]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/lib/librte_mempool/rte_mempool.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / spdk / dpdk / lib / librte_mempool / rte_mempool.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright(c) 2016 6WIND S.A.
4 */
5
6 #include <stdbool.h>
7 #include <stdio.h>
8 #include <string.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <errno.h>
14 #include <sys/queue.h>
15 #include <sys/mman.h>
16
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_memory.h>
21 #include <rte_memzone.h>
22 #include <rte_malloc.h>
23 #include <rte_atomic.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_eal_memconfig.h>
27 #include <rte_per_lcore.h>
28 #include <rte_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_errno.h>
31 #include <rte_string_fns.h>
32 #include <rte_spinlock.h>
33
34 #include "rte_mempool.h"
35
36 TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
37
38 static struct rte_tailq_elem rte_mempool_tailq = {
39 .name = "RTE_MEMPOOL",
40 };
41 EAL_REGISTER_TAILQ(rte_mempool_tailq)
42
43 #define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
44 #define CALC_CACHE_FLUSHTHRESH(c) \
45 ((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
46
47 /*
48 * return the greatest common divisor between a and b (fast algorithm)
49 *
50 */
51 static unsigned get_gcd(unsigned a, unsigned b)
52 {
53 unsigned c;
54
55 if (0 == a)
56 return b;
57 if (0 == b)
58 return a;
59
60 if (a < b) {
61 c = a;
62 a = b;
63 b = c;
64 }
65
66 while (b != 0) {
67 c = a % b;
68 a = b;
69 b = c;
70 }
71
72 return a;
73 }
74
75 /*
76 * Depending on memory configuration, objects addresses are spread
77 * between channels and ranks in RAM: the pool allocator will add
78 * padding between objects. This function return the new size of the
79 * object.
80 */
81 static unsigned optimize_object_size(unsigned obj_size)
82 {
83 unsigned nrank, nchan;
84 unsigned new_obj_size;
85
86 /* get number of channels */
87 nchan = rte_memory_get_nchannel();
88 if (nchan == 0)
89 nchan = 4;
90
91 nrank = rte_memory_get_nrank();
92 if (nrank == 0)
93 nrank = 1;
94
95 /* process new object size */
96 new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
97 while (get_gcd(new_obj_size, nrank * nchan) != 1)
98 new_obj_size++;
99 return new_obj_size * RTE_MEMPOOL_ALIGN;
100 }
101
102 static int
103 find_min_pagesz(const struct rte_memseg_list *msl, void *arg)
104 {
105 size_t *min = arg;
106
107 if (msl->page_sz < *min)
108 *min = msl->page_sz;
109
110 return 0;
111 }
112
113 static size_t
114 get_min_page_size(void)
115 {
116 size_t min_pagesz = SIZE_MAX;
117
118 rte_memseg_list_walk(find_min_pagesz, &min_pagesz);
119
120 return min_pagesz == SIZE_MAX ? (size_t) getpagesize() : min_pagesz;
121 }
122
123
124 static void
125 mempool_add_elem(struct rte_mempool *mp, __rte_unused void *opaque,
126 void *obj, rte_iova_t iova)
127 {
128 struct rte_mempool_objhdr *hdr;
129 struct rte_mempool_objtlr *tlr __rte_unused;
130
131 /* set mempool ptr in header */
132 hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
133 hdr->mp = mp;
134 hdr->iova = iova;
135 STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
136 mp->populated_size++;
137
138 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
139 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
140 tlr = __mempool_get_trailer(obj);
141 tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
142 #endif
143 }
144
145 /* call obj_cb() for each mempool element */
146 uint32_t
147 rte_mempool_obj_iter(struct rte_mempool *mp,
148 rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
149 {
150 struct rte_mempool_objhdr *hdr;
151 void *obj;
152 unsigned n = 0;
153
154 STAILQ_FOREACH(hdr, &mp->elt_list, next) {
155 obj = (char *)hdr + sizeof(*hdr);
156 obj_cb(mp, obj_cb_arg, obj, n);
157 n++;
158 }
159
160 return n;
161 }
162
163 /* call mem_cb() for each mempool memory chunk */
164 uint32_t
165 rte_mempool_mem_iter(struct rte_mempool *mp,
166 rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
167 {
168 struct rte_mempool_memhdr *hdr;
169 unsigned n = 0;
170
171 STAILQ_FOREACH(hdr, &mp->mem_list, next) {
172 mem_cb(mp, mem_cb_arg, hdr, n);
173 n++;
174 }
175
176 return n;
177 }
178
179 /* get the header, trailer and total size of a mempool element. */
180 uint32_t
181 rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
182 struct rte_mempool_objsz *sz)
183 {
