]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/dpdk/lib/librte_pipeline/rte_table_action.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / lib / librte_pipeline / rte_table_action.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2018 Intel Corporation
3 */
4 #include <stdlib.h>
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_byteorder.h>
9 #include <rte_cycles.h>
10 #include <rte_malloc.h>
11 #include <rte_memcpy.h>
12 #include <rte_ether.h>
13 #include <rte_ip.h>
14 #include <rte_esp.h>
15 #include <rte_tcp.h>
16 #include <rte_udp.h>
17 #include <rte_cryptodev.h>
18 #include <rte_cryptodev_pmd.h>
19
20 #include "rte_table_action.h"
21
22 #define rte_htons rte_cpu_to_be_16
23 #define rte_htonl rte_cpu_to_be_32
24
25 #define rte_ntohs rte_be_to_cpu_16
26 #define rte_ntohl rte_be_to_cpu_32
27
28 /**
29 * RTE_TABLE_ACTION_FWD
30 */
31 #define fwd_data rte_pipeline_table_entry
32
33 static int
34 fwd_apply(struct fwd_data *data,
35 struct rte_table_action_fwd_params *p)
36 {
37 data->action = p->action;
38
39 if (p->action == RTE_PIPELINE_ACTION_PORT)
40 data->port_id = p->id;
41
42 if (p->action == RTE_PIPELINE_ACTION_TABLE)
43 data->table_id = p->id;
44
45 return 0;
46 }
47
48 /**
49 * RTE_TABLE_ACTION_LB
50 */
51 static int
52 lb_cfg_check(struct rte_table_action_lb_config *cfg)
53 {
54 if ((cfg == NULL) ||
55 (cfg->key_size < RTE_TABLE_ACTION_LB_KEY_SIZE_MIN) ||
56 (cfg->key_size > RTE_TABLE_ACTION_LB_KEY_SIZE_MAX) ||
57 (!rte_is_power_of_2(cfg->key_size)) ||
58 (cfg->f_hash == NULL))
59 return -1;
60
61 return 0;
62 }
63
64 struct lb_data {
65 uint32_t out[RTE_TABLE_ACTION_LB_TABLE_SIZE];
66 } __attribute__((__packed__));
67
68 static int
69 lb_apply(struct lb_data *data,
70 struct rte_table_action_lb_params *p)
71 {
72 memcpy(data->out, p->out, sizeof(data->out));
73
74 return 0;
75 }
76
77 static __rte_always_inline void
78 pkt_work_lb(struct rte_mbuf *mbuf,
79 struct lb_data *data,
80 struct rte_table_action_lb_config *cfg)
81 {
82 uint8_t *pkt_key = RTE_MBUF_METADATA_UINT8_PTR(mbuf, cfg->key_offset);
83 uint32_t *out = RTE_MBUF_METADATA_UINT32_PTR(mbuf, cfg->out_offset);
84 uint64_t digest, pos;
85 uint32_t out_val;
86
87 digest = cfg->f_hash(pkt_key,
88 cfg->key_mask,
89 cfg->key_size,
90 cfg->seed);
91 pos = digest & (RTE_TABLE_ACTION_LB_TABLE_SIZE - 1);
92 out_val = data->out[pos];
93
94 *out = out_val;
95 }
96
97 /**
98 * RTE_TABLE_ACTION_MTR
99 */
100 static int
101 mtr_cfg_check(struct rte_table_action_mtr_config *mtr)
102 {
103 if ((mtr->alg == RTE_TABLE_ACTION_METER_SRTCM) ||
104 ((mtr->n_tc != 1) && (mtr->n_tc != 4)) ||
105 (mtr->n_bytes_enabled != 0))
106 return -ENOTSUP;
107 return 0;
108 }
109
110 struct mtr_trtcm_data {
111 struct rte_meter_trtcm trtcm;
112 uint64_t stats[RTE_COLORS];
113 } __attribute__((__packed__));
114
115 #define MTR_TRTCM_DATA_METER_PROFILE_ID_GET(data) \
116 (((data)->stats[RTE_COLOR_GREEN] & 0xF8LLU) >> 3)
117
118 static void
119 mtr_trtcm_data_meter_profile_id_set(struct mtr_trtcm_data *data,
120 uint32_t profile_id)
121 {
122 data->stats[RTE_COLOR_GREEN] &= ~0xF8LLU;
123 data->stats[RTE_COLOR_GREEN] |= (profile_id % 32) << 3;
124 }
125
126 #define MTR_TRTCM_DATA_POLICER_ACTION_DROP_GET(data, color)\
127 (((data)->stats[(color)] & 4LLU) >> 2)
128
129 #define MTR_TRTCM_DATA_POLICER_ACTION_COLOR_GET(data, color)\
130 ((enum rte_color)((data)->stats[(color)] & 3LLU))
131
132 static void
133 mtr_trtcm_data_policer_action_set(struct mtr_trtcm_data *data,
134 enum rte_color color,
135 enum rte_table_action_policer action)
136 {
137 if (action == RTE_TABLE_ACTION_POLICER_DROP) {
138 data->stats[color] |= 4LLU;
139 } else {
140 data->stats[color] &= ~7LLU;
141 data->stats[color] |= color & 3LLU;
142 }
143 }
144
145 static uint64_t
146 mtr_trtcm_data_stats_get(struct mtr_trtcm_data *data,
147 enum rte_color color)
148 {
149 return data->stats[color] >> 8;
150 }
151
152 static void
153 mtr_trtcm_data_stats_reset(struct mtr_trtcm_data *data,
154 enum rte_color color)
155 {
156 data->stats[color] &= 0xFFLU;
157 }
158
159 #define MTR_TRTCM_DATA_STATS_INC(data, color) \
160 ((data)->stats[(color)] += (1LLU << 8))
161
162 static size_t
163 mtr_data_size(struct rte_table_action_mtr_config *mtr)
164 {
165 return mtr->n_tc * sizeof(struct mtr_trtcm_data);
166 }
167
168 struct dscp_table_entry_data {
169 enum rte_color color;
170 uint16_t tc;
171 uint16_t tc_queue;
172 };
173
174 struct dscp_table_data {
175 struct dscp_table_entry_data entry[64];
176 };
177
178 struct meter_profile_data {
179 struct rte_meter_trtcm_profile profile;
180 uint32_t profile_id;
181 int valid;
182 };
183
184 static struct meter_profile_data *
185 meter_profile_data_find(struct meter_profile_data *mp,
186 uint32_t mp_size,
187 uint32_t profile_id)
188 {
189 uint32_t i;
190
191 for (i = 0; i < mp_size; i++) {
192 struct meter_profile_data *mp_data = &mp[i];
193
194 if (mp_data->valid && (mp_data->profile_id == profile_id))
195 return mp_data;
196 }
197
198 return NULL;
199 }
200
201 static struct meter_profile_data *
202 meter_profile_data_find_unused(struct meter_profile_data *mp,
203 uint32_t mp_size)
204 {
205 uint32_t i;
206
207 for (i = 0; i < mp_size; i++) {
208 struct meter_profile_data *mp_data = &mp[i];
209
210 if (!mp_data->valid)
211 return mp_data;
212 }
213
214 return NULL;
215 }
216
217 static int
218 mtr_apply_check(struct rte_table_action_mtr_params *p,
219 struct rte_table_action_mtr_config *cfg,
220 struct meter_profile_data *mp,
221 uint32_t mp_size)
222 {
223 uint32_t i;
224
225 if (p->tc_mask > RTE_LEN2MASK(cfg->n_tc, uint32_t))
226 return -EINVAL;
227
228 for (i = 0; i < RTE_TABLE_ACTION_TC_MAX; i++) {
229 struct rte_table_action_mtr_tc_params *p_tc = &p->mtr[i];
230 struct meter_profile_data *mp_data;
231
232 if ((p->tc_mask & (1LLU << i)) == 0)
233 continue;
234
235 mp_data = meter_profile_data_find(mp,
236 mp_size,
237 p_tc->meter_profile_id);
238 if (!mp_data)
239 return -EINVAL;
240 }
241
242 return 0;
243 }
244
245 static int
246 mtr_apply(struct mtr_trtcm_data *data,
247 struct rte_table_action_mtr_params *p,
248 struct rte_table_action_mtr_config *cfg,
249 struct meter_profile_data *mp,
250 uint32_t mp_size)
251 {
252 uint32_t i;
253 int status;
254
255 /* Check input arguments */
256 status = mtr_apply_check(p, cfg, mp, mp_size);
257 if (status)
258 return status;
259
260 /* Apply */
261 for (i = 0; i < RTE_TABLE_ACTION_TC_MAX; i++) {
262 struct rte_table_action_mtr_tc_params *p_tc = &p->mtr[i];
263 struct mtr_trtcm_data *data_tc = &data[i];
264 struct meter_profile_data *mp_data;
265
266 if ((p->tc_mask & (1LLU << i)) == 0)
267 continue;
268
269 /* Find profile */
270 mp_data = meter_profile_data_find(mp,
271 mp_size,
272 p_tc->meter_profile_id);
273 if (!mp_data)
274 return -EINVAL;
275
276 memset(data_tc, 0, sizeof(*data_tc));
277
278 /* Meter object */
279 status = rte_meter_trtcm_config(&data_tc->trtcm,
280 &mp_data->profile);
281 if (status)
282 return status;
283
284 /* Meter profile */
285 mtr_trtcm_data_meter_profile_id_set(data_tc,
286 mp_data - mp);
287
288 /* Policer actions */
289 mtr_trtcm_data_policer_action_set(data_tc,
290 RTE_COLOR_GREEN,
291 p_tc->policer[RTE_COLOR_GREEN]);
292
293 mtr_trtcm_data_policer_action_set(data_tc,
294 RTE_COLOR_YELLOW,
295 p_tc->policer[RTE_COLOR_YELLOW]);
296
297 mtr_trtcm_data_policer_action_set(data_tc,
298 RTE_COLOR_RED,
299 p_tc->policer[RTE_COLOR_RED]);
300 }
301
302 return 0;
303 }
304
305 static __rte_always_inline uint64_t
306 pkt_work_mtr(struct rte_mbuf *mbuf,
307 struct mtr_trtcm_data *data,
308 struct dscp_table_data *dscp_table,
309 struct meter_profile_data *mp,
310 uint64_t time,
311 uint32_t dscp,
312 uint16_t total_length)
313 {
314 uint64_t drop_mask;
315 struct dscp_table_entry_data *dscp_entry = &dscp_table->entry[dscp];
316 enum rte_color color_in, color_meter, color_policer;
317 uint32_t tc, mp_id;
318
319 tc = dscp_entry->tc;
320 color_in = dscp_entry->color;
321 data += tc;
322 mp_id = MTR_TRTCM_DATA_METER_PROFILE_ID_GET(data);
323
324 /* Meter */
325 color_meter = rte_meter_trtcm_color_aware_check(
326 &data->trtcm,
327 &mp[mp_id].profile,
328 time,
329 total_length,
330 color_in);
331
332 /* Stats */
333 MTR_TRTCM_DATA_STATS_INC(data, color_meter);
334
335 /* Police */
336 drop_mask = MTR_TRTCM_DATA_POLICER_ACTION_DROP_GET(data, color_meter);
337 color_policer =
338 MTR_TRTCM_DATA_POLICER_ACTION_COLOR_GET(data, color_meter);
339 rte_mbuf_sched_color_set(mbuf, (uint8_t)color_policer);
340
341 return drop_mask;
342 }
343
344 /**
345 * RTE_TABLE_ACTION_TM
346 */
347 static int
348 tm_cfg_check(struct rte_table_action_tm_config *tm)
349 {
350 if ((tm->n_subports_per_port == 0) ||
351 (rte_is_power_of_2(tm->n_subports_per_port) == 0) ||
352 (tm->n_subports_per_port > UINT16_MAX) ||
353 (tm->n_pipes_per_subport == 0) ||
354 (rte_is_power_of_2(tm->n_pipes_per_subport) == 0))
355 return -ENOTSUP;
356
357 return 0;
358 }
359
360 struct tm_data {
361 uint32_t queue_id;
362 uint32_t reserved;
363 } __attribute__((__packed__));
364
365 static int
366 tm_apply_check(struct rte_table_action_tm_params *p,
367 struct rte_table_action_tm_config *cfg)
368 {
369 if ((p->subport_id >= cfg->n_subports_per_port) ||
370 (p->pipe_id >= cfg->n_pipes_per_subport))
371 return -EINVAL;
372
373 return 0;
374 }
375
376 static int
377 tm_apply(struct tm_data *data,
378 struct rte_table_action_tm_params *p,
379 struct rte_table_action_tm_config *cfg)
380 {
381 int status;
382
383 /* Check input arguments */
384 status = tm_apply_check(p, cfg);
385 if (status)
386 return status;
387
388 /* Apply */
389 data->queue_id = p->subport_id <<
390 (__builtin_ctz(cfg->n_pipes_per_subport) + 4) |
391 p->pipe_id << 4;
392
393 return 0;
394 }
395
396 static __rte_always_inline void
397 pkt_work_tm(struct rte_mbuf *mbuf,
398 struct tm_data *data,
399 struct dscp_table_data *dscp_table,
400 uint32_t dscp)
401 {
402 struct dscp_table_entry_data *dscp_entry = &dscp_table->entry[dscp];
403 uint32_t queue_id = data->queue_id |
404 (dscp_entry->tc << 2) |
405 dscp_entry->tc_queue;
406 rte_mbuf_sched_set(mbuf, queue_id, dscp_entry->tc,
407 (uint8_t)dscp_entry->color);
408 }
409
410 /**
411 * RTE_TABLE_ACTION_ENCAP
412 */
413 static int
414 encap_valid(enum rte_table_action_encap_type encap)
415 {
416 switch (encap) {
417 case RTE_TABLE_ACTION_ENCAP_ETHER:
418 case RTE_TABLE_ACTION_ENCAP_VLAN:
419 case RTE_TABLE_ACTION_ENCAP_QINQ:
420 case RTE_TABLE_ACTION_ENCAP_MPLS:
421 case RTE_TABLE_ACTION_ENCAP_PPPOE:
422 case RTE_TABLE_ACTION_ENCAP_VXLAN:
423 case RTE_TABLE_ACTION_ENCAP_QINQ_PPPOE:
424 return 1;
425 default:
426 return 0;
427 }
428 }
429
430 static int
431 encap_cfg_check(struct rte_table_action_encap_config *encap)
432 {
433 if ((encap->encap_mask == 0) ||
434 (__builtin_popcountll(encap->encap_mask) != 1))
435 return -ENOTSUP;
436
437 return 0;
438 }
439
440 struct encap_ether_data {
441 struct ether_hdr ether;
442 } __attribute__((__packed__));
443
444 #define VLAN(pcp, dei, vid) \
445 ((uint16_t)((((uint64_t)(pcp)) & 0x7LLU) << 13) | \
446 ((((uint64_t)(dei)) & 0x1LLU) << 12) | \
447 (((uint64_t)(vid)) & 0xFFFLLU)) \
448
449 struct encap_vlan_data {
450 struct ether_hdr ether;
451 struct vlan_hdr vlan;
452 } __attribute__((__packed__));
453
454 struct encap_qinq_data {
455 struct ether_hdr ether;
456 struct vlan_hdr svlan;
457 struct vlan_hdr cvlan;
458 } __attribute__((__packed__));
459
460 #define ETHER_TYPE_MPLS_UNICAST 0x8847
461
462 #define ETHER_TYPE_MPLS_MULTICAST 0x8848
463
464 #define MPLS(label, tc, s, ttl) \
