]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/examples/l3fwd/l3fwd_em.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / examples / l3fwd / l3fwd_em.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <stdbool.h>
16 #include <netinet/in.h>
17
18 #include <rte_debug.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev.h>
21 #include <rte_cycles.h>
22 #include <rte_mbuf.h>
23 #include <rte_ip.h>
24 #include <rte_tcp.h>
25 #include <rte_udp.h>
26 #include <rte_hash.h>
27
28 #include "l3fwd.h"
29
30 #if defined(RTE_ARCH_X86) || defined(RTE_MACHINE_CPUFLAG_CRC32)
31 #define EM_HASH_CRC 1
32 #endif
33
34 #ifdef EM_HASH_CRC
35 #include <rte_hash_crc.h>
36 #define DEFAULT_HASH_FUNC rte_hash_crc
37 #else
38 #include <rte_jhash.h>
39 #define DEFAULT_HASH_FUNC rte_jhash
40 #endif
41
42 #define IPV6_ADDR_LEN 16
43
44 struct ipv4_5tuple {
45 uint32_t ip_dst;
46 uint32_t ip_src;
47 uint16_t port_dst;
48 uint16_t port_src;
49 uint8_t proto;
50 } __attribute__((__packed__));
51
52 union ipv4_5tuple_host {
53 struct {
54 uint8_t pad0;
55 uint8_t proto;
56 uint16_t pad1;
57 uint32_t ip_src;
58 uint32_t ip_dst;
59 uint16_t port_src;
60 uint16_t port_dst;
61 };
62 xmm_t xmm;
63 };
64
65 #define XMM_NUM_IN_IPV6_5TUPLE 3
66
67 struct ipv6_5tuple {
68 uint8_t ip_dst[IPV6_ADDR_LEN];
69 uint8_t ip_src[IPV6_ADDR_LEN];
70 uint16_t port_dst;
71 uint16_t port_src;
72 uint8_t proto;
73 } __attribute__((__packed__));
74
75 union ipv6_5tuple_host {
76 struct {
77 uint16_t pad0;
78 uint8_t proto;
79 uint8_t pad1;
80 uint8_t ip_src[IPV6_ADDR_LEN];
81 uint8_t ip_dst[IPV6_ADDR_LEN];
82 uint16_t port_src;
83 uint16_t port_dst;
84 uint64_t reserve;
85 };
86 xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE];
87 };
88
89
90
91 struct ipv4_l3fwd_em_route {
92 struct ipv4_5tuple key;
93 uint8_t if_out;
94 };
95
96 struct ipv6_l3fwd_em_route {
97 struct ipv6_5tuple key;
98 uint8_t if_out;
99 };
100
101 static struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
102 {{IPv4(101, 0, 0, 0), IPv4(100, 10, 0, 1), 101, 11, IPPROTO_TCP}, 0},
103 {{IPv4(201, 0, 0, 0), IPv4(200, 20, 0, 1), 102, 12, IPPROTO_TCP}, 1},
104 {{IPv4(111, 0, 0, 0), IPv4(100, 30, 0, 1), 101, 11, IPPROTO_TCP}, 2},
105 {{IPv4(211, 0, 0, 0), IPv4(200, 40, 0, 1), 102, 12, IPPROTO_TCP}, 3},
106 };
107
108 static struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
109 {{
110 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
111 {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
112 101, 11, IPPROTO_TCP}, 0},
113
114 {{
115 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
116 {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
117 102, 12, IPPROTO_TCP}, 1},
118
119 {{
120 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
121 {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
122 101, 11, IPPROTO_TCP}, 2},
123
124 {{
125 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
126 {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
127 102, 12, IPPROTO_TCP}, 3},
128 };
129
130 struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
131 struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
132
133 static inline uint32_t
134 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
135 uint32_t init_val)
136 {
137 const union ipv4_5tuple_host *k;
138 uint32_t t;
139 const uint32_t *p;
140
141 k = data;
142 t = k->proto;
143 p = (const uint32_t *)&k->port_src;
144
145 #ifdef EM_HASH_CRC
146 init_val = rte_hash_crc_4byte(t, init_val);
147 init_val = rte_hash_crc_4byte(k->ip_src, init_val);
148 init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