184 struct rte_mempool_objsz lsz;
185
186 sz = (sz != NULL) ? sz : &lsz;
187
188 sz->header_size = sizeof(struct rte_mempool_objhdr);
189 if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
190 sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
191 RTE_MEMPOOL_ALIGN);
192
193 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
194 sz->trailer_size = sizeof(struct rte_mempool_objtlr);
195 #else
196 sz->trailer_size = 0;
197 #endif
198
199 /* element size is 8 bytes-aligned at least */
200 sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
201
202 /* expand trailer to next cache line */
203 if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
204 sz->total_size = sz->header_size + sz->elt_size +
205 sz->trailer_size;
206 sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
207 (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
208 RTE_MEMPOOL_ALIGN_MASK);
209 }
210
211 /*
212 * increase trailer to add padding between objects in order to
213 * spread them across memory channels/ranks
214 */
215 if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
216 unsigned new_size;
217 new_size = optimize_object_size(sz->header_size + sz->elt_size +
218 sz->trailer_size);
219 sz->trailer_size = new_size - sz->header_size - sz->elt_size;
220 }
221
222 /* this is the size of an object, including header and trailer */
223 sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
224
225 return sz->total_size;
226 }
227
228 /* free a memchunk allocated with rte_memzone_reserve() */
229 static void
230 rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
231 void *opaque)
232 {
233 const struct rte_memzone *mz = opaque;
234 rte_memzone_free(mz);
235 }
236
237 /* Free memory chunks used by a mempool. Objects must be in pool */
238 static void
239 rte_mempool_free_memchunks(struct rte_mempool *mp)
240 {
241 struct rte_mempool_memhdr *memhdr;
242 void *elt;
243
244 while (!STAILQ_EMPTY(&mp->elt_list)) {
245 rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
246 (void)elt;
247 STAILQ_REMOVE_HEAD(&mp->elt_list, next);
248 mp->populated_size--;
249 }
250
251 while (!STAILQ_EMPTY(&mp->mem_list)) {
252 memhdr = STAILQ_FIRST(&mp->mem_list);
253 STAILQ_REMOVE_HEAD(&mp->mem_list, next);
254 if (memhdr->free_cb != NULL)
255 memhdr->free_cb(memhdr, memhdr->opaque);
256 rte_free(memhdr);
257 mp->nb_mem_chunks--;
258 }
259 }
260
261 static int
262 mempool_ops_alloc_once(struct rte_mempool *mp)
263 {
264 int ret;
265
266 /* create the internal ring if not already done */
267 if ((mp->flags & MEMPOOL_F_POOL_CREATED) == 0) {
268 ret = rte_mempool_ops_alloc(mp);
269 if (ret != 0)
270 return ret;
271 mp->flags |= MEMPOOL_F_POOL_CREATED;
272 }
273 return 0;
274 }
275
276 /* Add objects in the pool, using a physically contiguous memory
277 * zone. Return the number of objects added, or a negative value
278 * on error.
279 */
280 int
281 rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
282 rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
283 void *opaque)
284 {
285 unsigned i = 0;
286 size_t off;
287 struct rte_mempool_memhdr *memhdr;
288 int ret;
289
290 ret = mempool_ops_alloc_once(mp);
291 if (ret != 0)
292 return ret;
293
294 /* mempool is already populated */
295 if (mp->populated_size >= mp->size)
296 return -ENOSPC;
297
298 memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
299 if (memhdr == NULL)
300 return -ENOMEM;
301
302 memhdr->mp = mp;
303 memhdr->addr = vaddr;
304 memhdr->iova = iova;
305 memhdr->len = len;
306 memhdr->free_cb = free_cb;
307 memhdr->opaque = opaque;
308
309 if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN)
310 off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
311 else
312 off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_CACHE_LINE_SIZE) - vaddr;
313
314 if (off > len) {
315 ret = -EINVAL;
316 goto fail;
317 }
318
319 i = rte_mempool_ops_populate(mp, mp->size - mp->populated_size,
320 (char *)vaddr + off,
321 (iova == RTE_BAD_IOVA) ? RTE_BAD_IOVA : (iova + off),
322 len - off, mempool_add_elem, NULL);
323
324 /* not enough room to store one object */
325 if (i == 0) {
326 ret = -EINVAL;
327 goto fail;
328 }
329
330 STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
331 mp->nb_mem_chunks++;
332 return i;
333
334 fail:
335 rte_free(memhdr);
336 return ret;
337 }
338
339 /* Populate the mempool with a virtual area. Return the number of
340 * objects added, or a negative value on error.
