf->n_rx_queue == 0) {
395 RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
396 lcore_id);
397 return 0;
398 }
399
400 RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
401 lcore_id);
402
403 for (i = 0; i < qconf->n_rx_queue; i++) {
404
405 portid = qconf->rx_queue_list[i];
406 RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
407 lcore_id, portid);
408 }
409
410 while (1) {
411
412 /*
413 * Read packet from RX queues
414 */
415 for (i = 0; i < qconf->n_rx_queue; i++) {
416
417 portid = qconf->rx_queue_list[i];
418 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
419 MAX_PKT_BURST);
420
421 /* Prefetch first packets */
422 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
423 rte_prefetch0(rte_pktmbuf_mtod(
424 pkts_burst[j], void *));
425 }
426
427 /* Prefetch and forward already prefetched packets */
428 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
429 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
430 j + PREFETCH_OFFSET], void *));
431 mcast_forward(pkts_burst[j], qconf);
432 }
433
434 /* Forward remaining prefetched packets */
435 for (; j < nb_rx; j++) {
436 mcast_forward(pkts_burst[j], qconf);
437 }
438 }
439
440 /* Send out packets from TX queues */
441 send_timeout_burst(qconf);
442 }
443 }
444
445 /* display usage */
446 static void
447 print_usage(const char *prgname)
448 {
449 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
450 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
451 " -q NQ: number of queue (=ports) per lcore (default is 1)\n",
452 prgname);
453 }
454
455 static uint32_t
456 parse_portmask(const char *portmask)
457 {
458 char *end = NULL;
459 unsigned long pm;
460
461 /* parse hexadecimal string */
462 pm = strtoul(portmask, &end, 16);
463 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
464 return 0;
465
466 return (uint32_t)pm;
467 }
468
469 static int
470 parse_nqueue(const char *q_arg)
471 {
472 char *end = NULL;
473 unsigned long n;
474
475 /* parse numerical string */
476 errno = 0;
477 n = strtoul(q_arg, &end, 0);
478 if (errno != 0 || end == NULL || *end != '\0' ||
479 n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
480 return -1;
481
482 return n;
483 }
484
485 /* Parse the argument given in the command line of the application */
486 static int
487 parse_args(int argc, char **argv)
488 {
489 int opt, ret;
490 char **argvopt;
491 int option_index;
492 char *prgname = argv[0];
493 static struct option lgopts[] = {
494 {NULL, 0, 0, 0}
495 };
496
497 argvopt = argv;
498
499 while ((opt = getopt_long(argc, argvopt, "p:q:",
500 lgopts, &option_index)) != EOF) {
501
502 switch (opt) {
503 /* portmask */
504 case 'p':
505 enabled_port_mask = parse_portmask(optarg);
506 if (enabled_port_mask == 0) {
507 printf("invalid portmask\n");
508 print_usage(prgname);
509 return -1;
510 }
511 break;
512
513 /* nqueue */
514 case 'q':
515 rx_queue_per_lcore = parse_nqueue(optarg);
516 if (rx_queue_per_lcore < 0) {
517 printf("invalid queue number\n");
518 print_usage(prgname);
519 return -1;
520 }
521 break;
522
523 default:
524 print_usage(prgname);
525 return -1;
526 }
527 }
528
529 if (optind >= 0)
530 argv[optind-1] = prgname;
531
532 ret = optind-1;
533 optind = 1; /* reset getopt lib */
534 return ret;
535 }
536
537 static void
538 print_ethaddr(const char *name, struct ether_addr *eth_addr)
539 {
540 char buf[ETHER_ADDR_FMT_SIZE];
541 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
542 printf("%s%s", name, buf);
543 }
544
545 static int
546 init_mcast_hash(void)
547 {
548 uint32_t i;
549
550 mcast_hash_params.socket_id = rte_socket_id();
551 mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
552 if (mcast_hash == NULL){
553 return -1;
554 }
555
556 for (i = 0; i < N_MCAST_GROUPS; i ++){
557 if (rte_fbk_hash_add_key(mcast_hash,
558 mcast_group_table[i].ip,
559 mcast_group_table[i].port_mask) < 0) {
560 return -1;
561 }
562 }
563
564 return 0;
565 }
566
567 /* Check the link status of all ports in up to 9s, and print them finally */
568 static void
569 check_all_ports_link_status(uint32_t port_mask)
570 {
571 #define CHECK_INTERVAL 100 /* 100ms */
572 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
573 uint16_t portid;
574 uint8_t count, all_ports_up, print_flag = 0;
575 struct rte_eth_link link;
576
577 printf("\nChecking link status");
578 fflush(stdout);
579 for (count = 0; count <= MAX_CHECK_TIME; count++) {
580 all_ports_up = 1;
581 RTE_ETH_FOREACH_DEV(portid) {
582 if ((port_mask & (1 << portid)) == 0)
583 continue;
584 memset(&link, 0, sizeof(link));
585 rte_eth_link_get_nowait(portid, &link);
586 /* print link status if flag set */
587 if (print_flag == 1) {
588 if (link.link_status)
589 printf(
590 "Port%d Link Up. Speed %u Mbps - %s\n",
591 portid, link.link_speed,
592 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
593 ("full-duplex") : ("half-duplex\n"));
594 else
595 printf("Port %d Link Down\n", portid);
596 continue;
597 }
598 /* clear all_ports_up flag if any link down */
599 if (link.link_status == ETH_LINK_DOWN) {
600 all_ports_up = 0;
601 break;
602 }
603 }
604 /* after finally printing all link status, get out */
605 if (print_flag == 1)
606 break;
607
608 if (all_ports_up == 0) {
609 printf(".");
610 fflush(stdout);
611 rte_delay_ms(CHECK_INTERVAL);