149 init_val = rte_hash_crc_4byte(*p, init_val);
150 #else
151 init_val = rte_jhash_1word(t, init_val);
152 init_val = rte_jhash_1word(k->ip_src, init_val);
153 init_val = rte_jhash_1word(k->ip_dst, init_val);
154 init_val = rte_jhash_1word(*p, init_val);
155 #endif
156
157 return init_val;
158 }
159
160 static inline uint32_t
161 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
162 uint32_t init_val)
163 {
164 const union ipv6_5tuple_host *k;
165 uint32_t t;
166 const uint32_t *p;
167 #ifdef EM_HASH_CRC
168 const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
169 const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
170 #endif
171
172 k = data;
173 t = k->proto;
174 p = (const uint32_t *)&k->port_src;
175
176 #ifdef EM_HASH_CRC
177 ip_src0 = (const uint32_t *) k->ip_src;
178 ip_src1 = (const uint32_t *)(k->ip_src+4);
179 ip_src2 = (const uint32_t *)(k->ip_src+8);
180 ip_src3 = (const uint32_t *)(k->ip_src+12);
181 ip_dst0 = (const uint32_t *) k->ip_dst;
182 ip_dst1 = (const uint32_t *)(k->ip_dst+4);
183 ip_dst2 = (const uint32_t *)(k->ip_dst+8);
184 ip_dst3 = (const uint32_t *)(k->ip_dst+12);
185 init_val = rte_hash_crc_4byte(t, init_val);
186 init_val = rte_hash_crc_4byte(*ip_src0, init_val);
187 init_val = rte_hash_crc_4byte(*ip_src1, init_val);
188 init_val = rte_hash_crc_4byte(*ip_src2, init_val);
189 init_val = rte_hash_crc_4byte(*ip_src3, init_val);
190 init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
191 init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
192 init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
193 init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
194 init_val = rte_hash_crc_4byte(*p, init_val);
195 #else
196 init_val = rte_jhash_1word(t, init_val);
197 init_val = rte_jhash(k->ip_src,
198 sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
199 init_val = rte_jhash(k->ip_dst,
200 sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
201 init_val = rte_jhash_1word(*p, init_val);
202 #endif
203 return init_val;
204 }
205
206 #define IPV4_L3FWD_EM_NUM_ROUTES \
207 (sizeof(ipv4_l3fwd_em_route_array) / sizeof(ipv4_l3fwd_em_route_array[0]))
208
209 #define IPV6_L3FWD_EM_NUM_ROUTES \
210 (sizeof(ipv6_l3fwd_em_route_array) / sizeof(ipv6_l3fwd_em_route_array[0]))
211
212 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
213 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
214
215 static rte_xmm_t mask0;
216 static rte_xmm_t mask1;
217 static rte_xmm_t mask2;
218
219 #if defined(RTE_MACHINE_CPUFLAG_SSE2)
220 static inline xmm_t
221 em_mask_key(void *key, xmm_t mask)
222 {
223 __m128i data = _mm_loadu_si128((__m128i *)(key));
224
225 return _mm_and_si128(data, mask);
226 }
227 #elif defined(RTE_MACHINE_CPUFLAG_NEON)
228 static inline xmm_t
229 em_mask_key(void *key, xmm_t mask)
230 {
231 int32x4_t data = vld1q_s32((int32_t *)key);
232
233 return vandq_s32(data, mask);
234 }
235 #elif defined(RTE_MACHINE_CPUFLAG_ALTIVEC)
236 static inline xmm_t
237 em_mask_key(void *key, xmm_t mask)
238 {
239 xmm_t data = vec_ld(0, (xmm_t *)(key));
240
241 return vec_and(data, mask);
242 }
243 #else
244 #error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain
245 #endif
246
247 static inline uint16_t
248 em_get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, void *lookup_struct)
249 {
250 int ret = 0;
251 union ipv4_5tuple_host key;
252 struct rte_hash *ipv4_l3fwd_lookup_struct =
253 (struct rte_hash *)lookup_struct;
254
255 ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
256
257 /*
258 * Get 5 tuple: dst port, src port, dst IP address,
259 * src IP address and protocol.