341 */
342 int
343 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
344 size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
345 void *opaque)
346 {
347 rte_iova_t iova;
348 size_t off, phys_len;
349 int ret, cnt = 0;
350
351 /* address and len must be page-aligned */
352 if (RTE_PTR_ALIGN_CEIL(addr, pg_sz) != addr)
353 return -EINVAL;
354 if (RTE_ALIGN_CEIL(len, pg_sz) != len)
355 return -EINVAL;
356
357 if (mp->flags & MEMPOOL_F_NO_IOVA_CONTIG)
358 return rte_mempool_populate_iova(mp, addr, RTE_BAD_IOVA,
359 len, free_cb, opaque);
360
361 for (off = 0; off + pg_sz <= len &&
362 mp->populated_size < mp->size; off += phys_len) {
363
364 iova = rte_mem_virt2iova(addr + off);
365
366 if (iova == RTE_BAD_IOVA && rte_eal_has_hugepages()) {
367 ret = -EINVAL;
368 goto fail;
369 }
370
371 /* populate with the largest group of contiguous pages */
372 for (phys_len = pg_sz; off + phys_len < len; phys_len += pg_sz) {
373 rte_iova_t iova_tmp;
374
375 iova_tmp = rte_mem_virt2iova(addr + off + phys_len);
376
377 if (iova_tmp != iova + phys_len)
378 break;
379 }
380
381 ret = rte_mempool_populate_iova(mp, addr + off, iova,
382 phys_len, free_cb, opaque);
383 if (ret < 0)
384 goto fail;
385 /* no need to call the free callback for next chunks */
386 free_cb = NULL;
387 cnt += ret;
388 }
389
390 return cnt;
391
392 fail:
393 rte_mempool_free_memchunks(mp);
394 return ret;
395 }
396
397 /* Default function to populate the mempool: allocate memory in memzones,
398 * and populate them. Return the number of objects added, or a negative
399 * value on error.
400 */
401 int
402 rte_mempool_populate_default(struct rte_mempool *mp)
403 {
404 unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
405 char mz_name[RTE_MEMZONE_NAMESIZE];
406 const struct rte_memzone *mz;
407 ssize_t mem_size;
408 size_t align, pg_sz, pg_shift;
409 rte_iova_t iova;
410 unsigned mz_id, n;
411 int ret;
412 bool no_contig, try_contig, no_pageshift;
413
414 ret = mempool_ops_alloc_once(mp);
415 if (ret != 0)
416 return ret;
417
418 /* mempool must not be populated */
419 if (mp->nb_mem_chunks != 0)
420 return -EEXIST;
421
422 no_contig = mp->flags & MEMPOOL_F_NO_IOVA_CONTIG;
423
424 /*
425 * the following section calculates page shift and page size values.
426 *
427 * these values impact the result of calc_mem_size operation, which
428 * returns the amount of memory that should be allocated to store the
429 * desired number of objects. when not zero, it allocates more memory
430 * for the padding between objects, to ensure that an object does not
431 * cross a page boundary. in other words, page size/shift are to be set
432 * to zero if mempool elements won't care about page boundaries.
433 * there are several considerations for page size and page shift here.
434 *
435 * if we don't need our mempools to have physically contiguous objects,
436 * then just set page shift and page size to 0, because the user has
437 * indicated that there's no need to care about anything.
438 *
439 * if we do need contiguous objects, there is also an option to reserve
440 * the entire mempool memory as one contiguous block of memory, in
441 * which case the page shift and alignment wouldn't matter as well.
442 *
443 * if we require contiguous objects, but not necessarily the entire
444 * mempool reserved space to be contiguous, then there are two options.
445 *
446 * if our IO addresses are virtual, not actual physical (IOVA as VA
447 * case), then no page shift needed - our memory allocation will give us
448 * contiguous IO memory as far as the hardware is concerned, so
449 * act as if we're getting contiguous memory.
450 *
451 * if our IO addresses are physical, we may get memory from bigger
452 * pages, or we might get memory from smaller pages, and how much of it
453 * we require depends on whether we want bigger or smaller pages.
454 * However, requesting each and every memory size is too much work, so
455 * what we'll do instead is walk through the page sizes available, pick
456 * the smallest one and set up page shift to match that one. We will be
457 * wasting some space this way, but it's much nicer than looping around
458 * trying to reserve each and every page size.
459 *
460 * However, since size calculation will produce page-aligned sizes, it
461 * makes sense to first try and see if we can reserve the entire memzone
462 * in one contiguous chunk as well (otherwise we might end up wasting a
463 * 1G page on a 10MB memzone). If we fail to get enough contiguous
464 * memory, then we'll go and reserve space page-by-page.