612 }
613
614 /* set the print_flag if all ports up or timeout */
615 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
616 print_flag = 1;
617 printf("done\n");
618 }
619 }
620 }
621
622 int
623 main(int argc, char **argv)
624 {
625 struct lcore_queue_conf *qconf;
626 struct rte_eth_dev_info dev_info;
627 struct rte_eth_txconf *txconf;
628 int ret;
629 uint16_t queueid;
630 unsigned lcore_id = 0, rx_lcore_id = 0;
631 uint32_t n_tx_queue, nb_lcores;
632 uint16_t portid;
633
634 /* init EAL */
635 ret = rte_eal_init(argc, argv);
636 if (ret < 0)
637 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
638 argc -= ret;
639 argv += ret;
640
641 /* parse application arguments (after the EAL ones) */
642 ret = parse_args(argc, argv);
643 if (ret < 0)
644 rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");
645
646 /* create the mbuf pools */
647 packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
648 0, PKT_MBUF_DATA_SIZE, rte_socket_id());
649
650 if (packet_pool == NULL)
651 rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");
652
653 header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
654 0, HDR_MBUF_DATA_SIZE, rte_socket_id());
655
656 if (header_pool == NULL)
657 rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");
658
659 clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
660 0, 0, rte_socket_id());
661
662 if (clone_pool == NULL)
663 rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");
664
665 nb_ports = rte_eth_dev_count_avail();
666 if (nb_ports == 0)
667 rte_exit(EXIT_FAILURE, "No physical ports!\n");
668 if (nb_ports > MAX_PORTS)
669 nb_ports = MAX_PORTS;
670
671 nb_lcores = rte_lcore_count();
672
673 /* initialize all ports */
674 RTE_ETH_FOREACH_DEV(portid) {
675 struct rte_eth_rxconf rxq_conf;
676 struct rte_eth_conf local_port_conf = port_conf;
677
678 /* skip ports that are not enabled */
679 if ((enabled_port_mask & (1 << portid)) == 0) {
680 printf("Skipping disabled port %d\n", portid);
681 continue;
682 }
683
684 qconf = &lcore_queue_conf[rx_lcore_id];
685
686 /* limit the frame size to the maximum supported by NIC */
687 rte_eth_dev_info_get(portid, &dev_info);
688 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
689 dev_info.max_rx_pktlen,
690 local_port_conf.rxmode.max_rx_pkt_len);
691
692 /* get the lcore_id for this port */
693 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
694 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
695
696 rx_lcore_id ++;
697 qconf = &lcore_queue_conf[rx_lcore_id];
698
699 if (rx_lcore_id >= RTE_MAX_LCORE)
700 rte_exit(EXIT_FAILURE, "Not enough cores\n");
701 }
702 qconf->rx_queue_list[qconf->n_rx_queue] = portid;
703 qconf->n_rx_queue++;
704
705 /* init port */
706 printf("Initializing port %d on lcore %u... ", portid,
707 rx_lcore_id);
708 fflush(stdout);
709
710 n_tx_queue = nb_lcores;
711 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
712 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
713
714 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
715 &local_port_conf);
716 if (ret < 0)
717 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
718 ret, portid);
719
720 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
721 &nb_txd);
722 if (ret < 0)
723 rte_exit(EXIT_FAILURE,
724 "Cannot adjust number of descriptors: err=%d, port=%d\n",
725 ret, portid);
726
727 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
728 print_ethaddr(" Address:", &ports_eth_addr[portid]);
729 printf(", ");
730
731 /* init one RX queue */
732 queueid = 0;
733 printf("rxq=%hu ", queueid);
734 fflush(stdout);
735 rxq_conf = dev_info.default_rxconf;
736 rxq_conf.offloads = local_port_conf.rxmode.offloads;
737 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
738 rte_eth_dev_socket_id(portid),
739 &rxq_conf,
740 packet_pool);
741 if (ret < 0)
742 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
743 ret, portid);
744
745 /* init one TX queue per couple (lcore,port) */
746 queueid = 0;
747
748 RTE_LCORE_FOREACH(lcore_id) {
749 if (rte_lcore_is_enabled(lcore_id) == 0)
750 continue;
751 printf("txq=%u,%hu ", lcore_id, queueid);
752 fflush(stdout);
753
754 txconf = &dev_info.default_txconf;
755 txconf->offloads = local_port_conf.txmode.offloads;
756 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
757 rte_lcore_to_socket_id(lcore_id), txconf);
758 if (ret < 0)
759 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
760 "port=%d\n", ret, portid);
761
762 qconf = &lcore_queue_conf[lcore_id];
763 qconf->tx_queue_id[portid] = queueid;
764 queueid++;
765 }
766 rte_eth_allmulticast_enable(portid);
767 /* Start device */
768 ret = rte_eth_dev_start(portid);
769 if (ret < 0)
770 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
771 ret, portid);
772
773 printf("done:\n");
774 }
775
776 check_all_ports_link_status(enabled_port_mask);
777
778 /* initialize the multicast hash */
779 int retval = init_mcast_hash();
780 if (retval != 0)
781 rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");
782
783 /* launch per-lcore init on every lcore */
784 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
785 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
786 if (rte_eal_wait_lcore(lcore_id) < 0)
787 return -1;
788 }
789
790 return 0;
791 }