260 */
261 key.xmm = em_mask_key(ipv4_hdr, mask0.x);
262
263 /* Find destination port */
264 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
265 return (ret < 0) ? portid : ipv4_l3fwd_out_if[ret];
266 }
267
268 static inline uint16_t
269 em_get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, void *lookup_struct)
270 {
271 int ret = 0;
272 union ipv6_5tuple_host key;
273 struct rte_hash *ipv6_l3fwd_lookup_struct =
274 (struct rte_hash *)lookup_struct;
275
276 ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
277 void *data0 = ipv6_hdr;
278 void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t);
279 void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t);
280
281 /* Get part of 5 tuple: src IP address lower 96 bits and protocol */
282 key.xmm[0] = em_mask_key(data0, mask1.x);
283
284 /*
285 * Get part of 5 tuple: dst IP address lower 96 bits
286 * and src IP address higher 32 bits.
287 */
288 key.xmm[1] = *(xmm_t *)data1;
289
290 /*
291 * Get part of 5 tuple: dst port and src port
292 * and dst IP address higher 32 bits.
293 */
294 key.xmm[2] = em_mask_key(data2, mask2.x);
295
296 /* Find destination port */
297 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
298 return (ret < 0) ? portid : ipv6_l3fwd_out_if[ret];
299 }
300
301 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
302 #if defined(NO_HASH_MULTI_LOOKUP)
303 #include "l3fwd_em_sequential.h"
304 #else
305 #include "l3fwd_em_hlm.h"
306 #endif
307 #else
308 #include "l3fwd_em.h"
309 #endif
310
311 static void
312 convert_ipv4_5tuple(struct ipv4_5tuple *key1,
313 union ipv4_5tuple_host *key2)
314 {
315 key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
316 key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
317 key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
318 key2->port_src = rte_cpu_to_be_16(key1->port_src);
319 key2->proto = key1->proto;
320 key2->pad0 = 0;
321 key2->pad1 = 0;
322 }
323
324 static void
325 convert_ipv6_5tuple(struct ipv6_5tuple *key1,
326 union ipv6_5tuple_host *key2)
327 {
328 uint32_t i;
329
330 for (i = 0; i < 16; i++) {
331 key2->ip_dst[i] = key1->ip_dst[i];
332 key2->ip_src[i] = key1->ip_src[i];
333 }
334 key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
335 key2->port_src = rte_cpu_to_be_16(key1->port_src);
336 key2->proto = key1->proto;
337 key2->pad0 = 0;
338 key2->pad1 = 0;
339 key2->reserve = 0;
340 }
341
342 #define BYTE_VALUE_MAX 256
343 #define ALL_32_BITS 0xffffffff
344 #define BIT_8_TO_15 0x0000ff00
345
346 static inline void
347 populate_ipv4_few_flow_into_table(const struct rte_hash *h)
348 {
349 uint32_t i;
350 int32_t ret;
351
352 mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
353 ALL_32_BITS, ALL_32_BITS} };
354
355 for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
356 struct ipv4_l3fwd_em_route entry;
357 union ipv4_5tuple_host newkey;
358
359 entry = ipv4_l3fwd_em_route_array[i];
360 convert_ipv4_5tuple(&entry.key, &newkey);
361 ret = rte_hash_add_key(h, (void *) &newkey);
362 if (ret < 0) {
363 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
364 " to the l3fwd hash.\n", i);
365 }
366 ipv4_l3fwd_out_if[ret] = entry.if_out;
367 }
368 printf("Hash: Adding 0x%" PRIx64 " keys\n",
369 (uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
370 }
371
372 #define BIT_16_TO_23 0x00ff0000
373 static inline void
374 populate_ipv6_few_flow_into_table(const struct rte_hash *h)
375 {
376 uint32_t i;
377 int32_t ret;
378
379 mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
380 ALL_32_BITS, ALL_32_BITS} };
381
382 mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
383