465 ((uint32_t)(((((uint64_t)(label)) & 0xFFFFFLLU) << 12) |\
466 ((((uint64_t)(tc)) & 0x7LLU) << 9) | \
467 ((((uint64_t)(s)) & 0x1LLU) << 8) | \
468 (((uint64_t)(ttl)) & 0xFFLLU)))
469
470 struct encap_mpls_data {
471 struct ether_hdr ether;
472 uint32_t mpls[RTE_TABLE_ACTION_MPLS_LABELS_MAX];
473 uint32_t mpls_count;
474 } __attribute__((__packed__));
475
476 #define PPP_PROTOCOL_IP 0x0021
477
478 struct pppoe_ppp_hdr {
479 uint16_t ver_type_code;
480 uint16_t session_id;
481 uint16_t length;
482 uint16_t protocol;
483 } __attribute__((__packed__));
484
485 struct encap_pppoe_data {
486 struct ether_hdr ether;
487 struct pppoe_ppp_hdr pppoe_ppp;
488 } __attribute__((__packed__));
489
490 #define IP_PROTO_UDP 17
491
492 struct encap_vxlan_ipv4_data {
493 struct ether_hdr ether;
494 struct ipv4_hdr ipv4;
495 struct udp_hdr udp;
496 struct vxlan_hdr vxlan;
497 } __attribute__((__packed__));
498
499 struct encap_vxlan_ipv4_vlan_data {
500 struct ether_hdr ether;
501 struct vlan_hdr vlan;
502 struct ipv4_hdr ipv4;
503 struct udp_hdr udp;
504 struct vxlan_hdr vxlan;
505 } __attribute__((__packed__));
506
507 struct encap_vxlan_ipv6_data {
508 struct ether_hdr ether;
509 struct ipv6_hdr ipv6;
510 struct udp_hdr udp;
511 struct vxlan_hdr vxlan;
512 } __attribute__((__packed__));
513
514 struct encap_vxlan_ipv6_vlan_data {
515 struct ether_hdr ether;
516 struct vlan_hdr vlan;
517 struct ipv6_hdr ipv6;
518 struct udp_hdr udp;
519 struct vxlan_hdr vxlan;
520 } __attribute__((__packed__));
521
522 struct encap_qinq_pppoe_data {
523 struct ether_hdr ether;
524 struct vlan_hdr svlan;
525 struct vlan_hdr cvlan;
526 struct pppoe_ppp_hdr pppoe_ppp;
527 } __attribute__((__packed__));
528
529 static size_t
530 encap_data_size(struct rte_table_action_encap_config *encap)
531 {
532 switch (encap->encap_mask) {
533 case 1LLU << RTE_TABLE_ACTION_ENCAP_ETHER:
534 return sizeof(struct encap_ether_data);
535
536 case 1LLU << RTE_TABLE_ACTION_ENCAP_VLAN:
537 return sizeof(struct encap_vlan_data);
538
539 case 1LLU << RTE_TABLE_ACTION_ENCAP_QINQ:
540 return sizeof(struct encap_qinq_data);
541
542 case 1LLU << RTE_TABLE_ACTION_ENCAP_MPLS:
543 return sizeof(struct encap_mpls_data);
544
545 case 1LLU << RTE_TABLE_ACTION_ENCAP_PPPOE:
546 return sizeof(struct encap_pppoe_data);
547
548 case 1LLU << RTE_TABLE_ACTION_ENCAP_VXLAN:
549 if (encap->vxlan.ip_version)
550 if (encap->vxlan.vlan)
551 return sizeof(struct encap_vxlan_ipv4_vlan_data);
552 else
553 return sizeof(struct encap_vxlan_ipv4_data);
554 else
555 if (encap->vxlan.vlan)
556 return sizeof(struct encap_vxlan_ipv6_vlan_data);
557 else
558 return sizeof(struct encap_vxlan_ipv6_data);
559
560 case 1LLU << RTE_TABLE_ACTION_ENCAP_QINQ_PPPOE:
561 return sizeof(struct encap_qinq_pppoe_data);
562
563 default:
564 return 0;
565 }
566 }
567
568 static int
569 encap_apply_check(struct rte_table_action_encap_params *p,
570 struct rte_table_action_encap_config *cfg)
571 {
572 if ((encap_valid(p->type) == 0) ||
573 ((cfg->encap_mask & (1LLU << p->type)) == 0))
574 return -EINVAL;
575
576 switch (p->type) {
577 case RTE_TABLE_ACTION_ENCAP_ETHER:
578 return 0;
579
580 case RTE_TABLE_ACTION_ENCAP_VLAN:
581 return 0;
582
583 case RTE_TABLE_ACTION_ENCAP_QINQ:
584 return 0;
585
586 case RTE_TABLE_ACTION_ENCAP_MPLS:
587 if ((p->mpls.mpls_count == 0) ||
588 (p->mpls.mpls_count > RTE_TABLE_ACTION_MPLS_LABELS_MAX))
589 return -EINVAL;
590
591 return 0;
592
593 case RTE_TABLE_ACTION_ENCAP_PPPOE:
594 return 0;
595
596 case RTE_TABLE_ACTION_ENCAP_VXLAN:
597 return 0;
598
599 case RTE_TABLE_ACTION_ENCAP_QINQ_PPPOE:
600 return 0;
601
602 default:
603 return -EINVAL;
604 }
605 }
606
607 static int
608 encap_ether_apply(void *data,
609 struct rte_table_action_encap_params *p,
610 struct rte_table_action_common_config *common_cfg)
611 {
612 struct encap_ether_data *d = data;
613 uint16_t ethertype = (common_cfg->ip_version) ?
614 ETHER_TYPE_IPv4 :
615 ETHER_TYPE_IPv6;
616
617 /* Ethernet */
618 ether_addr_copy(&p->ether.ether.da, &d->ether.d_addr);
619 ether_addr_copy(&p->ether.ether.sa, &d->ether.s_addr);
620 d->ether.ether_type = rte_htons(ethertype);
621
622 return 0;
623 }
624
625 static int
626 encap_vlan_apply(void *data,
627 struct rte_table_action_encap_params *p,
628 struct rte_table_action_common_config *common_cfg)
629 {
630 struct encap_vlan_data *d = data;
631 uint16_t ethertype = (common_cfg->ip_version) ?
632 ETHER_TYPE_IPv4 :
633 ETHER_TYPE_IPv6;
634
635 /* Ethernet */
636 ether_addr_copy(&p->vlan.ether.da, &d->ether.d_addr);
637 ether_addr_copy(&p->vlan.ether.sa, &d->ether.s_addr);
638 d->ether.ether_type = rte_htons(ETHER_TYPE_VLAN);
639
640 /* VLAN */
641 d->vlan.vlan_tci = rte_htons(VLAN(p->vlan.vlan.pcp,
642 p->vlan.vlan.dei,
643 p->vlan.vlan.vid));
644 d->vlan.eth_proto = rte_htons(ethertype);
645
646 return 0;
647 }
648
649 static int
650 encap_qinq_apply(void *data,
651 struct rte_table_action_encap_params *p,
652 struct rte_table_action_common_config *common_cfg)
653 {
654 struct encap_qinq_data *d = data;
655 uint16_t ethertype = (common_cfg->ip_version) ?
656 ETHER_TYPE_IPv4 :
657 ETHER_TYPE_IPv6;
658
659 /* Ethernet */
660 ether_addr_copy(&p->qinq.ether.da, &d->ether.d_addr);
661 ether_addr_copy(&p->qinq.ether.sa, &d->ether.s_addr);
662 d->ether.ether_type = rte_htons(ETHER_TYPE_QINQ);
663
664 /* SVLAN */
665 d->svlan.vlan_tci = rte_htons(VLAN(p->qinq.svlan.pcp,
666 p->qinq.svlan.dei,
667 p->qinq.svlan.vid));
668 d->svlan.eth_proto = rte_htons(ETHER_TYPE_VLAN);
669
670 /* CVLAN */
671 d->cvlan.vlan_tci = rte_htons(VLAN(p->qinq.cvlan.pcp,
672 p->qinq.cvlan.dei,
673 p->qinq.cvlan.vid));
674 d->cvlan.eth_proto = rte_htons(ethertype);
675
676 return 0;
677 }
678
679 static int
680 encap_qinq_pppoe_apply(void *data,
681 struct rte_table_action_encap_params *p)
682 {
683 struct encap_qinq_pppoe_data *d = data;
684
685 /* Ethernet */
686 ether_addr_copy(&p->qinq.ether.da, &d->ether.d_addr);
687 ether_addr_copy(&p->qinq.ether.sa, &d->ether.s_addr);
688 d->ether.ether_type = rte_htons(ETHER_TYPE_VLAN);
689
690 /* SVLAN */
691 d->svlan.vlan_tci = rte_htons(VLAN(p->qinq.svlan.pcp,
692 p->qinq.svlan.dei,
693 p->qinq.svlan.vid));
694 d->svlan.eth_proto = rte_htons(ETHER_TYPE_VLAN);
695
696 /* CVLAN */
697 d->cvlan.vlan_tci = rte_htons(VLAN(p->qinq.cvlan.pcp,
698 p->qinq.cvlan.dei,
699 p->qinq.cvlan.vid));
700 d->cvlan.eth_proto = rte_htons(ETHER_TYPE_PPPOE_SESSION);
701
702 /* PPPoE and PPP*/
703 d->pppoe_ppp.ver_type_code = rte_htons(0x1100);
704 d->pppoe_ppp.session_id = rte_htons(p->qinq_pppoe.pppoe.session_id);
705 d->pppoe_ppp.length = 0; /* not pre-computed */
706 d->pppoe_ppp.protocol = rte_htons(PPP_PROTOCOL_IP);
707
708 return 0;
709 }
710
711 static int
712 encap_mpls_apply(void *data,
713 struct rte_table_action_encap_params *p)
714 {
715 struct encap_mpls_data *d = data;
716 uint16_t ethertype = (p->mpls.unicast) ?
717 ETHER_TYPE_MPLS_UNICAST :
718 ETHER_TYPE_MPLS_MULTICAST;
719 uint32_t i;
720
721 /* Ethernet */
722 ether_addr_copy(&p->mpls.ether.da, &d->ether.d_addr);
723 ether_addr_copy(&p->mpls.ether.sa, &d->ether.s_addr);
724 d->ether.ether_type = rte_htons(ethertype);
725
726 /* MPLS */
727 for (i = 0; i < p->mpls.mpls_count - 1; i++)
728 d->mpls[i] = rte_htonl(MPLS(p->mpls.mpls[i].label,
729 p->mpls.mpls[i].tc,
730 0,
731 p->mpls.mpls[i].ttl));
732
733 d->mpls[i] = rte_htonl(MPLS(p->mpls.mpls[i].label,
734 p->mpls.mpls[i].tc,
735 1,
736 p->mpls.mpls[i].ttl));
737
738 d->mpls_count = p->mpls.mpls_count;
739 return 0;
740 }
741
742 static int
743 encap_pppoe_apply(void *data,
744 struct rte_table_action_encap_params *p)
745 {
746 struct encap_pppoe_data *d = data;
747
748 /* Ethernet */
749 ether_addr_copy(&p->pppoe.ether.da, &d->ether.d_addr);
750 ether_addr_copy(&p->pppoe.ether.sa, &d->ether.s_addr);
751 d->ether.ether_type = rte_htons(ETHER_TYPE_PPPOE_SESSION);
752
753 /* PPPoE and PPP*/
754 d->pppoe_ppp.ver_type_code = rte_htons(0x1100);
755 d->pppoe_ppp.session_id = rte_htons(p->pppoe.pppoe.session_id);
756 d->pppoe_ppp.length = 0; /* not pre-computed */
757 d->pppoe_ppp.protocol = rte_htons(PPP_PROTOCOL_IP);
758
759 return 0;
760 }
761
762 static int
763 encap_vxlan_apply(void *data,
764 struct rte_table_action_encap_params *p,
765 struct rte_table_action_encap_config *cfg)
766 {
767 if ((p->vxlan.vxlan.vni > 0xFFFFFF) ||
768 (cfg->vxlan.ip_version && (p->vxlan.ipv4.dscp > 0x3F)) ||
769 (!cfg->vxlan.ip_version && (p->vxlan.ipv6.flow_label > 0xFFFFF)) ||
770 (!cfg->vxlan.ip_version && (p->vxlan.ipv6.dscp > 0x3F)) ||
771 (cfg->vxlan.vlan && (p->vxlan.vlan.vid > 0xFFF)))
772 return -1;
773
774 if (cfg->vxlan.ip_version)
775 if (cfg->vxlan.vlan) {
776 struct encap_vxlan_ipv4_vlan_data *d = data;
777
778 /* Ethernet */
779 ether_addr_copy(&p->vxlan.ether.da, &d->ether.d_addr);
780 ether_addr_copy(&p->vxlan.ether.sa, &d->ether.s_addr);
781 d->ether.ether_type = rte_htons(ETHER_TYPE_VLAN);
782
783 /* VLAN */
784 d->vlan.vlan_tci = rte_htons(VLAN(p->vxlan.vlan.pcp,
785 p->vxlan.vlan.dei,
786 p->vxlan.vlan.vid));
787 d->vlan.eth_proto = rte_htons(ETHER_TYPE_IPv4);
788
789 /* IPv4*/
790 d->ipv4.version_ihl = 0x45;
791 d->ipv4.type_of_service = p->vxlan.ipv4.dscp << 2;
792 d->ipv4.total_length = 0; /* not pre-computed */
793 d->ipv4.packet_id = 0;
794 d->ipv4.fragment_offset = 0;
795 d->ipv4.time_to_live = p->vxlan.ipv4.ttl;
796 d->ipv4.next_proto_id = IP_PROTO_UDP;
797 d->ipv4.hdr_checksum = 0;
798 d->ipv4.src_addr = rte_htonl(p->vxlan.ipv4.sa);
799 d->ipv4.dst_addr = rte_htonl(p->vxlan.ipv4.da);
800
801 d->ipv4.hdr_checksum = rte_ipv4_cksum(&d->ipv4);
802
803 /* UDP */
804 d->udp.src_port = rte_htons(p->vxlan.udp.sp);
805 d->udp.dst_port = rte_htons(p->vxlan.udp.dp);
806 d->udp.dgram_len = 0; /* not pre-computed */
807 d->udp.dgram_cksum = 0;
808
809 /* VXLAN */
810 d->vxlan.vx_flags = rte_htonl(0x08000000);
811 d->vxlan.vx_vni = rte_htonl(p->vxlan.vxlan.vni << 8);
812
813 return 0;
814 } else {
815 struct encap_vxlan_ipv4_data *d = data;
816
817 /* Ethernet */
818 ether_addr_copy(&p->vxlan.ether.da, &d->ether.d_addr);
819 ether_addr_copy(&p->vxlan.ether.sa, &d->ether.s_addr);
820 d->ether.ether_type = rte_htons(ETHER_TYPE_IPv4);
821
822 /* IPv4*/
823 d->ipv4.version_ihl = 0x45;
824 d->ipv4.type_of_service = p->vxlan.ipv4.dscp << 2;
825 d->ipv4.total_length = 0; /* not pre-computed */
826 d->ipv4.packet_id = 0;
827 d->ipv4.fragment_offset = 0;
828 d->ipv4.time_to_live = p->vxlan.ipv4.ttl;
829 d->ipv4.next_proto_id = IP_PROTO_UDP;
830 d->ipv4.hdr_checksum = 0;
831 d->ipv4.src_addr = rte_htonl(p->vxlan.ipv4.sa);
832 d->ipv4.dst_addr = rte_htonl(p->vxlan.ipv4.da);
833
834 d->ipv4.hdr_checksum = rte_ipv4_cksum(&d->ipv4);
835
836 /* UDP */
837 d->udp.src_port = rte_htons(p->vxlan.udp.sp);
838 d->udp.dst_port = rte_htons(p->vxlan.udp.dp);
839 d->udp.dgram_len = 0; /* not pre-computed */
840 d->udp.dgram_cksum = 0;
841
842 /* VXLAN */
843 d->vxlan.vx_flags = rte_htonl(0x08000000);
844 d->vxlan.vx_vni = rte_htonl(p->vxlan.vxlan.vni << 8);
845
846 return 0;
847 }
848 else
849 if (cfg->vxlan.vlan) {
850 struct encap_vxlan_ipv6_vlan_data *d = data;
851
852 /* Ethernet */
853 ether_addr_copy(&p->vxlan.ether.da, &d->ether.d_addr);
854 ether_addr_copy(&p->vxlan.ether.sa, &d->ether.s_addr);
855 d->ether.ether_type = rte_htons(ETHER_TYPE_VLAN);
856
857 /* VLAN */
858 d->vlan.vlan_tci = rte_htons(VLAN(p->vxlan.vlan.pcp,
859 p->vxlan.vlan.dei,
860 p->vxlan.vlan.vid));
861 d->vlan.eth_proto = rte_htons(ETHER_TYPE_IPv6);
862
863 /* IPv6*/
864 d->ipv6.vtc_flow = rte_htonl((6 << 28) |