465 */
466 no_pageshift = no_contig || rte_eal_iova_mode() == RTE_IOVA_VA;
467 try_contig = !no_contig && !no_pageshift && rte_eal_has_hugepages();
468
469 if (no_pageshift) {
470 pg_sz = 0;
471 pg_shift = 0;
472 } else if (try_contig) {
473 pg_sz = get_min_page_size();
474 pg_shift = rte_bsf32(pg_sz);
475 } else {
476 pg_sz = getpagesize();
477 pg_shift = rte_bsf32(pg_sz);
478 }
479
480 for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
481 size_t min_chunk_size;
482 unsigned int flags;
483
484 if (try_contig || no_pageshift)
485 mem_size = rte_mempool_ops_calc_mem_size(mp, n,
486 0, &min_chunk_size, &align);
487 else
488 mem_size = rte_mempool_ops_calc_mem_size(mp, n,
489 pg_shift, &min_chunk_size, &align);
490
491 if (mem_size < 0) {
492 ret = mem_size;
493 goto fail;
494 }
495
496 ret = snprintf(mz_name, sizeof(mz_name),
497 RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
498 if (ret < 0 || ret >= (int)sizeof(mz_name)) {
499 ret = -ENAMETOOLONG;
500 goto fail;
501 }
502
503 flags = mz_flags;
504
505 /* if we're trying to reserve contiguous memory, add appropriate
506 * memzone flag.
507 */
508 if (try_contig)
509 flags |= RTE_MEMZONE_IOVA_CONTIG;
510
511 mz = rte_memzone_reserve_aligned(mz_name, mem_size,
512 mp->socket_id, flags, align);
513
514 /* if we were trying to allocate contiguous memory, failed and
515 * minimum required contiguous chunk fits minimum page, adjust
516 * memzone size to the page size, and try again.
517 */
518 if (mz == NULL && try_contig && min_chunk_size <= pg_sz) {
519 try_contig = false;
520 flags &= ~RTE_MEMZONE_IOVA_CONTIG;
521
522 mem_size = rte_mempool_ops_calc_mem_size(mp, n,
523 pg_shift, &min_chunk_size, &align);
524 if (mem_size < 0) {
525 ret = mem_size;
526 goto fail;
527 }
528
529 mz = rte_memzone_reserve_aligned(mz_name, mem_size,
530 mp->socket_id, flags, align);
531 }
532 /* don't try reserving with 0 size if we were asked to reserve
533 * IOVA-contiguous memory.
534 */
535 if (min_chunk_size < (size_t)mem_size && mz == NULL) {
536 /* not enough memory, retry with the biggest zone we
537 * have
538 */
539 mz = rte_memzone_reserve_aligned(mz_name, 0,
540 mp->socket_id, flags,
541 RTE_MAX(pg_sz, align));
542 }
543 if (mz == NULL) {
544 ret = -rte_errno;
545 goto fail;
546 }
547
548 if (mz->len < min_chunk_size) {
549 rte_memzone_free(mz);
550 ret = -ENOMEM;
551 goto fail;
552 }
553
554 if (no_contig)
555 iova = RTE_BAD_IOVA;
556 else
557 iova = mz->iova;
558
559 if (no_pageshift || try_contig)
560 ret = rte_mempool_populate_iova(mp, mz->addr,
561 iova, mz->len,
562 rte_mempool_memchunk_mz_free,
563 (void *)(uintptr_t)mz);
564 else
565 ret = rte_mempool_populate_virt(mp, mz->addr,
566 RTE_ALIGN_FLOOR(mz->len, pg_sz), pg_sz,
567 rte_mempool_memchunk_mz_free,
568 (void *)(uintptr_t)mz);
569 if (ret < 0) {
570 rte_memzone_free(mz);
571 goto fail;
572 }
573 }
574
575 return mp->size;
576
577 fail:
578 rte_mempool_free_memchunks(mp);
579 return ret;
580 }
581
582 /* return the memory size required for mempool objects in anonymous mem */
583 static ssize_t
584 get_anon_size(const struct rte_mempool *mp)
585 {
586 ssize_t size;
587 size_t pg_sz, pg_shift;
588 size_t min_chunk_size;
589 size_t align;
590
591 pg_sz = getpagesize();
592 pg_shift = rte_bsf32(pg_sz);
593 size = rte_mempool_ops_calc_mem_size(mp, mp->size, pg_shift,
594 &min_chunk_size, &align);
595
596 return size;
597 }
598
599 /* unmap a memory zone mapped by rte_mempool_populate_anon() */
600 static void
601 rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
602 void *opaque)
603 {
604 ssize_t size;
605
606 /*
607 * Calculate size since memhdr->len has contiguous chunk length
608 * which may be smaller if anon map is split into many contiguous
609 * chunks. Result must be the same as we calculated on populate.