384 for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
385 struct ipv6_l3fwd_em_route entry;
386 union ipv6_5tuple_host newkey;
387
388 entry = ipv6_l3fwd_em_route_array[i];
389 convert_ipv6_5tuple(&entry.key, &newkey);
390 ret = rte_hash_add_key(h, (void *) &newkey);
391 if (ret < 0) {
392 rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
393 " to the l3fwd hash.\n", i);
394 }
395 ipv6_l3fwd_out_if[ret] = entry.if_out;
396 }
397 printf("Hash: Adding 0x%" PRIx64 "keys\n",
398 (uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
399 }
400
401 #define NUMBER_PORT_USED 4
402 static inline void
403 populate_ipv4_many_flow_into_table(const struct rte_hash *h,
404 unsigned int nr_flow)
405 {
406 unsigned i;
407
408 mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
409 ALL_32_BITS, ALL_32_BITS} };
410
411 for (i = 0; i < nr_flow; i++) {
412 struct ipv4_l3fwd_em_route entry;
413 union ipv4_5tuple_host newkey;
414
415 uint8_t a = (uint8_t)
416 ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
417 uint8_t b = (uint8_t)
418 (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
419 uint8_t c = (uint8_t)
420 ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
421
422 /* Create the ipv4 exact match flow */
423 memset(&entry, 0, sizeof(entry));
424 switch (i & (NUMBER_PORT_USED - 1)) {
425 case 0:
426 entry = ipv4_l3fwd_em_route_array[0];
427 entry.key.ip_dst = IPv4(101, c, b, a);
428 break;
429 case 1:
430 entry = ipv4_l3fwd_em_route_array[1];
431 entry.key.ip_dst = IPv4(201, c, b, a);
432 break;
433 case 2:
434 entry = ipv4_l3fwd_em_route_array[2];
435 entry.key.ip_dst = IPv4(111, c, b, a);
436 break;
437 case 3:
438 entry = ipv4_l3fwd_em_route_array[3];
439 entry.key.ip_dst = IPv4(211, c, b, a);
440 break;
441 };
442 convert_ipv4_5tuple(&entry.key, &newkey);
443 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
444
445 if (ret < 0)
446 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
447
448 ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
449
450 }
451 printf("Hash: Adding 0x%x keys\n", nr_flow);
452 }
453
454 static inline void
455 populate_ipv6_many_flow_into_table(const struct rte_hash *h,
456 unsigned int nr_flow)
457 {
458 unsigned i;
459
460 mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
461 ALL_32_BITS, ALL_32_BITS} };
462 mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
463
464 for (i = 0; i < nr_flow; i++) {
465 struct ipv6_l3fwd_em_route entry;
466 union ipv6_5tuple_host newkey;
467
468 uint8_t a = (uint8_t)
469 ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
470 uint8_t b = (uint8_t)
471 (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
472 uint8_t c = (uint8_t)
473 ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
474
475 /* Create the ipv6 exact match flow */
476 memset(&entry, 0, sizeof(entry));
477 switch (i & (NUMBER_PORT_USED - 1)) {
478 case 0:
479 entry = ipv6_l3fwd_em_route_array[0];
480 break;
481 case 1:
482 entry = ipv6_l3fwd_em_route_array[1];
483 break;
484 case 2:
485 entry = ipv6_l3fwd_em_route_array[2];
486 break;
487 case 3:
488 entry = ipv6_l3fwd_em_route_array[3];
489 break;
490 };
491 entry.key.ip_dst[13] = c;
492 entry.key.ip_dst[14] = b;
493 entry.key.ip_dst[15] = a;
494 convert_ipv6_5tuple(&entry.key, &newkey);
495 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
496
497 if (ret < 0)
498 rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
499
500 ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
501
502 }
503 printf("Hash: Adding 0x%x keys\n", nr_flow);
504 }
505
506 /* Requirements:
507 * 1. IP packets without extension;
508 * 2. L4 payload should be either TCP or UDP.