865 (p->vxlan.ipv6.dscp << 22) |
866 p->vxlan.ipv6.flow_label);
867 d->ipv6.payload_len = 0; /* not pre-computed */
868 d->ipv6.proto = IP_PROTO_UDP;
869 d->ipv6.hop_limits = p->vxlan.ipv6.hop_limit;
870 memcpy(d->ipv6.src_addr,
871 p->vxlan.ipv6.sa,
872 sizeof(p->vxlan.ipv6.sa));
873 memcpy(d->ipv6.dst_addr,
874 p->vxlan.ipv6.da,
875 sizeof(p->vxlan.ipv6.da));
876
877 /* UDP */
878 d->udp.src_port = rte_htons(p->vxlan.udp.sp);
879 d->udp.dst_port = rte_htons(p->vxlan.udp.dp);
880 d->udp.dgram_len = 0; /* not pre-computed */
881 d->udp.dgram_cksum = 0;
882
883 /* VXLAN */
884 d->vxlan.vx_flags = rte_htonl(0x08000000);
885 d->vxlan.vx_vni = rte_htonl(p->vxlan.vxlan.vni << 8);
886
887 return 0;
888 } else {
889 struct encap_vxlan_ipv6_data *d = data;
890
891 /* Ethernet */
892 ether_addr_copy(&p->vxlan.ether.da, &d->ether.d_addr);
893 ether_addr_copy(&p->vxlan.ether.sa, &d->ether.s_addr);
894 d->ether.ether_type = rte_htons(ETHER_TYPE_IPv6);
895
896 /* IPv6*/
897 d->ipv6.vtc_flow = rte_htonl((6 << 28) |
898 (p->vxlan.ipv6.dscp << 22) |
899 p->vxlan.ipv6.flow_label);
900 d->ipv6.payload_len = 0; /* not pre-computed */
901 d->ipv6.proto = IP_PROTO_UDP;
902 d->ipv6.hop_limits = p->vxlan.ipv6.hop_limit;
903 memcpy(d->ipv6.src_addr,
904 p->vxlan.ipv6.sa,
905 sizeof(p->vxlan.ipv6.sa));
906 memcpy(d->ipv6.dst_addr,
907 p->vxlan.ipv6.da,
908 sizeof(p->vxlan.ipv6.da));
909
910 /* UDP */
911 d->udp.src_port = rte_htons(p->vxlan.udp.sp);
912 d->udp.dst_port = rte_htons(p->vxlan.udp.dp);
913 d->udp.dgram_len = 0; /* not pre-computed */
914 d->udp.dgram_cksum = 0;
915
916 /* VXLAN */
917 d->vxlan.vx_flags = rte_htonl(0x08000000);
918 d->vxlan.vx_vni = rte_htonl(p->vxlan.vxlan.vni << 8);
919
920 return 0;
921 }
922 }
923
924 static int
925 encap_apply(void *data,
926 struct rte_table_action_encap_params *p,
927 struct rte_table_action_encap_config *cfg,
928 struct rte_table_action_common_config *common_cfg)
929 {
930 int status;
931
932 /* Check input arguments */
933 status = encap_apply_check(p, cfg);
934 if (status)
935 return status;
936
937 switch (p->type) {
938 case RTE_TABLE_ACTION_ENCAP_ETHER:
939 return encap_ether_apply(data, p, common_cfg);
940
941 case RTE_TABLE_ACTION_ENCAP_VLAN:
942 return encap_vlan_apply(data, p, common_cfg);
943
944 case RTE_TABLE_ACTION_ENCAP_QINQ:
945 return encap_qinq_apply(data, p, common_cfg);
946
947 case RTE_TABLE_ACTION_ENCAP_MPLS:
948 return encap_mpls_apply(data, p);
949
950 case RTE_TABLE_ACTION_ENCAP_PPPOE:
951 return encap_pppoe_apply(data, p);
952
953 case RTE_TABLE_ACTION_ENCAP_VXLAN:
954 return encap_vxlan_apply(data, p, cfg);
955
956 case RTE_TABLE_ACTION_ENCAP_QINQ_PPPOE:
957 return encap_qinq_pppoe_apply(data, p);
958
959 default:
960 return -EINVAL;
961 }
962 }
963
964 static __rte_always_inline uint16_t
965 encap_vxlan_ipv4_checksum_update(uint16_t cksum0,
966 uint16_t total_length)
967 {
968 int32_t cksum1;
969
970 cksum1 = cksum0;
971 cksum1 = ~cksum1 & 0xFFFF;
972
973 /* Add total length (one's complement logic) */
974 cksum1 += total_length;
975 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
976 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
977
978 return (uint16_t)(~cksum1);
979 }
980
981 static __rte_always_inline void *
982 encap(void *dst, const void *src, size_t n)
983 {
984 dst = ((uint8_t *) dst) - n;
985 return rte_memcpy(dst, src, n);
986 }
987
988 static __rte_always_inline void
989 pkt_work_encap_vxlan_ipv4(struct rte_mbuf *mbuf,
990 struct encap_vxlan_ipv4_data *vxlan_tbl,
991 struct rte_table_action_encap_config *cfg)
992 {
993 uint32_t ether_offset = cfg->vxlan.data_offset;
994 void *ether = RTE_MBUF_METADATA_UINT32_PTR(mbuf, ether_offset);
995 struct encap_vxlan_ipv4_data *vxlan_pkt;
996 uint16_t ether_length, ipv4_total_length, ipv4_hdr_cksum, udp_length;
997
998 ether_length = (uint16_t)mbuf->pkt_len;
999 ipv4_total_length = ether_length +
1000 (sizeof(struct vxlan_hdr) +
1001 sizeof(struct udp_hdr) +
1002 sizeof(struct ipv4_hdr));
1003 ipv4_hdr_cksum = encap_vxlan_ipv4_checksum_update(vxlan_tbl->ipv4.hdr_checksum,
1004 rte_htons(ipv4_total_length));
1005 udp_length = ether_length +
1006 (sizeof(struct vxlan_hdr) +
1007 sizeof(struct udp_hdr));
1008
1009 vxlan_pkt = encap(ether, vxlan_tbl, sizeof(*vxlan_tbl));
1010 vxlan_pkt->ipv4.total_length = rte_htons(ipv4_total_length);
1011 vxlan_pkt->ipv4.hdr_checksum = ipv4_hdr_cksum;
1012 vxlan_pkt->udp.dgram_len = rte_htons(udp_length);
1013
1014 mbuf->data_off = ether_offset - (sizeof(struct rte_mbuf) + sizeof(*vxlan_pkt));
1015 mbuf->pkt_len = mbuf->data_len = ether_length + sizeof(*vxlan_pkt);
1016 }
1017
1018 static __rte_always_inline void
1019 pkt_work_encap_vxlan_ipv4_vlan(struct rte_mbuf *mbuf,
1020 struct encap_vxlan_ipv4_vlan_data *vxlan_tbl,
1021 struct rte_table_action_encap_config *cfg)
1022 {
1023 uint32_t ether_offset = cfg->vxlan.data_offset;
1024 void *ether = RTE_MBUF_METADATA_UINT32_PTR(mbuf, ether_offset);
1025 struct encap_vxlan_ipv4_vlan_data *vxlan_pkt;
1026 uint16_t ether_length, ipv4_total_length, ipv4_hdr_cksum, udp_length;
1027
1028 ether_length = (uint16_t)mbuf->pkt_len;
1029 ipv4_total_length = ether_length +
1030 (sizeof(struct vxlan_hdr) +
1031 sizeof(struct udp_hdr) +
1032 sizeof(struct ipv4_hdr));
1033 ipv4_hdr_cksum = encap_vxlan_ipv4_checksum_update(vxlan_tbl->ipv4.hdr_checksum,
1034 rte_htons(ipv4_total_length));
1035 udp_length = ether_length +
1036 (sizeof(struct vxlan_hdr) +
1037 sizeof(struct udp_hdr));
1038
1039 vxlan_pkt = encap(ether, vxlan_tbl, sizeof(*vxlan_tbl));
1040 vxlan_pkt->ipv4.total_length = rte_htons(ipv4_total_length);
1041 vxlan_pkt->ipv4.hdr_checksum = ipv4_hdr_cksum;
1042 vxlan_pkt->udp.dgram_len = rte_htons(udp_length);
1043
1044 mbuf->data_off = ether_offset - (sizeof(struct rte_mbuf) + sizeof(*vxlan_pkt));
1045 mbuf->pkt_len = mbuf->data_len = ether_length + sizeof(*vxlan_pkt);
1046 }
1047
1048 static __rte_always_inline void
1049 pkt_work_encap_vxlan_ipv6(struct rte_mbuf *mbuf,
1050 struct encap_vxlan_ipv6_data *vxlan_tbl,
1051 struct rte_table_action_encap_config *cfg)
1052 {
1053 uint32_t ether_offset = cfg->vxlan.data_offset;
1054 void *ether = RTE_MBUF_METADATA_UINT32_PTR(mbuf, ether_offset);
1055 struct encap_vxlan_ipv6_data *vxlan_pkt;
1056 uint16_t ether_length, ipv6_payload_length, udp_length;
1057
1058 ether_length = (uint16_t)mbuf->pkt_len;
1059 ipv6_payload_length = ether_length +
1060 (sizeof(struct vxlan_hdr) +
1061 sizeof(struct udp_hdr));
1062 udp_length = ether_length +
1063 (sizeof(struct vxlan_hdr) +
1064 sizeof(struct udp_hdr));
1065
1066 vxlan_pkt = encap(ether, vxlan_tbl, sizeof(*vxlan_tbl));
1067 vxlan_pkt->ipv6.payload_len = rte_htons(ipv6_payload_length);
1068 vxlan_pkt->udp.dgram_len = rte_htons(udp_length);
1069
1070 mbuf->data_off = ether_offset - (sizeof(struct rte_mbuf) + sizeof(*vxlan_pkt));
1071 mbuf->pkt_len = mbuf->data_len = ether_length + sizeof(*vxlan_pkt);
1072 }
1073
1074 static __rte_always_inline void
1075 pkt_work_encap_vxlan_ipv6_vlan(struct rte_mbuf *mbuf,
1076 struct encap_vxlan_ipv6_vlan_data *vxlan_tbl,
1077 struct rte_table_action_encap_config *cfg)
1078 {
1079 uint32_t ether_offset = cfg->vxlan.data_offset;
1080 void *ether = RTE_MBUF_METADATA_UINT32_PTR(mbuf, ether_offset);
1081 struct encap_vxlan_ipv6_vlan_data *vxlan_pkt;
1082 uint16_t ether_length, ipv6_payload_length, udp_length;
1083
1084 ether_length = (uint16_t)mbuf->pkt_len;
1085 ipv6_payload_length = ether_length +
1086 (sizeof(struct vxlan_hdr) +
1087 sizeof(struct udp_hdr));
1088 udp_length = ether_length +
1089 (sizeof(struct vxlan_hdr) +
1090 sizeof(struct udp_hdr));
1091
1092 vxlan_pkt = encap(ether, vxlan_tbl, sizeof(*vxlan_tbl));
1093 vxlan_pkt->ipv6.payload_len = rte_htons(ipv6_payload_length);
1094 vxlan_pkt->udp.dgram_len = rte_htons(udp_length);
1095
1096 mbuf->data_off = ether_offset - (sizeof(struct rte_mbuf) + sizeof(*vxlan_pkt));
1097 mbuf->pkt_len = mbuf->data_len = ether_length + sizeof(*vxlan_pkt);
1098 }
1099
1100 static __rte_always_inline void
1101 pkt_work_encap(struct rte_mbuf *mbuf,
1102 void *data,
1103 struct rte_table_action_encap_config *cfg,
1104 void *ip,
1105 uint16_t total_length,
1106 uint32_t ip_offset)
1107 {
1108 switch (cfg->encap_mask) {
1109 case 1LLU << RTE_TABLE_ACTION_ENCAP_ETHER:
1110 encap(ip, data, sizeof(struct encap_ether_data));
1111 mbuf->data_off = ip_offset - (sizeof(struct rte_mbuf) +
1112 sizeof(struct encap_ether_data));
1113 mbuf->pkt_len = mbuf->data_len = total_length +
1114 sizeof(struct encap_ether_data);
1115 break;
1116
1117 case 1LLU << RTE_TABLE_ACTION_ENCAP_VLAN:
1118 encap(ip, data, sizeof(struct encap_vlan_data));
1119 mbuf->data_off = ip_offset - (sizeof(struct rte_mbuf) +
1120 sizeof(struct encap_vlan_data));
1121 mbuf->pkt_len = mbuf->data_len = total_length +
1122 sizeof(struct encap_vlan_data);
1123 break;
1124
1125 case 1LLU << RTE_TABLE_ACTION_ENCAP_QINQ:
1126 encap(ip, data, sizeof(struct encap_qinq_data));
1127 mbuf->data_off = ip_offset - (sizeof(struct rte_mbuf) +
1128 sizeof(struct encap_qinq_data));
1129 mbuf->pkt_len = mbuf->data_len = total_length +
1130 sizeof(struct encap_qinq_data);
1131 break;
1132
1133 case 1LLU << RTE_TABLE_ACTION_ENCAP_MPLS:
1134 {
1135 struct encap_mpls_data *mpls = data;
1136 size_t size = sizeof(struct ether_hdr) +
1137 mpls->mpls_count * 4;
1138
1139 encap(ip, data, size);
1140 mbuf->data_off = ip_offset - (sizeof(struct rte_mbuf) + size);
1141 mbuf->pkt_len = mbuf->data_len = total_length + size;
1142 break;
1143 }
1144
1145 case 1LLU << RTE_TABLE_ACTION_ENCAP_PPPOE:
1146 {
1147 struct encap_pppoe_data *pppoe =
1148 encap(ip, data, sizeof(struct encap_pppoe_data));
1149 pppoe->pppoe_ppp.length = rte_htons(total_length + 2);
1150 mbuf->data_off = ip_offset - (sizeof(struct rte_mbuf) +
1151 sizeof(struct encap_pppoe_data));
1152 mbuf->pkt_len = mbuf->data_len = total_length +
1153 sizeof(struct encap_pppoe_data);
1154 break;
1155 }
1156
1157 case 1LLU << RTE_TABLE_ACTION_ENCAP_QINQ_PPPOE:
1158 {
1159 struct encap_qinq_pppoe_data *qinq_pppoe =
1160 encap(ip, data, sizeof(struct encap_qinq_pppoe_data));
1161 qinq_pppoe->pppoe_ppp.length = rte_htons(total_length + 2);
1162 mbuf->data_off = ip_offset - (sizeof(struct rte_mbuf) +
1163 sizeof(struct encap_qinq_pppoe_data));
1164 mbuf->pkt_len = mbuf->data_len = total_length +
1165 sizeof(struct encap_qinq_pppoe_data);
1166 break;
1167 }
1168
1169 case 1LLU << RTE_TABLE_ACTION_ENCAP_VXLAN:
1170 {
1171 if (cfg->vxlan.ip_version)
1172 if (cfg->vxlan.vlan)
1173 pkt_work_encap_vxlan_ipv4_vlan(mbuf, data, cfg);
1174 else
1175 pkt_work_encap_vxlan_ipv4(mbuf, data, cfg);
1176 else
1177 if (cfg->vxlan.vlan)
1178 pkt_work_encap_vxlan_ipv6_vlan(mbuf, data, cfg);
1179 else
1180 pkt_work_encap_vxlan_ipv6(mbuf, data, cfg);
1181 }
1182
1183 default:
1184 break;
1185 }
1186 }
1187
1188 /**
1189 * RTE_TABLE_ACTION_NAT
1190 */
1191 static int
1192 nat_cfg_check(struct rte_table_action_nat_config *nat)
1193 {
1194 if ((nat->proto != 0x06) &&
1195 (nat->proto != 0x11))
1196 return -ENOTSUP;
1197
1198 return 0;
1199 }
1200
1201 struct nat_ipv4_data {
1202 uint32_t addr;
1203 uint16_t port;
1204 } __attribute__((__packed__));
1205
1206 struct nat_ipv6_data {
1207 uint8_t addr[16];
1208 uint16_t port;
1209 } __attribute__((__packed__));
1210
1211 static size_t
1212 nat_data_size(struct rte_table_action_nat_config *nat __rte_unused,
1213 struct rte_table_action_common_config *common)
1214 {
1215 int ip_version = common->ip_version;
1216
1217 return (ip_version) ?