610 */
611 size = get_anon_size(memhdr->mp);
612 if (size < 0)
613 return;
614
615 munmap(opaque, size);
616 }
617
618 /* populate the mempool with an anonymous mapping */
619 int
620 rte_mempool_populate_anon(struct rte_mempool *mp)
621 {
622 ssize_t size;
623 int ret;
624 char *addr;
625
626 /* mempool is already populated, error */
627 if ((!STAILQ_EMPTY(&mp->mem_list)) || mp->nb_mem_chunks != 0) {
628 rte_errno = EINVAL;
629 return 0;
630 }
631
632 ret = mempool_ops_alloc_once(mp);
633 if (ret != 0)
634 return ret;
635
636 size = get_anon_size(mp);
637 if (size < 0) {
638 rte_errno = -size;
639 return 0;
640 }
641
642 /* get chunk of virtually continuous memory */
643 addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
644 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
645 if (addr == MAP_FAILED) {
646 rte_errno = errno;
647 return 0;
648 }
649 /* can't use MMAP_LOCKED, it does not exist on BSD */
650 if (mlock(addr, size) < 0) {
651 rte_errno = errno;
652 munmap(addr, size);
653 return 0;
654 }
655
656 ret = rte_mempool_populate_virt(mp, addr, size, getpagesize(),
657 rte_mempool_memchunk_anon_free, addr);
658 if (ret == 0)
659 goto fail;
660
661 return mp->populated_size;
662
663 fail:
664 rte_mempool_free_memchunks(mp);
665 return 0;
666 }
667
668 /* free a mempool */
669 void
670 rte_mempool_free(struct rte_mempool *mp)
671 {
672 struct rte_mempool_list *mempool_list = NULL;
673 struct rte_tailq_entry *te;
674
675 if (mp == NULL)
676 return;
677
678 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
679 rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
680 /* find out tailq entry */
681 TAILQ_FOREACH(te, mempool_list, next) {
682 if (te->data == (void *)mp)
683 break;
684 }
685
686 if (te != NULL) {
687 TAILQ_REMOVE(mempool_list, te, next);
688 rte_free(te);
689 }
690 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
691
692 rte_mempool_free_memchunks(mp);
693 rte_mempool_ops_free(mp);
694 rte_memzone_free(mp->mz);
695 }
696
697 static void
698 mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
699 {
700 cache->size = size;
701 cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
702 cache->len = 0;
703 }
704
705 /*
706 * Create and initialize a cache for objects that are retrieved from and
707 * returned to an underlying mempool. This structure is identical to the
708 * local_cache[lcore_id] pointed to by the mempool structure.
709 */
710 struct rte_mempool_cache *
711 rte_mempool_cache_create(uint32_t size, int socket_id)
712 {
713 struct rte_mempool_cache *cache;
714
715 if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
716 rte_errno = EINVAL;
717 return NULL;
718 }
719
720 cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
721 RTE_CACHE_LINE_SIZE, socket_id);
722 if (cache == NULL) {
723 RTE_LOG(ERR, MEMPOOL, "Cannot allocate mempool cache.\n");
724 rte_errno = ENOMEM;
725 return NULL;
726 }
727
728 mempool_cache_init(cache, size);
729
730 return cache;
731 }
732
733 /*
734 * Free a cache. It's the responsibility of the user to make sure that any
735 * remaining objects in the cache are flushed to the corresponding
736 * mempool.
737 */
738 void
739 rte_mempool_cache_free(struct rte_mempool_cache *cache)
740 {
741 rte_free(cache);
742 }
743
744 /* create an empty mempool */
745 struct rte_mempool *
746 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
747 unsigned cache_size, unsigned private_data_size,
748 int socket_id, unsigned flags)
749 {
750 char mz_name[RTE_MEMZONE_NAMESIZE];
751 struct rte_mempool_list *mempool_list;
752 struct rte_mempool *mp = NULL;
753 struct rte_tailq_entry *te = NULL;
754 const struct rte_memzone *mz = NULL;
755 size_t mempool_size;
756 unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
757 struct rte_mempool_objsz objsz;
758 unsigned lcore_id;
759 int ret;
760
761 /* compilation-time checks */
762 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
763 RTE_CACHE_LINE_MASK) != 0);
764 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
765 RTE_CACHE_LINE_MASK) != 0);
766 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
767 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
768 RTE_CACHE_LINE_MASK) != 0);
769 RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
770 RTE_CACHE_LINE_MASK) != 0);
771 #endif
772
773 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
774
775 /* asked for zero items */
776 if (n == 0) {
777 rte_errno = EINVAL;
778 return NULL;
779 }
780
781 /* asked cache too big */
782 if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
783 CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
784 rte_errno = EINVAL;
785 return NULL;
786 }
787
788 /* "no cache align" imply "no spread" */
789 if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
790 flags |= MEMPOOL_F_NO_SPREAD;
791
792 /* calculate mempool object sizes. */
793 if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
794 rte_errno = EINVAL;
795 return NULL;
796 }
797
798 rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK);
799
800 /*
801 * reserve a memory zone for this mempool: private data is
802 * cache-aligned
803 */
804 private_data_size = (private_data_size +
805 RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
806
807
808 /* try to allocate tailq entry */
809 te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
810 if (te == NULL) {
811 RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
812 goto exit_unlock;
813 }
814
815 mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size);
816 mempool_size += private_data_size;
817 mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
818
819 ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
820 if (ret < 0 || ret >= (int)sizeof(mz_name)) {
821 rte_errno = ENAMETOOLONG;
822 goto exit_unlock;
823 }
824
825 mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
826 if (mz == NULL)
827 goto exit_unlock;
828
829 /* init the mempool structure */
830 mp = mz->addr;
831 memset(mp, 0, MEMPOOL_HEADER_SIZE(mp, cache_size));
832 ret = snprintf(mp->name, sizeof(mp->name), "%s", name);
833 if (ret < 0 || ret >= (int)sizeof(mp->name)) {
834 rte_errno = ENAMETOOLONG;
835 goto exit_unlock;
836 }
837 mp->mz = mz;
838 mp->size = n;
839 mp->flags = flags;
840 mp->socket_id = socket_id;
841 mp->elt_size = objsz.elt_size;
842 mp->header_size = objsz.header_size;
843 mp->trailer_size = objsz.trailer_size;
844 /* Size of default caches, zero means disabled. */
845 mp->cache_size = cache_size;
846 mp->private_data_size = private_data_size;
847 STAILQ_INIT(&mp->elt_list);
848 STAILQ_INIT(&mp->mem_list);
849
850 /*
851 * local_cache pointer is set even if cache_size is zero.