509 */
510 int
511 em_check_ptype(int portid)
512 {
513 int i, ret;
514 int ptype_l3_ipv4_ext = 0;
515 int ptype_l3_ipv6_ext = 0;
516 int ptype_l4_tcp = 0;
517 int ptype_l4_udp = 0;
518 uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK;
519
520 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
521 if (ret <= 0)
522 return 0;
523
524 uint32_t ptypes[ret];
525
526 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
527 for (i = 0; i < ret; ++i) {
528 switch (ptypes[i]) {
529 case RTE_PTYPE_L3_IPV4_EXT:
530 ptype_l3_ipv4_ext = 1;
531 break;
532 case RTE_PTYPE_L3_IPV6_EXT:
533 ptype_l3_ipv6_ext = 1;
534 break;
535 case RTE_PTYPE_L4_TCP:
536 ptype_l4_tcp = 1;
537 break;
538 case RTE_PTYPE_L4_UDP:
539 ptype_l4_udp = 1;
540 break;
541 }
542 }
543
544 if (ptype_l3_ipv4_ext == 0)
545 printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid);
546 if (ptype_l3_ipv6_ext == 0)
547 printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid);
548 if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext)
549 return 0;
550
551 if (ptype_l4_tcp == 0)
552 printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid);
553 if (ptype_l4_udp == 0)
554 printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid);
555 if (ptype_l4_tcp && ptype_l4_udp)
556 return 1;
557
558 return 0;
559 }
560
561 static inline void
562 em_parse_ptype(struct rte_mbuf *m)
563 {
564 struct ether_hdr *eth_hdr;
565 uint32_t packet_type = RTE_PTYPE_UNKNOWN;
566 uint16_t ether_type;
567 void *l3;
568 int hdr_len;
569 struct ipv4_hdr *ipv4_hdr;
570 struct ipv6_hdr *ipv6_hdr;
571
572 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
573 ether_type = eth_hdr->ether_type;
574 l3 = (uint8_t *)eth_hdr + sizeof(struct ether_hdr);
575 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
576 ipv4_hdr = (struct ipv4_hdr *)l3;
577 hdr_len = (ipv4_hdr->version_ihl & IPV4_HDR_IHL_MASK) *
578 IPV4_IHL_MULTIPLIER;
579 if (hdr_len == sizeof(struct ipv4_hdr)) {
580 packet_type |= RTE_PTYPE_L3_IPV4;
581 if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
582 packet_type |= RTE_PTYPE_L4_TCP;
583 else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
584 packet_type |= RTE_PTYPE_L4_UDP;
585 } else
586 packet_type |= RTE_PTYPE_L3_IPV4_EXT;
587 } else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
588 ipv6_hdr = (struct ipv6_hdr *)l3;
589 if (ipv6_hdr->proto == IPPROTO_TCP)
590 packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP;
591 else if (ipv6_hdr->proto == IPPROTO_UDP)
592 packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP;
593 else
594 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
595 }
596
597 m->packet_type = packet_type;
598 }
599
600 uint16_t
601 em_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
602 struct rte_mbuf *pkts[], uint16_t nb_pkts,
603 uint16_t max_pkts __rte_unused,
604 void *user_param __rte_unused)
605 {
606 unsigned i;
607
608 for (i = 0; i < nb_pkts; ++i)
609 em_parse_ptype(pkts[i]);
610
611 return nb_pkts;
612 }
613
614 /* main processing loop */
615 int
616 em_main_loop(__attribute__((unused)) void *dummy)
617 {
618 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
619 unsigned lcore_id;
620 uint64_t prev_tsc, diff_tsc, cur_tsc;
621 int i, nb_rx;
622 uint8_t queueid;
623 uint16_t portid;
624 struct lcore_conf *qconf;
625 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
626 US_PER_S * BURST_TX_DRAIN_US;
627
628 prev_tsc = 0;
629
630 lcore_id = rte_lcore_id();
631 qconf = &lcore_conf[lcore_id];
632
633 if (qconf->n_rx_queue == 0) {
634 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
635 return 0;
636 }
637
638 RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
639
640 for (i = 0; i < qconf->n_rx_queue; i++) {
641
642 portid = qconf->rx_queue_list[i].port_id;
643 queueid = qconf->rx_queue_list[i].queue_id;
644 RTE_LOG(INFO, L3FWD,
645 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
646 lcore_id, portid, queueid);
647 }
648
649 while (!force_quit) {
650
651 cur_tsc = rte_rdtsc();
652
653 /*
654 * TX burst queue drain
655 */
656 diff_tsc = cur_tsc - prev_tsc;
657 if (unlikely(diff_tsc > drain_tsc)) {
658
659 for (i = 0; i < qconf->n_tx_port; ++i) {
660 portid = qconf->tx_port_id[i];
661 if (qconf->tx_mbufs[portid].len == 0)
662 continue;
663 send_burst(qconf,
664 qconf->tx_mbufs[portid].len,
665 portid);
666 qconf->tx_mbufs[portid].len = 0;
667 }
668
669 prev_tsc = cur_tsc;
670 }
671
672 /*
673 * Read packet from RX queues
674 */
675 for (i = 0; i < qconf->n_rx_queue; ++i) {
676 portid = qconf->rx_queue_list[i].port_id;
677 queueid = qconf->rx_queue_list[i].queue_id;
678 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
679 MAX_PKT_BURST);
680 if (nb_rx == 0)
681 continue;
682
683 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
684 l3fwd_em_send_packets(nb_rx, pkts_burst,
685 portid, qconf);
686 #else
687 l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
688 portid, qconf);
689 #endif
690 }
691 }
692
693 return 0;
694 }
695
696 /*
697 * Initialize exact match (hash) parameters.