1218 sizeof(struct nat_ipv4_data) :
1219 sizeof(struct nat_ipv6_data);
1220 }
1221
1222 static int
1223 nat_apply_check(struct rte_table_action_nat_params *p,
1224 struct rte_table_action_common_config *cfg)
1225 {
1226 if ((p->ip_version && (cfg->ip_version == 0)) ||
1227 ((p->ip_version == 0) && cfg->ip_version))
1228 return -EINVAL;
1229
1230 return 0;
1231 }
1232
1233 static int
1234 nat_apply(void *data,
1235 struct rte_table_action_nat_params *p,
1236 struct rte_table_action_common_config *cfg)
1237 {
1238 int status;
1239
1240 /* Check input arguments */
1241 status = nat_apply_check(p, cfg);
1242 if (status)
1243 return status;
1244
1245 /* Apply */
1246 if (p->ip_version) {
1247 struct nat_ipv4_data *d = data;
1248
1249 d->addr = rte_htonl(p->addr.ipv4);
1250 d->port = rte_htons(p->port);
1251 } else {
1252 struct nat_ipv6_data *d = data;
1253
1254 memcpy(d->addr, p->addr.ipv6, sizeof(d->addr));
1255 d->port = rte_htons(p->port);
1256 }
1257
1258 return 0;
1259 }
1260
1261 static __rte_always_inline uint16_t
1262 nat_ipv4_checksum_update(uint16_t cksum0,
1263 uint32_t ip0,
1264 uint32_t ip1)
1265 {
1266 int32_t cksum1;
1267
1268 cksum1 = cksum0;
1269 cksum1 = ~cksum1 & 0xFFFF;
1270
1271 /* Subtract ip0 (one's complement logic) */
1272 cksum1 -= (ip0 >> 16) + (ip0 & 0xFFFF);
1273 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1274 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1275
1276 /* Add ip1 (one's complement logic) */
1277 cksum1 += (ip1 >> 16) + (ip1 & 0xFFFF);
1278 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1279 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1280
1281 return (uint16_t)(~cksum1);
1282 }
1283
1284 static __rte_always_inline uint16_t
1285 nat_ipv4_tcp_udp_checksum_update(uint16_t cksum0,
1286 uint32_t ip0,
1287 uint32_t ip1,
1288 uint16_t port0,
1289 uint16_t port1)
1290 {
1291 int32_t cksum1;
1292
1293 cksum1 = cksum0;
1294 cksum1 = ~cksum1 & 0xFFFF;
1295
1296 /* Subtract ip0 and port 0 (one's complement logic) */
1297 cksum1 -= (ip0 >> 16) + (ip0 & 0xFFFF) + port0;
1298 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1299 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1300
1301 /* Add ip1 and port1 (one's complement logic) */
1302 cksum1 += (ip1 >> 16) + (ip1 & 0xFFFF) + port1;
1303 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1304 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1305
1306 return (uint16_t)(~cksum1);
1307 }
1308
1309 static __rte_always_inline uint16_t
1310 nat_ipv6_tcp_udp_checksum_update(uint16_t cksum0,
1311 uint16_t *ip0,
1312 uint16_t *ip1,
1313 uint16_t port0,
1314 uint16_t port1)
1315 {
1316 int32_t cksum1;
1317
1318 cksum1 = cksum0;
1319 cksum1 = ~cksum1 & 0xFFFF;
1320
1321 /* Subtract ip0 and port 0 (one's complement logic) */
1322 cksum1 -= ip0[0] + ip0[1] + ip0[2] + ip0[3] +
1323 ip0[4] + ip0[5] + ip0[6] + ip0[7] + port0;
1324 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1325 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1326
1327 /* Add ip1 and port1 (one's complement logic) */
1328 cksum1 += ip1[0] + ip1[1] + ip1[2] + ip1[3] +
1329 ip1[4] + ip1[5] + ip1[6] + ip1[7] + port1;
1330 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1331 cksum1 = (cksum1 & 0xFFFF) + (cksum1 >> 16);
1332
1333 return (uint16_t)(~cksum1);
1334 }
1335
1336 static __rte_always_inline void
1337 pkt_ipv4_work_nat(struct ipv4_hdr *ip,
1338 struct nat_ipv4_data *data,
1339 struct rte_table_action_nat_config *cfg)
1340 {
1341 if (cfg->source_nat) {
1342 if (cfg->proto == 0x6) {
1343 struct tcp_hdr *tcp = (struct tcp_hdr *) &ip[1];
1344 uint16_t ip_cksum, tcp_cksum;
1345
1346 ip_cksum = nat_ipv4_checksum_update(ip->hdr_checksum,
1347 ip->src_addr,
1348 data->addr);
1349
1350 tcp_cksum = nat_ipv4_tcp_udp_checksum_update(tcp->cksum,
1351 ip->src_addr,
1352 data->addr,
1353 tcp->src_port,
1354 data->port);
1355
1356 ip->src_addr = data->addr;
1357 ip->hdr_checksum = ip_cksum;
1358 tcp->src_port = data->port;
1359 tcp->cksum = tcp_cksum;
1360 } else {
1361 struct udp_hdr *udp = (struct udp_hdr *) &ip[1];
1362 uint16_t ip_cksum, udp_cksum;
1363
1364 ip_cksum = nat_ipv4_checksum_update(ip->hdr_checksum,
1365 ip->src_addr,
1366 data->addr);
1367
1368 udp_cksum = nat_ipv4_tcp_udp_checksum_update(udp->dgram_cksum,
1369 ip->src_addr,
1370 data->addr,
1371 udp->src_port,
1372 data->port);
1373
1374 ip->src_addr = data->addr;
1375 ip->hdr_checksum = ip_cksum;
1376 udp->src_port = data->port;
1377 if (udp->dgram_cksum)
1378 udp->dgram_cksum = udp_cksum;
1379 }
1380 } else {
1381 if (cfg->proto == 0x6) {
1382 struct tcp_hdr *tcp = (struct tcp_hdr *) &ip[1];
1383 uint16_t ip_cksum, tcp_cksum;
1384
1385 ip_cksum = nat_ipv4_checksum_update(ip->hdr_checksum,
1386 ip->dst_addr,
1387 data->addr);
1388
1389 tcp_cksum = nat_ipv4_tcp_udp_checksum_update(tcp->cksum,
1390 ip->dst_addr,
1391 data->addr,
1392 tcp->dst_port,
1393 data->port);
1394
1395 ip->dst_addr = data->addr;
1396 ip->hdr_checksum = ip_cksum;
1397 tcp->dst_port = data->port;
1398 tcp->cksum = tcp_cksum;
1399 } else {
1400 struct udp_hdr *udp = (struct udp_hdr *) &ip[1];
1401 uint16_t ip_cksum, udp_cksum;
1402
1403 ip_cksum = nat_ipv4_checksum_update(ip->hdr_checksum,
1404 ip->dst_addr,
1405 data->addr);
1406
1407 udp_cksum = nat_ipv4_tcp_udp_checksum_update(udp->dgram_cksum,
1408 ip->dst_addr,
1409 data->addr,
1410 udp->dst_port,
1411 data->port);
1412
1413 ip->dst_addr = data->addr;
1414 ip->hdr_checksum = ip_cksum;
1415 udp->dst_port = data->port;
1416 if (udp->dgram_cksum)
1417 udp->dgram_cksum = udp_cksum;
1418 }
1419 }
1420 }
1421
1422 static __rte_always_inline void
1423 pkt_ipv6_work_nat(struct ipv6_hdr *ip,
1424 struct nat_ipv6_data *data,
1425 struct rte_table_action_nat_config *cfg)
1426 {
1427 if (cfg->source_nat) {
1428 if (cfg->proto == 0x6) {
1429 struct tcp_hdr *tcp = (struct tcp_hdr *) &ip[1];
1430 uint16_t tcp_cksum;
1431
1432 tcp_cksum = nat_ipv6_tcp_udp_checksum_update(tcp->cksum,
1433 (uint16_t *)ip->src_addr,
1434 (uint16_t *)data->addr,
1435 tcp->src_port,
1436 data->port);
1437
1438 rte_memcpy(ip->src_addr, data->addr, 16);
1439 tcp->src_port = data->port;
1440 tcp->cksum = tcp_cksum;
1441 } else {
1442 struct udp_hdr *udp = (struct udp_hdr *) &ip[1];
1443 uint16_t udp_cksum;
1444
1445 udp_cksum = nat_ipv6_tcp_udp_checksum_update(udp->dgram_cksum,
1446 (uint16_t *)ip->src_addr,
1447 (uint16_t *)data->addr,
1448 udp->src_port,
1449 data->port);
1450
1451 rte_memcpy(ip->src_addr, data->addr, 16);
1452 udp->src_port = data->port;
1453 udp->dgram_cksum = udp_cksum;
1454 }
1455 } else {
1456 if (cfg->proto == 0x6) {
1457 struct tcp_hdr *tcp = (struct tcp_hdr *) &ip[1];
1458 uint16_t tcp_cksum;
1459
1460 tcp_cksum = nat_ipv6_tcp_udp_checksum_update(tcp->cksum,
1461 (uint16_t *)ip->dst_addr,
1462 (uint16_t *)data->addr,
1463 tcp->dst_port,
1464 data->port);
1465
1466 rte_memcpy(ip->dst_addr, data->addr, 16);
1467 tcp->dst_port = data->port;
1468 tcp->cksum = tcp_cksum;
1469 } else {
1470 struct udp_hdr *udp = (struct udp_hdr *) &ip[1];
1471 uint16_t udp_cksum;
1472
1473 udp_cksum = nat_ipv6_tcp_udp_checksum_update(udp->dgram_cksum,
1474 (uint16_t *)ip->dst_addr,
1475 (uint16_t *)data->addr,
1476 udp->dst_port,
1477 data->port);
1478
1479 rte_memcpy(ip->dst_addr, data->addr, 16);
1480 udp->dst_port = data->port;
1481 udp->dgram_cksum = udp_cksum;
1482 }
1483 }
1484 }
1485
1486 /**
1487 * RTE_TABLE_ACTION_TTL
1488 */
1489 static int
1490 ttl_cfg_check(struct rte_table_action_ttl_config *ttl)
1491 {
1492 if (ttl->drop == 0)
1493 return -ENOTSUP;
1494
1495 return 0;
1496 }
1497
1498 struct ttl_data {
1499 uint32_t n_packets;
1500 } __attribute__((__packed__));
1501
1502 #define TTL_INIT(data, decrement) \
1503 ((data)->n_packets = (decrement) ? 1 : 0)
1504
1505 #define TTL_DEC_GET(data) \
1506 ((uint8_t)((data)->n_packets & 1))
1507
1508 #define TTL_STATS_RESET(data) \
1509 ((data)->n_packets = ((data)->n_packets & 1))
1510
1511 #define TTL_STATS_READ(data) \
1512 ((data)->n_packets >> 1)
1513
1514 #define TTL_STATS_ADD(data, value) \
1515 ((data)->n_packets = \
1516 (((((data)->n_packets >> 1) + (value)) << 1) | \
1517 ((data)->n_packets & 1)))
1518
1519 static int
1520 ttl_apply(void *data,
1521 struct rte_table_action_ttl_params *p)
1522 {
1523 struct ttl_data *d = data;
1524
1525 TTL_INIT(d, p->decrement);
1526
1527 return 0;
1528 }
1529
1530 static __rte_always_inline uint64_t
1531 pkt_ipv4_work_ttl(struct ipv4_hdr *ip,
1532 struct ttl_data *data)
1533 {
1534 uint32_t drop;
1535 uint16_t cksum = ip->hdr_checksum;
1536 uint8_t ttl = ip->time_to_live;
1537 uint8_t ttl_diff = TTL_DEC_GET(data);
1538
1539 cksum += ttl_diff;
1540 ttl -= ttl_diff;
1541
1542 ip->hdr_checksum = cksum;