852 * The local_cache points to just past the elt_pa[] array.
853 */
854 mp->local_cache = (struct rte_mempool_cache *)
855 RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0));
856
857 /* Init all default caches. */
858 if (cache_size != 0) {
859 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
860 mempool_cache_init(&mp->local_cache[lcore_id],
861 cache_size);
862 }
863
864 te->data = mp;
865
866 rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
867 TAILQ_INSERT_TAIL(mempool_list, te, next);
868 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
869 rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
870
871 return mp;
872
873 exit_unlock:
874 rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
875 rte_free(te);
876 rte_mempool_free(mp);
877 return NULL;
878 }
879
880 /* create the mempool */
881 struct rte_mempool *
882 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
883 unsigned cache_size, unsigned private_data_size,
884 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
885 rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
886 int socket_id, unsigned flags)
887 {
888 int ret;
889 struct rte_mempool *mp;
890
891 mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
892 private_data_size, socket_id, flags);
893 if (mp == NULL)
894 return NULL;
895
896 /*
897 * Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
898 * set the correct index into the table of ops structs.
899 */
900 if ((flags & MEMPOOL_F_SP_PUT) && (flags & MEMPOOL_F_SC_GET))
901 ret = rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
902 else if (flags & MEMPOOL_F_SP_PUT)
903 ret = rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
904 else if (flags & MEMPOOL_F_SC_GET)
905 ret = rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
906 else
907 ret = rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);
908
909 if (ret)
910 goto fail;
911
912 /* call the mempool priv initializer */
913 if (mp_init)
914 mp_init(mp, mp_init_arg);
915
916 if (rte_mempool_populate_default(mp) < 0)
917 goto fail;
918
919 /* call the object initializers */
920 if (obj_init)
921 rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
922
923 return mp;
924
925 fail:
926 rte_mempool_free(mp);
927 return NULL;
928 }
929
930 /* Return the number of entries in the mempool */
931 unsigned int
932 rte_mempool_avail_count(const struct rte_mempool *mp)
933 {
934 unsigned count;
935 unsigned lcore_id;
936
937 count = rte_mempool_ops_get_count(mp);
938
939 if (mp->cache_size == 0)
940 return count;
941
942 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
943 count += mp->local_cache[lcore_id].len;
944
945 /*
946 * due to race condition (access to len is not locked), the
947 * total can be greater than size... so fix the result
948 */
949 if (count > mp->size)
950 return mp->size;
951 return count;
952 }
953
954 /* return the number of entries allocated from the mempool */
955 unsigned int
956 rte_mempool_in_use_count(const struct rte_mempool *mp)
957 {
958 return mp->size - rte_mempool_avail_count(mp);
959 }
960
961 /* dump the cache status */
962 static unsigned
963 rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
964 {
965 unsigned lcore_id;
966 unsigned count = 0;
967 unsigned cache_count;
968
969 fprintf(f, " internal cache infos:\n");
970 fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size);
971
972 if (mp->cache_size == 0)
973 return count;
974
975 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
976 cache_count = mp->local_cache[lcore_id].len;
977 fprintf(f, " cache_count[%u]=%"PRIu32"\n",
978 lcore_id, cache_count);
979 count += cache_count;
980 }
981 fprintf(f, " total_cache_count=%u\n", count);
982 return count;
983 }
984
985 #ifndef __INTEL_COMPILER
986 #pragma GCC diagnostic ignored "-Wcast-qual"
987 #endif
988
989 /* check and update cookies or panic (internal) */
990 void rte_mempool_check_cookies(const struct rte_mempool *mp,
991 void * const *obj_table_const, unsigned n, int free)
992 {
993 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
994 struct rte_mempool_objhdr *hdr;
995 struct rte_mempool_objtlr *tlr;
996 uint64_t cookie;
997 void *tmp;
998 void *obj;
999 void **obj_table;
1000
1001 /* Force to drop the "const" attribute. This is done only when
1002 * DEBUG is enabled */
1003 tmp = (void *) obj_table_const;
1004 obj_table = tmp;
1005
1006 while (n--) {
1007 obj = obj_table[n];
1008
1009 if (rte_mempool_from_obj(obj) != mp)