698 */
699 void
700 setup_hash(const int socketid)
701 {
702 struct rte_hash_parameters ipv4_l3fwd_hash_params = {
703 .name = NULL,
704 .entries = L3FWD_HASH_ENTRIES,
705 .key_len = sizeof(union ipv4_5tuple_host),
706 .hash_func = ipv4_hash_crc,
707 .hash_func_init_val = 0,
708 };
709
710 struct rte_hash_parameters ipv6_l3fwd_hash_params = {
711 .name = NULL,
712 .entries = L3FWD_HASH_ENTRIES,
713 .key_len = sizeof(union ipv6_5tuple_host),
714 .hash_func = ipv6_hash_crc,
715 .hash_func_init_val = 0,
716 };
717
718 char s[64];
719
720 /* create ipv4 hash */
721 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
722 ipv4_l3fwd_hash_params.name = s;
723 ipv4_l3fwd_hash_params.socket_id = socketid;
724 ipv4_l3fwd_em_lookup_struct[socketid] =
725 rte_hash_create(&ipv4_l3fwd_hash_params);
726 if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
727 rte_exit(EXIT_FAILURE,
728 "Unable to create the l3fwd hash on socket %d\n",
729 socketid);
730
731 /* create ipv6 hash */
732 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
733 ipv6_l3fwd_hash_params.name = s;
734 ipv6_l3fwd_hash_params.socket_id = socketid;
735 ipv6_l3fwd_em_lookup_struct[socketid] =
736 rte_hash_create(&ipv6_l3fwd_hash_params);
737 if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
738 rte_exit(EXIT_FAILURE,
739 "Unable to create the l3fwd hash on socket %d\n",
740 socketid);
741
742 if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
743 /* For testing hash matching with a large number of flows we
744 * generate millions of IP 5-tuples with an incremented dst
745 * address to initialize the hash table. */
746 if (ipv6 == 0) {
747 /* populate the ipv4 hash */
748 populate_ipv4_many_flow_into_table(
749 ipv4_l3fwd_em_lookup_struct[socketid],
750 hash_entry_number);
751 } else {
752 /* populate the ipv6 hash */
753 populate_ipv6_many_flow_into_table(
754 ipv6_l3fwd_em_lookup_struct[socketid],
755 hash_entry_number);
756 }
757 } else {
758 /*
759 * Use data in ipv4/ipv6 l3fwd lookup table
760 * directly to initialize the hash table.
761 */
762 if (ipv6 == 0) {
763 /* populate the ipv4 hash */
764 populate_ipv4_few_flow_into_table(
765 ipv4_l3fwd_em_lookup_struct[socketid]);
766 } else {
767 /* populate the ipv6 hash */
768 populate_ipv6_few_flow_into_table(
769 ipv6_l3fwd_em_lookup_struct[socketid]);
770 }
771 }
772 }
773
774 /* Return ipv4/ipv6 em fwd lookup struct. */
775 void *
776 em_get_ipv4_l3fwd_lookup_struct(const int socketid)
777 {
778 return ipv4_l3fwd_em_lookup_struct[socketid];
779 }
780
781 void *
782 em_get_ipv6_l3fwd_lookup_struct(const int socketid)
783 {
784 return ipv6_l3fwd_em_lookup_struct[socketid];
785 }