1543 ip->time_to_live = ttl;
1544
1545 drop = (ttl == 0) ? 1 : 0;
1546 TTL_STATS_ADD(data, drop);
1547
1548 return drop;
1549 }
1550
1551 static __rte_always_inline uint64_t
1552 pkt_ipv6_work_ttl(struct ipv6_hdr *ip,
1553 struct ttl_data *data)
1554 {
1555 uint32_t drop;
1556 uint8_t ttl = ip->hop_limits;
1557 uint8_t ttl_diff = TTL_DEC_GET(data);
1558
1559 ttl -= ttl_diff;
1560
1561 ip->hop_limits = ttl;
1562
1563 drop = (ttl == 0) ? 1 : 0;
1564 TTL_STATS_ADD(data, drop);
1565
1566 return drop;
1567 }
1568
1569 /**
1570 * RTE_TABLE_ACTION_STATS
1571 */
1572 static int
1573 stats_cfg_check(struct rte_table_action_stats_config *stats)
1574 {
1575 if ((stats->n_packets_enabled == 0) && (stats->n_bytes_enabled == 0))
1576 return -EINVAL;
1577
1578 return 0;
1579 }
1580
1581 struct stats_data {
1582 uint64_t n_packets;
1583 uint64_t n_bytes;
1584 } __attribute__((__packed__));
1585
1586 static int
1587 stats_apply(struct stats_data *data,
1588 struct rte_table_action_stats_params *p)
1589 {
1590 data->n_packets = p->n_packets;
1591 data->n_bytes = p->n_bytes;
1592
1593 return 0;
1594 }
1595
1596 static __rte_always_inline void
1597 pkt_work_stats(struct stats_data *data,
1598 uint16_t total_length)
1599 {
1600 data->n_packets++;
1601 data->n_bytes += total_length;
1602 }
1603
1604 /**
1605 * RTE_TABLE_ACTION_TIME
1606 */
1607 struct time_data {
1608 uint64_t time;
1609 } __attribute__((__packed__));
1610
1611 static int
1612 time_apply(struct time_data *data,
1613 struct rte_table_action_time_params *p)
1614 {
1615 data->time = p->time;
1616 return 0;
1617 }
1618
1619 static __rte_always_inline void
1620 pkt_work_time(struct time_data *data,
1621 uint64_t time)
1622 {
1623 data->time = time;
1624 }
1625
1626
1627 /**
1628 * RTE_TABLE_ACTION_CRYPTO
1629 */
1630
1631 #define CRYPTO_OP_MASK_CIPHER 0x1
1632 #define CRYPTO_OP_MASK_AUTH 0x2
1633 #define CRYPTO_OP_MASK_AEAD 0x4
1634
1635 struct crypto_op_sym_iv_aad {
1636 struct rte_crypto_op op;
1637 struct rte_crypto_sym_op sym_op;
1638 union {
1639 struct {
1640 uint8_t cipher_iv[
1641 RTE_TABLE_ACTION_SYM_CRYPTO_IV_SIZE_MAX];
1642 uint8_t auth_iv[
1643 RTE_TABLE_ACTION_SYM_CRYPTO_IV_SIZE_MAX];
1644 } cipher_auth;
1645
1646 struct {
1647 uint8_t iv[RTE_TABLE_ACTION_SYM_CRYPTO_IV_SIZE_MAX];
1648 uint8_t aad[RTE_TABLE_ACTION_SYM_CRYPTO_AAD_SIZE_MAX];
1649 } aead_iv_aad;
1650
1651 } iv_aad;
1652 };
1653
1654 struct sym_crypto_data {
1655
1656 union {
1657 struct {
1658
1659 /** Length of cipher iv. */
1660 uint16_t cipher_iv_len;
1661
1662 /** Offset from start of IP header to the cipher iv. */
1663 uint16_t cipher_iv_data_offset;
1664
1665 /** Length of cipher iv to be updated in the mbuf. */
1666 uint16_t cipher_iv_update_len;
1667
1668 /** Offset from start of IP header to the auth iv. */
1669 uint16_t auth_iv_data_offset;
1670
1671 /** Length of auth iv in the mbuf. */
1672 uint16_t auth_iv_len;
1673
1674 /** Length of auth iv to be updated in the mbuf. */
1675 uint16_t auth_iv_update_len;
1676
1677 } cipher_auth;
1678 struct {
1679
1680 /** Length of iv. */
1681 uint16_t iv_len;
1682
1683 /** Offset from start of IP header to the aead iv. */
1684 uint16_t iv_data_offset;
1685
1686 /** Length of iv to be updated in the mbuf. */
1687 uint16_t iv_update_len;
1688
1689 /** Length of aad */
1690 uint16_t aad_len;
1691
1692 /** Offset from start of IP header to the aad. */
1693 uint16_t aad_data_offset;
1694
1695 /** Length of aad to updated in the mbuf. */
1696 uint16_t aad_update_len;
1697
1698 } aead;
1699 };
1700
1701 /** Offset from start of IP header to the data. */
1702 uint16_t data_offset;
1703
1704 /** Digest length. */
1705 uint16_t digest_len;
1706
1707 /** block size */
1708 uint16_t block_size;
1709
1710 /** Mask of crypto operation */
1711 uint16_t op_mask;
1712
1713 /** Session pointer. */
1714 struct rte_cryptodev_sym_session *session;
1715
1716 /** Direction of crypto, encrypt or decrypt */
1717 uint16_t direction;
1718
1719 /** Private data size to store cipher iv / aad. */
1720 uint8_t iv_aad_data[32];
1721
1722 } __attribute__((__packed__));
1723
1724 static int
1725 sym_crypto_cfg_check(struct rte_table_action_sym_crypto_config *cfg)
1726 {
1727 if (!rte_cryptodev_pmd_is_valid_dev(cfg->cryptodev_id))
1728 return -EINVAL;
1729 if (cfg->mp_create == NULL || cfg->mp_init == NULL)
1730 return -EINVAL;
1731
1732 return 0;
1733 }
1734
1735 static int
1736 get_block_size(const struct rte_crypto_sym_xform *xform, uint8_t cdev_id)
1737 {
1738 struct rte_cryptodev_info dev_info;
1739 const struct rte_cryptodev_capabilities *cap;
1740 uint32_t i;
1741
1742 rte_cryptodev_info_get(cdev_id, &dev_info);
1743
1744 for (i = 0; dev_info.capabilities[i].op != RTE_CRYPTO_OP_TYPE_UNDEFINED;
1745 i++) {
1746 cap = &dev_info.capabilities[i];
1747
1748 if (cap->sym.xform_type != xform->type)
1749 continue;
1750
1751 if ((xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
1752 (cap->sym.cipher.algo == xform->cipher.algo))
1753 return cap->sym.cipher.block_size;
1754
1755 if ((xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) &&
1756 (cap->sym.aead.algo == xform->aead.algo))
1757 return cap->sym.aead.block_size;
1758
1759 if (xform->type == RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED)
1760 break;
1761 }
1762
1763 return -1;
1764 }
1765
1766 static int
1767 sym_crypto_apply(struct sym_crypto_data *data,
1768 struct rte_table_action_sym_crypto_config *cfg,
1769 struct rte_table_action_sym_crypto_params *p)
1770 {
1771 const struct rte_crypto_cipher_xform *cipher_xform = NULL;
1772 const struct rte_crypto_auth_xform *auth_xform = NULL;
1773 const struct rte_crypto_aead_xform *aead_xform = NULL;
1774 struct rte_crypto_sym_xform *xform = p->xform;
1775 struct rte_cryptodev_sym_session *session;
1776 int ret;
1777
1778 memset(data, 0, sizeof(*data));
1779
1780 while (xform) {
1781 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
1782 cipher_xform = &xform->cipher;
1783
1784 if (cipher_xform->iv.length >
1785 RTE_TABLE_ACTION_SYM_CRYPTO_IV_SIZE_MAX)
1786 return -ENOMEM;
1787 if (cipher_xform->iv.offset !=
1788 RTE_TABLE_ACTION_SYM_CRYPTO_IV_OFFSET)
1789 return -EINVAL;
1790
1791 ret = get_block_size(xform, cfg->cryptodev_id);
1792 if (ret < 0)
1793 return -1;
1794 data->block_size = (uint16_t)ret;
1795 data->op_mask |= CRYPTO_OP_MASK_CIPHER;
1796
1797 data->cipher_auth.cipher_iv_len =
1798 cipher_xform->iv.length;
1799 data->cipher_auth.cipher_iv_data_offset = (uint16_t)
1800 p->cipher_auth.cipher_iv_update.offset;
1801 data->cipher_auth.cipher_iv_update_len = (uint16_t)
1802 p->cipher_auth.cipher_iv_update.length;
1803
1804 rte_memcpy(data->iv_aad_data,
1805 p->cipher_auth.cipher_iv.val,
1806 p->cipher_auth.cipher_iv.length);
1807
1808 data->direction = cipher_xform->op;
1809
1810 } else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
1811 auth_xform = &xform->auth;
1812 if (auth_xform->iv.length >
1813 RTE_TABLE_ACTION_SYM_CRYPTO_IV_SIZE_MAX)
1814 return -ENOMEM;
1815 data->op_mask |= CRYPTO_OP_MASK_AUTH;
1816
1817 data->cipher_auth.auth_iv_len = auth_xform->iv.length;
1818 data->cipher_auth.auth_iv_data_offset = (uint16_t)
1819 p->cipher_auth.auth_iv_update.offset;
1820 data->cipher_auth.auth_iv_update_len = (uint16_t)
1821 p->cipher_auth.auth_iv_update.length;
1822 data->digest_len = auth_xform->digest_length;
1823
1824 data->direction = (auth_xform->op ==
1825 RTE_CRYPTO_AUTH_OP_GENERATE) ?
1826 RTE_CRYPTO_CIPHER_OP_ENCRYPT :
1827 RTE_CRYPTO_CIPHER_OP_DECRYPT;
1828
1829 } else if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1830 aead_xform = &xform->aead;
1831
1832 if ((aead_xform->iv.length >
1833 RTE_TABLE_ACTION_SYM_CRYPTO_IV_SIZE_MAX) || (
1834 aead_xform->aad_length >
1835 RTE_TABLE_ACTION_SYM_CRYPTO_AAD_SIZE_MAX))
1836 return -EINVAL;
1837 if (aead_xform->iv.offset !=
1838 RTE_TABLE_ACTION_SYM_CRYPTO_IV_OFFSET)
1839 return -EINVAL;
1840
1841 ret = get_block_size(xform, cfg->cryptodev_id);
1842 if (ret < 0)
1843 return -1;
1844 data->block_size = (uint16_t)ret;
1845 data->op_mask |= CRYPTO_OP_MASK_AEAD;
1846
1847 data->digest_len = aead_xform->digest_length;
1848 data->aead.iv_len = aead_xform->iv.length;
1849 data->aead.aad_len = aead_xform->aad_length;
1850
1851 data->aead.iv_data_offset = (uint16_t)
1852 p->aead.iv_update.offset;
1853 data->aead.iv_update_len = (uint16_t)
1854 p->aead.iv_update.length;
1855 data->aead.aad_data_offset = (uint16_t)
1856 p->aead.aad_update.offset;
1857 data->aead.aad_update_len = (uint16_t)
1858 p->aead.aad_update.length;
1859
1860 rte_memcpy(data->iv_aad_data,
1861 p->aead.iv.val,
1862 p->aead.iv.length);
1863
1864 rte_memcpy(data->iv_aad_data + p->aead.iv.length,
1865 p->aead.aad.val,
1866 p->aead.aad.length);