1010 rte_panic("MEMPOOL: object is owned by another "
1011 "mempool\n");
1012
1013 hdr = __mempool_get_header(obj);
1014 cookie = hdr->cookie;
1015
1016 if (free == 0) {
1017 if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
1018 RTE_LOG(CRIT, MEMPOOL,
1019 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1020 obj, (const void *) mp, cookie);
1021 rte_panic("MEMPOOL: bad header cookie (put)\n");
1022 }
1023 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
1024 } else if (free == 1) {
1025 if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1026 RTE_LOG(CRIT, MEMPOOL,
1027 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1028 obj, (const void *) mp, cookie);
1029 rte_panic("MEMPOOL: bad header cookie (get)\n");
1030 }
1031 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
1032 } else if (free == 2) {
1033 if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
1034 cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1035 RTE_LOG(CRIT, MEMPOOL,
1036 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1037 obj, (const void *) mp, cookie);
1038 rte_panic("MEMPOOL: bad header cookie (audit)\n");
1039 }
1040 }
1041 tlr = __mempool_get_trailer(obj);
1042 cookie = tlr->cookie;
1043 if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
1044 RTE_LOG(CRIT, MEMPOOL,
1045 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1046 obj, (const void *) mp, cookie);
1047 rte_panic("MEMPOOL: bad trailer cookie\n");
1048 }
1049 }
1050 #else
1051 RTE_SET_USED(mp);
1052 RTE_SET_USED(obj_table_const);
1053 RTE_SET_USED(n);
1054 RTE_SET_USED(free);
1055 #endif
1056 }
1057
1058 void
1059 rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
1060 void * const *first_obj_table_const, unsigned int n, int free)
1061 {
1062 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1063 struct rte_mempool_info info;
1064 const size_t total_elt_sz =
1065 mp->header_size + mp->elt_size + mp->trailer_size;
1066 unsigned int i, j;
1067
1068 rte_mempool_ops_get_info(mp, &info);
1069
1070 for (i = 0; i < n; ++i) {
1071 void *first_obj = first_obj_table_const[i];
1072
1073 for (j = 0; j < info.contig_block_size; ++j) {
1074 void *obj;
1075
1076 obj = (void *)((uintptr_t)first_obj + j * total_elt_sz);
1077 rte_mempool_check_cookies(mp, &obj, 1, free);
1078 }
1079 }
1080 #else
1081 RTE_SET_USED(mp);
1082 RTE_SET_USED(first_obj_table_const);
1083 RTE_SET_USED(n);
1084 RTE_SET_USED(free);
1085 #endif
1086 }
1087
1088 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1089 static void
1090 mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
1091 void *obj, __rte_unused unsigned idx)
1092 {
1093 __mempool_check_cookies(mp, &obj, 1, 2);
1094 }
1095
1096 static void
1097 mempool_audit_cookies(struct rte_mempool *mp)
1098 {
1099 unsigned num;
1100
1101 num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
1102 if (num != mp->size) {
1103 rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
1104 "iterated only over %u elements\n",
1105 mp, mp->size, num);
1106 }
1107 }
1108 #else
1109 #define mempool_audit_cookies(mp) do {} while(0)
1110 #endif
1111
1112 #ifndef __INTEL_COMPILER
1113 #pragma GCC diagnostic error "-Wcast-qual"
1114 #endif
1115
1116 /* check cookies before and after objects */
1117 static void
1118 mempool_audit_cache(const struct rte_mempool *mp)
1119 {
1120 /* check cache size consistency */
1121 unsigned lcore_id;
1122
1123 if (mp->cache_size == 0)
1124 return;
1125
1126 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1127 const struct rte_mempool_cache *cache;
1128 cache = &mp->local_cache[lcore_id];
1129 if (cache->len > cache->flushthresh) {
1130 RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
1131 lcore_id);
1132 rte_panic("MEMPOOL: invalid cache len\n");
1133 }
1134 }
1135 }
1136
1137 /* check the consistency of mempool (size, cookies, ...) */
1138 void
1139 rte_mempool_audit(struct rte_mempool *mp)
1140 {
1141 mempool_audit_cache(mp);
1142 mempool_audit_cookies(mp);
1143
1144 /* For case where mempool DEBUG is not set, and cache size is 0 */
1145 RTE_SET_USED(mp);
1146 }
1147
1148 /* dump the status of the mempool on the console */
1149 void
1150 rte_mempool_dump(FILE *f, struct rte_mempool *mp)
1151 {
1152 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1153 struct rte_mempool_info info;
1154 struct rte_mempool_debug_stats sum;
1155 unsigned lcore_id;
1156 #endif
1157 struct rte_mempool_memhdr *memhdr;
1158 unsigned common_count;
1159 unsigned cache_count;
1160 size_t mem_len = 0;