1867
1868 data->direction = (aead_xform->op ==
1869 RTE_CRYPTO_AEAD_OP_ENCRYPT) ?
1870 RTE_CRYPTO_CIPHER_OP_ENCRYPT :
1871 RTE_CRYPTO_CIPHER_OP_DECRYPT;
1872 } else
1873 return -EINVAL;
1874
1875 xform = xform->next;
1876 }
1877
1878 if (auth_xform && auth_xform->iv.length) {
1879 if (cipher_xform) {
1880 if (auth_xform->iv.offset !=
1881 RTE_TABLE_ACTION_SYM_CRYPTO_IV_OFFSET +
1882 cipher_xform->iv.length)
1883 return -EINVAL;
1884
1885 rte_memcpy(data->iv_aad_data + cipher_xform->iv.length,
1886 p->cipher_auth.auth_iv.val,
1887 p->cipher_auth.auth_iv.length);
1888 } else {
1889 rte_memcpy(data->iv_aad_data,
1890 p->cipher_auth.auth_iv.val,
1891 p->cipher_auth.auth_iv.length);
1892 }
1893 }
1894
1895 session = rte_cryptodev_sym_session_create(cfg->mp_create);
1896 if (!session)
1897 return -ENOMEM;
1898
1899 ret = rte_cryptodev_sym_session_init(cfg->cryptodev_id, session,
1900 p->xform, cfg->mp_init);
1901 if (ret < 0) {
1902 rte_cryptodev_sym_session_free(session);
1903 return ret;
1904 }
1905
1906 data->data_offset = (uint16_t)p->data_offset;
1907 data->session = session;
1908
1909 return 0;
1910 }
1911
1912 static __rte_always_inline uint64_t
1913 pkt_work_sym_crypto(struct rte_mbuf *mbuf, struct sym_crypto_data *data,
1914 struct rte_table_action_sym_crypto_config *cfg,
1915 uint16_t ip_offset)
1916 {
1917 struct crypto_op_sym_iv_aad *crypto_op = (struct crypto_op_sym_iv_aad *)
1918 RTE_MBUF_METADATA_UINT8_PTR(mbuf, cfg->op_offset);
1919 struct rte_crypto_op *op = &crypto_op->op;
1920 struct rte_crypto_sym_op *sym = op->sym;
1921 uint32_t pkt_offset = sizeof(*mbuf) + mbuf->data_off;
1922 uint32_t payload_len = pkt_offset + mbuf->data_len - data->data_offset;
1923
1924 op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
1925 op->sess_type = RTE_CRYPTO_OP_WITH_SESSION;
1926 op->phys_addr = mbuf->buf_iova + cfg->op_offset - sizeof(*mbuf);
1927 op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1928 sym->m_src = mbuf;
1929 sym->m_dst = NULL;
1930 sym->session = data->session;
1931
1932 /** pad the packet */
1933 if (data->direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1934 uint32_t append_len = RTE_ALIGN_CEIL(payload_len,
1935 data->block_size) - payload_len;
1936
1937 if (unlikely(rte_pktmbuf_append(mbuf, append_len +
1938 data->digest_len) == NULL))
1939 return 1;
1940
1941 payload_len += append_len;
1942 } else
1943 payload_len -= data->digest_len;
1944
1945 if (data->op_mask & CRYPTO_OP_MASK_CIPHER) {
1946 /** prepare cipher op */
1947 uint8_t *iv = crypto_op->iv_aad.cipher_auth.cipher_iv;
1948
1949 sym->cipher.data.length = payload_len;
1950 sym->cipher.data.offset = data->data_offset - pkt_offset;
1951
1952 if (data->cipher_auth.cipher_iv_update_len) {
1953 uint8_t *pkt_iv = RTE_MBUF_METADATA_UINT8_PTR(mbuf,
1954 data->cipher_auth.cipher_iv_data_offset
1955 + ip_offset);
1956
1957 /** For encryption, update the pkt iv field, otherwise
1958 * update the iv_aad_field
1959 **/
1960 if (data->direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1961 rte_memcpy(pkt_iv, data->iv_aad_data,
1962 data->cipher_auth.cipher_iv_update_len);
1963 else
1964 rte_memcpy(data->iv_aad_data, pkt_iv,
1965 data->cipher_auth.cipher_iv_update_len);
1966 }
1967
1968 /** write iv */
1969 rte_memcpy(iv, data->iv_aad_data,
1970 data->cipher_auth.cipher_iv_len);
1971 }
1972
1973 if (data->op_mask & CRYPTO_OP_MASK_AUTH) {
1974 /** authentication always start from IP header. */
1975 sym->auth.data.offset = ip_offset - pkt_offset;
1976 sym->auth.data.length = mbuf->data_len - sym->auth.data.offset -
1977 data->digest_len;
1978 sym->auth.digest.data = rte_pktmbuf_mtod_offset(mbuf,
1979 uint8_t *, rte_pktmbuf_pkt_len(mbuf) -
1980 data->digest_len);
1981 sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(mbuf,
1982 rte_pktmbuf_pkt_len(mbuf) - data->digest_len);
1983
1984 if (data->cipher_auth.auth_iv_update_len) {
1985 uint8_t *pkt_iv = RTE_MBUF_METADATA_UINT8_PTR(mbuf,
1986 data->cipher_auth.auth_iv_data_offset
1987 + ip_offset);
1988 uint8_t *data_iv = data->iv_aad_data +
1989 data->cipher_auth.cipher_iv_len;
1990
1991 if (data->direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1992 rte_memcpy(pkt_iv, data_iv,
1993 data->cipher_auth.auth_iv_update_len);
1994 else
1995 rte_memcpy(data_iv, pkt_iv,
1996 data->cipher_auth.auth_iv_update_len);
1997 }
1998
1999 if (data->cipher_auth.auth_iv_len) {
2000 /** prepare cipher op */
2001 uint8_t *iv = crypto_op->iv_aad.cipher_auth.auth_iv;
2002
2003 rte_memcpy(iv, data->iv_aad_data +
2004 data->cipher_auth.cipher_iv_len,
2005 data->cipher_auth.auth_iv_len);
2006 }
2007 }
2008
2009 if (data->op_mask & CRYPTO_OP_MASK_AEAD) {
2010 uint8_t *iv = crypto_op->iv_aad.aead_iv_aad.iv;
2011 uint8_t *aad = crypto_op->iv_aad.aead_iv_aad.aad;
2012
2013 sym->aead.aad.data = aad;
2014 sym->aead.aad.phys_addr = rte_pktmbuf_iova_offset(mbuf,
2015 aad - rte_pktmbuf_mtod(mbuf, uint8_t *));
2016 sym->aead.digest.data = rte_pktmbuf_mtod_offset(mbuf,
2017 uint8_t *, rte_pktmbuf_pkt_len(mbuf) -
2018 data->digest_len);
2019 sym->aead.digest.phys_addr = rte_pktmbuf_iova_offset(mbuf,
2020 rte_pktmbuf_pkt_len(mbuf) - data->digest_len);
2021 sym->aead.data.offset = data->data_offset - pkt_offset;
2022 sym->aead.data.length = payload_len;
2023
2024 if (data->aead.iv_update_len) {
2025 uint8_t *pkt_iv = RTE_MBUF_METADATA_UINT8_PTR(mbuf,
2026 data->aead.iv_data_offset + ip_offset);
2027 uint8_t *data_iv = data->iv_aad_data;
2028
2029 if (data->direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2030 rte_memcpy(pkt_iv, data_iv,
2031 data->aead.iv_update_len);
2032 else
2033 rte_memcpy(data_iv, pkt_iv,
2034 data->aead.iv_update_len);
2035 }
2036
2037 rte_memcpy(iv, data->iv_aad_data, data->aead.iv_len);
2038
2039 if (data->aead.aad_update_len) {
2040 uint8_t *pkt_aad = RTE_MBUF_METADATA_UINT8_PTR(mbuf,
2041 data->aead.aad_data_offset + ip_offset);
2042 uint8_t *data_aad = data->iv_aad_data +
2043 data->aead.iv_len;
2044
2045 if (data->direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2046 rte_memcpy(pkt_aad, data_aad,
2047 data->aead.iv_update_len);
2048 else
2049 rte_memcpy(data_aad, pkt_aad,
2050 data->aead.iv_update_len);
2051 }
2052
2053 rte_memcpy(aad, data->iv_aad_data + data->aead.iv_len,
2054 data->aead.aad_len);
2055 }
2056
2057 return 0;
2058 }
2059
2060 /**
2061 * RTE_TABLE_ACTION_TAG
2062 */
2063 struct tag_data {
2064 uint32_t tag;
2065 } __attribute__((__packed__));
2066
2067 static int
2068 tag_apply(struct tag_data *data,
2069 struct rte_table_action_tag_params *p)
2070 {
2071 data->tag = p->tag;
2072 return 0;
2073 }
2074
2075 static __rte_always_inline void
2076 pkt_work_tag(struct rte_mbuf *mbuf,
2077 struct tag_data *data)
2078 {
2079 mbuf->hash.fdir.hi = data->tag;
2080 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2081 }
2082
2083 static __rte_always_inline void
2084 pkt4_work_tag(struct rte_mbuf *mbuf0,
2085 struct rte_mbuf *mbuf1,
2086 struct rte_mbuf *mbuf2,
2087 struct rte_mbuf *mbuf3,
2088 struct tag_data *data0,
2089 struct tag_data *data1,
2090 struct tag_data *data2,
2091 struct tag_data *data3)
2092 {
2093 mbuf0->hash.fdir.hi = data0->tag;
2094 mbuf1->hash.fdir.hi = data1->tag;
2095 mbuf2->hash.fdir.hi = data2->tag;
2096 mbuf3->hash.fdir.hi = data3->tag;
2097
2098 mbuf0->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2099 mbuf1->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2100 mbuf2->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2101 mbuf3->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2102 }
2103
2104 /**
2105 * RTE_TABLE_ACTION_DECAP
2106 */
2107 struct decap_data {
2108 uint16_t n;
2109 } __attribute__((__packed__));
2110
2111 static int
2112 decap_apply(struct decap_data *data,
2113 struct rte_table_action_decap_params *p)
2114 {
2115 data->n = p->n;
2116 return 0;
2117 }
2118
2119 static __rte_always_inline void
2120 pkt_work_decap(struct rte_mbuf *mbuf,
2121 struct decap_data *data)
2122 {
2123 uint16_t data_off = mbuf->data_off;
2124 uint16_t data_len = mbuf->data_len;
2125 uint32_t pkt_len = mbuf->pkt_len;
2126 uint16_t n = data->n;
2127
2128 mbuf->data_off = data_off + n;
2129 mbuf->data_len = data_len - n;
2130 mbuf->pkt_len = pkt_len - n;
2131 }
2132
2133 static __rte_always_inline void
2134 pkt4_work_decap(struct rte_mbuf *mbuf0,
2135 struct rte_mbuf *mbuf1,
2136 struct rte_mbuf *mbuf2,
2137 struct rte_mbuf *mbuf3,
2138 struct decap_data *data0,
2139 struct decap_data *data1,
2140 struct decap_data *data2,
2141 struct decap_data *data3)
2142 {
2143 uint16_t data_off0 = mbuf0->data_off;
2144 uint16_t data_len0 = mbuf0->data_len;
2145 uint32_t pkt_len0 = mbuf0->pkt_len;
2146
2147 uint16_t data_off1 = mbuf1->data_off;
2148 uint16_t data_len1 = mbuf1->data_len;
2149 uint32_t pkt_len1 = mbuf1->pkt_len;
2150
2151 uint16_t data_off2 = mbuf2->data_off;
2152 uint16_t data_len2 = mbuf2->data_len;
2153 uint32_t pkt_len2 = mbuf2->pkt_len;
2154
2155 uint16_t data_off3 = mbuf3->data_off;
2156 uint16_t data_len3 = mbuf3->data_len;
2157 uint32_t pkt_len3 = mbuf3->pkt_len;
2158
2159 uint16_t n0 = data0->n;
2160 uint16_t n1 = data1->n;
2161 uint16_t n2 = data2->n;
2162 uint16_t n3 = data3->n;
2163
2164 mbuf0->data_off = data_off0 + n0;
2165 mbuf0->data_len = data_len0 - n0;
2166 mbuf0->pkt_len = pkt_len0 - n0;
2167
2168 mbuf1->data_off = data_off1 + n1;
2169 mbuf1->data_len = data_len1 - n1;
2170 mbuf1->pkt_len = pkt_len1 - n1;
2171
2172 mbuf2->data_off = data_off2 + n2;
2173 mbuf2->data_len = data_len2 - n2;
2174 mbuf2->pkt_len = pkt_len2 - n2;
2175
2176 mbuf3->data_off = data_off3 + n3;
2177 mbuf3->data_len = data_len3 - n3;
2178 mbuf3->pkt_len = pkt_len3 - n3;
2179 }
2180
2181 /**
2182 * Action profile
2183 */
2184 static int
2185 action_valid(enum rte_table_action_type action)
2186 {
2187 switch (action) {
2188 case RTE_TABLE_ACTION_FWD:
2189 case RTE_TABLE_ACTION_LB:
2190 case RTE_TABLE_ACTION_MTR:
2191 case RTE_TABLE_ACTION_TM:
2192 case RTE_TABLE_ACTION_ENCAP:
2193 case RTE_TABLE_ACTION_NAT:
2194 case RTE_TABLE_ACTION_TTL:
2195 case RTE_TABLE_ACTION_STATS:
2196 case RTE_TABLE_ACTION_TIME:
2197 case RTE_TABLE_ACTION_SYM_CRYPTO:
2198 case RTE_TABLE_ACTION_TAG:
2199 case RTE_TABLE_ACTION_DECAP:
2200 return 1;
2201 default:
2202 return 0;
2203 }
2204 }
2205
2206
2207 #define RTE_TABLE_ACTION_MAX 64
2208
2209 struct ap_config {
2210 uint64_t action_mask;
2211 struct rte_table_action_common_config common;
2212 struct rte_table_action_lb_config lb;
2213 struct rte_table_action_mtr_config mtr;
2214 struct rte_table_action_tm_config tm;
2215 struct rte_table_action_encap_config encap;
2216 struct rte_table_action_nat_config nat;
2217 struct rte_table_action_ttl_config ttl;
2218 struct rte_table_action_stats_config stats;
2219 struct rte_table_action_sym_crypto_config sym_crypto;
2220 };
2221
2222 static size_t
2223 action_cfg_size(enum rte_table_action_type action)
2224 {
2225 switch (action) {
2226 case RTE_TABLE_ACTION_LB:
2227 return sizeof(struct rte_table_action_lb_config);
2228 case RTE_TABLE_ACTION_MTR:
2229 return sizeof(struct rte_table_action_mtr_config);
2230 case RTE_TABLE_ACTION_TM:
2231 return sizeof(struct rte_table_action_tm_config);
2232 case RTE_TABLE_ACTION_ENCAP:
2233 return sizeof(struct rte_table_action_encap_config);
2234 case RTE_TABLE_ACTION_NAT:
2235 return sizeof(struct rte_table_action_nat_config);
2236 case RTE_TABLE_ACTION_TTL:
2237 return sizeof(struct rte_table_action_ttl_config);
2238 case RTE_TABLE_ACTION_STATS:
2239 return sizeof(struct rte_table_action_stats_config);
2240 case RTE_TABLE_ACTION_SYM_CRYPTO:
2241 return sizeof(struct rte_table_action_sym_crypto_config);
2242 default:
2243 return 0;
2244 }
2245 }
2246
2247 static void*
2248 action_cfg_get(struct ap_config *ap_config,
2249 enum rte_table_action_type type)
2250 {
2251 switch (type) {
2252 case RTE_TABLE_ACTION_LB:
2253 return &ap_config->lb;
2254
2255 case RTE_TABLE_ACTION_MTR:
2256 return &ap_config->mtr;
2257
2258 case RTE_TABLE_ACTION_TM:
2259 return &ap_config->tm;
2260
2261 case RTE_TABLE_ACTION_ENCAP:
2262 return &ap_config->encap;
2263
2264 case RTE_TABLE_ACTION_NAT:
2265 return &ap_config->nat;
2266
2267 case RTE_TABLE_ACTION_TTL:
2268 return &ap_config->ttl;
2269
2270 case RTE_TABLE_ACTION_STATS:
2271 return &ap_config->stats;
2272
2273 case RTE_TABLE_ACTION_SYM_CRYPTO:
2274 return &ap_config->sym_crypto;
2275 default:
2276 return NULL;
2277 }
2278 }
2279
2280 static void
2281 action_cfg_set(struct ap_config *ap_config,
2282 enum rte_table_action_type type,
2283 void *action_cfg)
2284 {
2285 void *dst = action_cfg_get(ap_config, type);
2286
2287 if (dst)
2288 memcpy(dst, action_cfg, action_cfg_size(type));
2289
2290 ap_config->action_mask |= 1LLU << type;
2291 }
2292
2293 struct ap_data {
2294 size_t offset[RTE_TABLE_ACTION_MAX];
2295 size_t total_size;
2296 };
2297
2298 static size_t
2299 action_data_size(enum rte_table_action_type action,
2300 struct ap_config *ap_config)
2301 {
2302 switch (action) {
2303 case RTE_TABLE_ACTION_FWD:
2304 return sizeof(struct fwd_data);
2305
2306 case RTE_TABLE_ACTION_LB:
2307 return sizeof(struct lb_data);
2308
2309 case RTE_TABLE_ACTION_MTR:
2310 return mtr_data_size(&ap_config->mtr);
2311
2312 case RTE_TABLE_ACTION_TM:
2313 return sizeof(struct tm_data);
2314
2315 case RTE_TABLE_ACTION_ENCAP:
2316 return encap_data_size(&ap_config->encap);
2317
2318 case RTE_TABLE_ACTION_NAT:
2319 return nat_data_size(&ap_config->nat,
2320 &ap_config->common);
2321
2322 case RTE_TABLE_ACTION_TTL:
2323 return sizeof(struct ttl_data);
2324
2325 case RTE_TABLE_ACTION_STATS:
2326 return sizeof(struct stats_data);
2327
2328 case RTE_TABLE_ACTION_TIME:
2329 return sizeof(struct time_data);
2330
2331 case RTE_TABLE_ACTION_SYM_CRYPTO:
2332 return (sizeof(struct sym_crypto_data));
2333
2334 case RTE_TABLE_ACTION_TAG:
2335 return sizeof(struct tag_data);
2336
2337 case RTE_TABLE_ACTION_DECAP:
2338 return sizeof(struct decap_data);
2339
2340 default:
2341 return 0;
2342 }
2343 }
2344
2345
2346 static void
2347 action_data_offset_set(struct ap_data *ap_data,
2348 struct ap_config *ap_config)
2349 {
2350 uint64_t action_mask = ap_config->action_mask;
2351 size_t offset;
2352 uint32_t action;
2353
2354 memset(ap_data->offset, 0, sizeof(ap_data->offset));
2355
2356 offset = 0;
2357 for (action = 0; action < RTE_TABLE_ACTION_MAX; action++)
2358 if (action_mask & (1LLU << action)) {
2359 ap_data->offset[action] = offset;
2360 offset += action_data_size((enum rte_table_action_type)action,
2361 ap_config);
2362 }
2363
2364 ap_data->total_size = offset;
2365 }
2366
2367 struct rte_table_action_profile {
2368 struct ap_config cfg;
2369 struct ap_data data;
2370 int frozen;
2371 };
2372
2373 struct rte_table_action_profile *
2374 rte_table_action_profile_create(struct rte_table_action_common_config *common)
2375 {
2376 struct rte_table_action_profile *ap;
2377
2378 /* Check input arguments */
2379 if (common == NULL)
2380 return NULL;
2381
2382 /* Memory allocation */
2383 ap = calloc(1, sizeof(struct rte_table_action_profile));
2384 if (ap == NULL)
2385 return NULL;
2386
2387 /* Initialization */
2388 memcpy(&ap->cfg.common, common, sizeof(*common));
2389
2390 return ap;
2391 }
2392
2393
2394 int
2395 rte_table_action_profile_action_register(struct rte_table_action_profile *profile,
2396 enum rte_table_action_type type,
2397 void *action_config)
2398 {
2399 int status;
2400
2401 /* Check input arguments */
2402 if ((profile == NULL) ||
2403 profile->frozen ||
2404 (action_valid(type) == 0) ||
2405 (profile->cfg.action_mask & (1LLU << type)) ||
2406 ((action_cfg_size(type) == 0) && action_config) ||
2407 (action_cfg_size(type) && (action_config == NULL)))
2408 return -EINVAL;
2409
2410 switch (type) {
2411 case RTE_TABLE_ACTION_LB:
2412 status = lb_cfg_check(action_config);
2413 break;
2414
2415 case RTE_TABLE_ACTION_MTR:
2416 status = mtr_cfg_check(action_config);
2417 break;
2418
2419 case RTE_TABLE_ACTION_TM:
2420 status = tm_cfg_check(action_config);
2421 break;
2422
2423 case RTE_TABLE_ACTION_ENCAP:
2424 status = encap_cfg_check(action_config);
2425 break;
2426
2427 case RTE_TABLE_ACTION_NAT:
2428 status = nat_cfg_check(action_config);
2429 break;
2430
2431 case RTE_TABLE_ACTION_TTL:
2432 status = ttl_cfg_check(action_config);
2433 break;
2434
2435 case RTE_TABLE_ACTION_STATS:
2436 status = stats_cfg_check(action_config);
2437 break;
2438
2439 case RTE_TABLE_ACTION_SYM_CRYPTO:
2440 status = sym_crypto_cfg_check(action_config);
2441 break;
2442
2443 default:
2444 status = 0;
2445 break;
2446 }
2447
2448 if (status)
2449 return status;
2450
2451 /* Action enable */
2452 action_cfg_set(&profile->cfg, type, action_config);
2453
2454 return 0;
2455 }
2456
2457 int
2458 rte_table_action_profile_freeze(struct rte_table_action_profile *profile)
2459 {
2460 if (profile->frozen)
2461 return -EBUSY;
2462
2463 profile->cfg.action_mask |= 1LLU << RTE_TABLE_ACTION_FWD;
2464 action_data_offset_set(&profile->data, &profile->cfg);
2465 profile->frozen = 1;
2466
2467 return 0;
2468 }
2469
2470 int
2471 rte_table_action_profile_free(struct rte_table_action_profile *profile)
2472 {
2473 if (profile == NULL)
2474 return 0;
2475
2476 free(profile);
2477 return 0;
2478 }
2479
2480 /**
2481 * Action
2482 */
2483 #define METER_PROFILES_MAX 32
2484
2485 struct rte_table_action {
2486 struct ap_config cfg;
2487 struct ap_data data;
2488 struct dscp_table_data dscp_table;
2489 struct meter_profile_data mp[METER_PROFILES_MAX];
2490 };
2491
2492 struct rte_table_action *
2493 rte_table_action_create(struct rte_table_action_profile *profile,
2494 uint32_t socket_id)
2495 {
2496 struct rte_table_action *action;
2497
2498 /* Check input arguments */
2499 if ((profile == NULL) ||
2500 (profile->frozen == 0))
2501 return NULL;
2502
2503 /* Memory allocation */
2504 action = rte_zmalloc_socket(NULL,
2505 sizeof(struct rte_table_action),
2506 RTE_CACHE_LINE_SIZE,
2507 socket_id);
2508 if (action == NULL)
2509 return NULL;
2510
2511 /* Initialization */
2512 memcpy(&action->cfg, &profile->cfg, sizeof(profile->cfg));
2513 memcpy(&action->data, &profile->data, sizeof(profile->data));
2514
2515 return action;
2516 }
2517
2518 static __rte_always_inline void *
2519 action_data_get(void *data,
2520 struct rte_table_action *action,
2521 enum rte_table_action_type type)
2522 {
2523 size_t offset = action->data.offset[type];
2524 uint8_t *data_bytes = data;
2525
2526 return &data_bytes[offset];
2527 }
2528
2529 int
2530 rte_table_action_apply(struct rte_table_action *action,
2531 void *data,
2532 enum rte_table_action_type type,
2533 void *action_params)
2534 {
2535 void *action_data;
2536
2537 /* Check input arguments */
2538 if ((action == NULL) ||
2539 (data == NULL) ||
2540 (action_valid(type) == 0) ||
2541 ((action->cfg.action_mask & (1LLU << type)) == 0) ||
2542 (action_params == NULL))
2543 return -EINVAL;
2544
2545 /* Data update */
2546 action_data = action_data_get(data, action, type);
2547
2548 switch (type) {
2549 case RTE_TABLE_ACTION_FWD:
2550 return fwd_apply(action_data,
2551 action_params);
2552
2553 case RTE_TABLE_ACTION_LB:
2554 return lb_apply(action_data,
2555 action_params);
2556
2557 case RTE_TABLE_ACTION_MTR:
2558 return mtr_apply(action_data,
2559 action_params,
2560 &action->cfg.mtr,
2561 action->mp,
2562 RTE_DIM(action->mp));
2563
2564 case RTE_TABLE_ACTION_TM:
2565 return tm_apply(action_data,
2566 action_params,
2567 &action->cfg.tm);
2568
2569 case RTE_TABLE_ACTION_ENCAP:
2570 return encap_apply(action_data,
2571 action_params,
2572 &action->cfg.encap,
2573 &action->cfg.common);
2574
2575 case RTE_TABLE_ACTION_NAT:
2576 return nat_apply(action_data,
2577 action_params,
2578 &action->cfg.common);
2579
2580 case RTE_TABLE_ACTION_TTL:
2581 return ttl_apply(action_data,
2582 action_params);
2583
2584 case RTE_TABLE_ACTION_STATS:
2585 return stats_apply(action_data,
2586 action_params);
2587
2588 case RTE_TABLE_ACTION_TIME:
2589 return time_apply(action_data,
2590 action_params);
2591
2592 case RTE_TABLE_ACTION_SYM_CRYPTO:
2593 return sym_crypto_apply(action_data,
2594 &action->cfg.sym_crypto,
2595 action_params);
2596
2597 case RTE_TABLE_ACTION_TAG:
2598 return tag_apply(action_data,
2599 action_params);
2600
2601 case RTE_TABLE_ACTION_DECAP:
2602 return decap_apply(action_data,
2603 action_params);
2604
2605 default:
2606 return -EINVAL;
2607 }
2608 }
2609
2610 int
2611 rte_table_action_dscp_table_update(struct rte_table_action *action,
2612 uint64_t dscp_mask,
2613 struct rte_table_action_dscp_table *table)
2614 {
2615 uint32_t i;
2616
2617 /* Check input arguments */
2618 if ((action == NULL) ||
2619 ((action->cfg.action_mask & ((1LLU << RTE_TABLE_ACTION_MTR) |
2620 (1LLU << RTE_TABLE_ACTION_TM))) == 0) ||
2621 (dscp_mask == 0) ||
2622 (table == NULL))
2623 return -EINVAL;
2624
2625 for (i = 0; i < RTE_DIM(table->entry); i++) {
2626 struct dscp_table_entry_data *data =
2627 &action->dscp_table.entry[i];
2628 struct rte_table_action_dscp_table_entry *entry =
2629 &table->entry[i];
2630
2631 if ((dscp_mask & (1LLU << i)) == 0)
2632 continue;
2633
2634 data->color = entry->color;
2635 data->tc = entry->tc_id;
2636 data->tc_queue = entry->tc_queue_id;
2637 }
2638
2639 return 0;
2640 }
2641
2642 int
2643 rte_table_action_meter_profile_add(struct rte_table_action *action,
2644 uint32_t meter_profile_id,
2645 struct rte_table_action_meter_profile *profile)
2646 {
2647 struct meter_profile_data *mp_data;
2648 uint32_t status;
2649
2650 /* Check input arguments */
2651 if ((action == NULL) ||
2652 ((action->cfg.action_mask & (1LLU << RTE_TABLE_ACTION_MTR)) == 0) ||
2653 (profile == NULL))
2654 return -EINVAL;
2655
2656 if (profile->alg != RTE_TABLE_ACTION_METER_TRTCM)
2657 return -ENOTSUP;
2658
2659 mp_data = meter_profile_data_find(action->mp,
2660 RTE_DIM(action->mp),
2661 meter_profile_id);
2662 if (mp_data)
2663 return -EEXIST;
2664
2665 mp_data = meter_profile_data_find_unused(action->mp,
2666 RTE_DIM(action->mp));
2667 if (!mp_data)
2668 return -ENOSPC;
2669
2670 /* Install new profile */
2671 status = rte_meter_trtcm_profile_config(&mp_data->profile,
2672 &profile->trtcm);
2673 if (status)
2674 return status;
2675
2676 mp_data->profile_id = meter_profile_id;
2677 mp_data->valid = 1;
2678
2679 return 0;
2680 }
2681
2682 int
2683 rte_table_action_meter_profile_delete(struct rte_table_action *action,
2684 uint32_t meter_profile_id)
2685 {
2686 struct meter_profile_data *mp_data;
2687
2688 /* Check input arguments */
2689 if ((action == NULL) ||
2690 ((action->cfg.action_mask & (1LLU << RTE_TABLE_ACTION_MTR)) == 0))
2691 return -EINVAL;
2692
2693 mp_data = meter_profile_data_find(action->mp,
2694 RTE_DIM(action->mp),
2695 meter_profile_id);
2696 if (!mp_data)
2697 return 0;
2698
2699 /* Uninstall profile */
2700 mp_data->valid = 0;
2701
2702 return 0;
2703 }
2704
2705 int
2706 rte_table_action_meter_read(struct rte_table_action *action,
2707 void *data,
2708 uint32_t tc_mask,
2709 struct rte_table_action_mtr_counters *stats,
2710 int clear)
2711 {
2712 struct mtr_trtcm_data *mtr_data;
2713 uint32_t i;
2714
2715 /* Check input arguments */
2716 if ((action == NULL) ||
2717 ((action->cfg.action_mask & (1LLU << RTE_TABLE_ACTION_MTR)) == 0) ||
2718 (data == NULL) ||
2719 (tc_mask > RTE_LEN2MASK(action->cfg.mtr.n_tc, uint32_t)))
2720 return -EINVAL;
2721
2722 mtr_data = action_data_get(data, action, RTE_TABLE_ACTION_MTR);
2723
2724 /* Read */
2725 if (stats) {
2726 for (i = 0; i < RTE_TABLE_ACTION_TC_MAX; i++) {
2727 struct rte_table_action_mtr_counters_tc *dst =
2728 &stats->stats[i];
2729 struct mtr_trtcm_data *src = &mtr_data[i];
2730
2731 if ((tc_mask & (1 << i)) == 0)
2732 continue;
2733
2734 dst->n_packets[RTE_COLOR_GREEN] =
2735 mtr_trtcm_data_stats_get(src, RTE_COLOR_GREEN);
2736
2737 dst->n_packets[RTE_COLOR_YELLOW] =
2738 mtr_trtcm_data_stats_get(src, RTE_COLOR_YELLOW);
2739
2740 dst->n_packets[RTE_COLOR_RED] =
2741 mtr_trtcm_data_stats_get(src, RTE_COLOR_RED);
2742
2743 dst->n_packets_valid = 1;
2744 dst->n_bytes_valid = 0;
2745 }
2746
2747 stats->tc_mask = tc_mask;
2748 }
2749
2750 /* Clear */
2751 if (clear)
2752 for (i = 0; i < RTE_TABLE_ACTION_TC_MAX; i++) {
2753 struct mtr_trtcm_data *src = &mtr_data[i];
2754
2755 if ((tc_mask & (1 << i)) == 0)
2756 continue;
2757
2758 mtr_trtcm_data_stats_reset(src, RTE_COLOR_GREEN);