1161
1162 RTE_ASSERT(f != NULL);
1163 RTE_ASSERT(mp != NULL);
1164
1165 fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
1166 fprintf(f, " flags=%x\n", mp->flags);
1167 fprintf(f, " pool=%p\n", mp->pool_data);
1168 fprintf(f, " iova=0x%" PRIx64 "\n", mp->mz->iova);
1169 fprintf(f, " nb_mem_chunks=%u\n", mp->nb_mem_chunks);
1170 fprintf(f, " size=%"PRIu32"\n", mp->size);
1171 fprintf(f, " populated_size=%"PRIu32"\n", mp->populated_size);
1172 fprintf(f, " header_size=%"PRIu32"\n", mp->header_size);
1173 fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size);
1174 fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size);
1175 fprintf(f, " total_obj_size=%"PRIu32"\n",
1176 mp->header_size + mp->elt_size + mp->trailer_size);
1177
1178 fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size);
1179
1180 STAILQ_FOREACH(memhdr, &mp->mem_list, next)
1181 mem_len += memhdr->len;
1182 if (mem_len != 0) {
1183 fprintf(f, " avg bytes/object=%#Lf\n",
1184 (long double)mem_len / mp->size);
1185 }
1186
1187 cache_count = rte_mempool_dump_cache(f, mp);
1188 common_count = rte_mempool_ops_get_count(mp);
1189 if ((cache_count + common_count) > mp->size)
1190 common_count = mp->size - cache_count;
1191 fprintf(f, " common_pool_count=%u\n", common_count);
1192
1193 /* sum and dump statistics */
1194 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1195 rte_mempool_ops_get_info(mp, &info);
1196 memset(&sum, 0, sizeof(sum));
1197 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1198 sum.put_bulk += mp->stats[lcore_id].put_bulk;
1199 sum.put_objs += mp->stats[lcore_id].put_objs;
1200 sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
1201 sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
1202 sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
1203 sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
1204 sum.get_success_blks += mp->stats[lcore_id].get_success_blks;
1205 sum.get_fail_blks += mp->stats[lcore_id].get_fail_blks;
1206 }
1207 fprintf(f, " stats:\n");
1208 fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk);
1209 fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs);
1210 fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
1211 fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs);
1212 fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
1213 fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
1214 if (info.contig_block_size > 0) {
1215 fprintf(f, " get_success_blks=%"PRIu64"\n",
1216 sum.get_success_blks);
1217 fprintf(f, " get_fail_blks=%"PRIu64"\n", sum.get_fail_blks);
1218 }
1219 #else
1220 fprintf(f, " no statistics available\n");
1221 #endif
1222
1223 rte_mempool_audit(mp);
1224 }
1225
1226 /* dump the status of all mempools on the console */
1227 void
1228 rte_mempool_list_dump(FILE *f)
1229 {
1230 struct rte_mempool *mp = NULL;
1231 struct rte_tailq_entry *te;
1232 struct rte_mempool_list *mempool_list;
1233
1234 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1235
1236 rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1237
1238 TAILQ_FOREACH(te, mempool_list, next) {
1239 mp = (struct rte_mempool *) te->data;
1240 rte_mempool_dump(f, mp);
1241 }
1242
1243 rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1244 }
1245
1246 /* search a mempool from its name */
1247 struct rte_mempool *
1248 rte_mempool_lookup(const char *name)
1249 {
1250 struct rte_mempool *mp = NULL;
1251 struct rte_tailq_entry *te;
1252 struct rte_mempool_list *mempool_list;
1253
1254 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1255
1256 rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1257
1258 TAILQ_FOREACH(te, mempool_list, next) {
1259 mp = (struct rte_mempool *) te->data;
1260 if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
1261 break;
1262 }
1263
1264 rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1265
1266 if (te == NULL) {
1267 rte_errno = ENOENT;
1268 return NULL;
1269 }
1270
1271 return mp;
1272 }
1273
1274 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
1275 void *arg)
1276 {
1277 struct rte_tailq_entry *te = NULL;
1278 struct rte_mempool_list *mempool_list;
1279 void *tmp_te;
1280
1281 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1282
1283 rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1284
1285 TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
1286 (*func)((struct rte_mempool *) te->data, arg);
1287 }
1288
1289 rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1290 }