2759 mtr_trtcm_data_stats_reset(src, RTE_COLOR_YELLOW);
2760 mtr_trtcm_data_stats_reset(src, RTE_COLOR_RED);
2761 }
2762
2763
2764 return 0;
2765 }
2766
2767 int
2768 rte_table_action_ttl_read(struct rte_table_action *action,
2769 void *data,
2770 struct rte_table_action_ttl_counters *stats,
2771 int clear)
2772 {
2773 struct ttl_data *ttl_data;
2774
2775 /* Check input arguments */
2776 if ((action == NULL) ||
2777 ((action->cfg.action_mask &
2778 (1LLU << RTE_TABLE_ACTION_TTL)) == 0) ||
2779 (data == NULL))
2780 return -EINVAL;
2781
2782 ttl_data = action_data_get(data, action, RTE_TABLE_ACTION_TTL);
2783
2784 /* Read */
2785 if (stats)
2786 stats->n_packets = TTL_STATS_READ(ttl_data);
2787
2788 /* Clear */
2789 if (clear)
2790 TTL_STATS_RESET(ttl_data);
2791
2792 return 0;
2793 }
2794
2795 int
2796 rte_table_action_stats_read(struct rte_table_action *action,
2797 void *data,
2798 struct rte_table_action_stats_counters *stats,
2799 int clear)
2800 {
2801 struct stats_data *stats_data;
2802
2803 /* Check input arguments */
2804 if ((action == NULL) ||
2805 ((action->cfg.action_mask &
2806 (1LLU << RTE_TABLE_ACTION_STATS)) == 0) ||
2807 (data == NULL))
2808 return -EINVAL;
2809
2810 stats_data = action_data_get(data, action,
2811 RTE_TABLE_ACTION_STATS);
2812
2813 /* Read */
2814 if (stats) {
2815 stats->n_packets = stats_data->n_packets;
2816 stats->n_bytes = stats_data->n_bytes;
2817 stats->n_packets_valid = 1;
2818 stats->n_bytes_valid = 1;
2819 }
2820
2821 /* Clear */
2822 if (clear) {
2823 stats_data->n_packets = 0;
2824 stats_data->n_bytes = 0;
2825 }
2826
2827 return 0;
2828 }
2829
2830 int
2831 rte_table_action_time_read(struct rte_table_action *action,
2832 void *data,
2833 uint64_t *timestamp)
2834 {
2835 struct time_data *time_data;
2836
2837 /* Check input arguments */
2838 if ((action == NULL) ||
2839 ((action->cfg.action_mask &
2840 (1LLU << RTE_TABLE_ACTION_TIME)) == 0) ||
2841 (data == NULL) ||
2842 (timestamp == NULL))
2843 return -EINVAL;
2844
2845 time_data = action_data_get(data, action, RTE_TABLE_ACTION_TIME);
2846
2847 /* Read */
2848 *timestamp = time_data->time;
2849
2850 return 0;
2851 }
2852
2853 struct rte_cryptodev_sym_session *
2854 rte_table_action_crypto_sym_session_get(struct rte_table_action *action,
2855 void *data)
2856 {
2857 struct sym_crypto_data *sym_crypto_data;
2858
2859 /* Check input arguments */
2860 if ((action == NULL) ||
2861 ((action->cfg.action_mask &
2862 (1LLU << RTE_TABLE_ACTION_SYM_CRYPTO)) == 0) ||
2863 (data == NULL))
2864 return NULL;
2865
2866 sym_crypto_data = action_data_get(data, action,
2867 RTE_TABLE_ACTION_SYM_CRYPTO);
2868
2869 return sym_crypto_data->session;
2870 }
2871
2872 static __rte_always_inline uint64_t
2873 pkt_work(struct rte_mbuf *mbuf,
2874 struct rte_pipeline_table_entry *table_entry,
2875 uint64_t time,
2876 struct rte_table_action *action,
2877 struct ap_config *cfg)
2878 {
2879 uint64_t drop_mask = 0;
2880
2881 uint32_t ip_offset = action->cfg.common.ip_offset;
2882 void *ip = RTE_MBUF_METADATA_UINT32_PTR(mbuf, ip_offset);
2883
2884 uint32_t dscp;
2885 uint16_t total_length;
2886
2887 if (cfg->common.ip_version) {
2888 struct ipv4_hdr *hdr = ip;
2889
2890 dscp = hdr->type_of_service >> 2;
2891 total_length = rte_ntohs(hdr->total_length);
2892 } else {
2893 struct ipv6_hdr *hdr = ip;
2894
2895 dscp = (rte_ntohl(hdr->vtc_flow) & 0x0F600000) >> 18;
2896 total_length =
2897 rte_ntohs(hdr->payload_len) + sizeof(struct ipv6_hdr);
2898 }
2899
2900 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_LB)) {
2901 void *data =
2902 action_data_get(table_entry, action, RTE_TABLE_ACTION_LB);
2903
2904 pkt_work_lb(mbuf,
2905 data,
2906 &cfg->lb);
2907 }
2908 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_MTR)) {
2909 void *data =
2910 action_data_get(table_entry, action, RTE_TABLE_ACTION_MTR);
2911
2912 drop_mask |= pkt_work_mtr(mbuf,
2913 data,
2914 &action->dscp_table,
2915 action->mp,
2916 time,
2917 dscp,
2918 total_length);
2919 }
2920
2921 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_TM)) {
2922 void *data =
2923 action_data_get(table_entry, action, RTE_TABLE_ACTION_TM);
2924
2925 pkt_work_tm(mbuf,
2926 data,
2927 &action->dscp_table,
2928 dscp);
2929 }
2930
2931 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_DECAP)) {
2932 void *data = action_data_get(table_entry,
2933 action,
2934 RTE_TABLE_ACTION_DECAP);
2935
2936 pkt_work_decap(mbuf, data);
2937 }
2938
2939 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_ENCAP)) {
2940 void *data =
2941 action_data_get(table_entry, action, RTE_TABLE_ACTION_ENCAP);
2942
2943 pkt_work_encap(mbuf,
2944 data,
2945 &cfg->encap,
2946 ip,
2947 total_length,
2948 ip_offset);
2949 }
2950
2951 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_NAT)) {
2952 void *data =
2953 action_data_get(table_entry, action, RTE_TABLE_ACTION_NAT);
2954
2955 if (cfg->common.ip_version)
2956 pkt_ipv4_work_nat(ip, data, &cfg->nat);
2957 else
2958 pkt_ipv6_work_nat(ip, data, &cfg->nat);
2959 }
2960
2961 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_TTL)) {
2962 void *data =
2963 action_data_get(table_entry, action, RTE_TABLE_ACTION_TTL);
2964
2965 if (cfg->common.ip_version)
2966 drop_mask |= pkt_ipv4_work_ttl(ip, data);
2967 else
2968 drop_mask |= pkt_ipv6_work_ttl(ip, data);
2969 }
2970
2971 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_STATS)) {
2972 void *data =
2973 action_data_get(table_entry, action, RTE_TABLE_ACTION_STATS);
2974
2975 pkt_work_stats(data, total_length);
2976 }
2977
2978 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_TIME)) {
2979 void *data =
2980 action_data_get(table_entry, action, RTE_TABLE_ACTION_TIME);
2981
2982 pkt_work_time(data, time);
2983 }
2984
2985 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_SYM_CRYPTO)) {
2986 void *data = action_data_get(table_entry, action,
2987 RTE_TABLE_ACTION_SYM_CRYPTO);
2988
2989 drop_mask |= pkt_work_sym_crypto(mbuf, data, &cfg->sym_crypto,
2990 ip_offset);
2991 }
2992
2993 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_TAG)) {
2994 void *data = action_data_get(table_entry,
2995 action,
2996 RTE_TABLE_ACTION_TAG);
2997
2998 pkt_work_tag(mbuf, data);
2999 }
3000
3001 return drop_mask;
3002 }
3003
3004 static __rte_always_inline uint64_t
3005 pkt4_work(struct rte_mbuf **mbufs,
3006 struct rte_pipeline_table_entry **table_entries,
3007 uint64_t time,
3008 struct rte_table_action *action,
3009 struct ap_config *cfg)
3010 {
3011 uint64_t drop_mask0 = 0;
3012 uint64_t drop_mask1 = 0;
3013 uint64_t drop_mask2 = 0;
3014 uint64_t drop_mask3 = 0;
3015
3016 struct rte_mbuf *mbuf0 = mbufs[0];
3017 struct rte_mbuf *mbuf1 = mbufs[1];
3018 struct rte_mbuf *mbuf2 = mbufs[2];
3019 struct rte_mbuf *mbuf3 = mbufs[3];
3020
3021 struct rte_pipeline_table_entry *table_entry0 = table_entries[0];
3022 struct rte_pipeline_table_entry *table_entry1 = table_entries[1];
3023 struct rte_pipeline_table_entry *table_entry2 = table_entries[2];
3024 struct rte_pipeline_table_entry *table_entry3 = table_entries[3];
3025
3026 uint32_t ip_offset = action->cfg.common.ip_offset;
3027 void *ip0 = RTE_MBUF_METADATA_UINT32_PTR(mbuf0, ip_offset);
3028 void *ip1 = RTE_MBUF_METADATA_UINT32_PTR(mbuf1, ip_offset);
3029 void *ip2 = RTE_MBUF_METADATA_UINT32_PTR(mbuf2, ip_offset);
3030 void *ip3 = RTE_MBUF_METADATA_UINT32_PTR(mbuf3, ip_offset);
3031
3032 uint32_t dscp0, dscp1, dscp2, dscp3;
3033 uint16_t total_length0, total_length1, total_length2, total_length3;
3034
3035 if (cfg->common.ip_version) {
3036 struct ipv4_hdr *hdr0 = ip0;
3037 struct ipv4_hdr *hdr1 = ip1;
3038 struct ipv4_hdr *hdr2 = ip2;
3039 struct ipv4_hdr *hdr3 = ip3;
3040
3041 dscp0 = hdr0->type_of_service >> 2;
3042 dscp1 = hdr1->type_of_service >> 2;
3043 dscp2 = hdr2->type_of_service >> 2;
3044 dscp3 = hdr3->type_of_service >> 2;
3045
3046 total_length0 = rte_ntohs(hdr0->total_length);
3047 total_length1 = rte_ntohs(hdr1->total_length);
3048 total_length2 = rte_ntohs(hdr2->total_length);
3049 total_length3 = rte_ntohs(hdr3->total_length);
3050 } else {
3051 struct ipv6_hdr *hdr0 = ip0;
3052 struct ipv6_hdr *hdr1 = ip1;
3053 struct ipv6_hdr *hdr2 = ip2;
3054 struct ipv6_hdr *hdr3 = ip3;
3055
3056 dscp0 = (rte_ntohl(hdr0->vtc_flow) & 0x0F600000) >> 18;
3057 dscp1 = (rte_ntohl(hdr1->vtc_flow) & 0x0F600000) >> 18;
3058 dscp2 = (rte_ntohl(hdr2->vtc_flow) & 0x0F600000) >> 18;
3059 dscp3 = (rte_ntohl(hdr3->vtc_flow) & 0x0F600000) >> 18;
3060
3061 total_length0 =
3062 rte_ntohs(hdr0->payload_len) + sizeof(struct ipv6_hdr);
3063 total_length1 =
3064 rte_ntohs(hdr1->payload_len) + sizeof(struct ipv6_hdr);
3065 total_length2 =
3066 rte_ntohs(hdr2->payload_len) + sizeof(struct ipv6_hdr);
3067 total_length3 =
3068 rte_ntohs(hdr3->payload_len) + sizeof(struct ipv6_hdr);
3069 }
3070
3071 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_LB)) {
3072 void *data0 =
3073 action_data_get(table_entry0, action, RTE_TABLE_ACTION_LB);
3074 void *data1 =
3075 action_data_get(table_entry1, action, RTE_TABLE_ACTION_LB);
3076 void *data2 =
3077 action_data_get(table_entry2, action, RTE_TABLE_ACTION_LB);
3078 void *data3 =
3079 action_data_get(table_entry3, action, RTE_TABLE_ACTION_LB);
3080
3081 pkt_work_lb(mbuf0,
3082 data0,
3083 &cfg->lb);
3084
3085 pkt_work_lb(mbuf1,
3086 data1,
3087 &cfg->lb);
3088
3089 pkt_work_lb(mbuf2,
3090 data2,
3091 &cfg->lb);
3092
3093 pkt_work_lb(mbuf3,
3094 data3,
3095 &cfg->lb);
3096 }
3097
3098 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_MTR)) {
3099 void *data0 =
3100 action_data_get(table_entry0, action, RTE_TABLE_ACTION_MTR);
3101 void *data1 =
3102 action_data_get(table_entry1, action, RTE_TABLE_ACTION_MTR);
3103 void *data2 =
3104 action_data_get(table_entry2, action, RTE_TABLE_ACTION_MTR);
3105 void *data3 =
3106 action_data_get(table_entry3, action, RTE_TABLE_ACTION_MTR);
3107
3108 drop_mask0 |= pkt_work_mtr(mbuf0,
3109 data0,
3110 &action->dscp_table,
3111 action->mp,
3112 time,
3113 dscp0,
3114 total_length0);
3115
3116 drop_mask1 |= pkt_work_mtr(mbuf1,
3117 data1,
3118 &action->dscp_table,
3119 action->mp,
3120 time,
3121 dscp1,
3122 total_length1);
3123
3124 drop_mask2 |= pkt_work_mtr(mbuf2,
3125 data2,
3126 &action->dscp_table,
3127 action->mp,
3128 time,
3129 dscp2,
3130 total_length2);
3131
3132 drop_mask3 |= pkt_work_mtr(mbuf3,
3133 data3,
3134 &action->dscp_table,
3135 action->mp,
3136 time,
3137 dscp3,
3138 total_length3);
3139 }
3140
3141 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_TM)) {
3142 void *data0 =
3143 action_data_get(table_entry0, action, RTE_TABLE_ACTION_TM);
3144 void *data1 =
3145 action_data_get(table_entry1, action, RTE_TABLE_ACTION_TM);
3146 void *data2 =
3147 action_data_get(table_entry2, action, RTE_TABLE_ACTION_TM);
3148 void *data3 =
3149 action_data_get(table_entry3, action, RTE_TABLE_ACTION_TM);
3150
3151 pkt_work_tm(mbuf0,
3152 data0,
3153 &action->dscp_table,
3154 dscp0);
3155
3156 pkt_work_tm(mbuf1,
3157 data1,
3158 &action->dscp_table,
3159 dscp1);
3160
3161 pkt_work_tm(mbuf2,
3162 data2,
3163 &action->dscp_table,
3164 dscp2);
3165
3166 pkt_work_tm(mbuf3,
3167 data3,
3168 &action->dscp_table,
3169 dscp3);
3170 }
3171
3172 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_DECAP)) {
3173 void *data0 = action_data_get(table_entry0,
3174 action,
3175 RTE_TABLE_ACTION_DECAP);
3176 void *data1 = action_data_get(table_entry1,
3177 action,
3178 RTE_TABLE_ACTION_DECAP);
3179 void *data2 = action_data_get(table_entry2,
3180 action,
3181 RTE_TABLE_ACTION_DECAP);
3182 void *data3 = action_data_get(table_entry3,
3183 action,
3184 RTE_TABLE_ACTION_DECAP);
3185
3186 pkt4_work_decap(mbuf0, mbuf1, mbuf2, mbuf3,
3187 data0, data1, data2, data3);
3188 }
3189
3190 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_ENCAP)) {
3191 void *data0 =
3192 action_data_get(table_entry0, action, RTE_TABLE_ACTION_ENCAP);
3193 void *data1 =
3194 action_data_get(table_entry1, action, RTE_TABLE_ACTION_ENCAP);
3195 void *data2 =
3196 action_data_get(table_entry2, action, RTE_TABLE_ACTION_ENCAP);
3197 void *data3 =
3198 action_data_get(table_entry3, action, RTE_TABLE_ACTION_ENCAP);
3199
3200 pkt_work_encap(mbuf0,
3201 data0,
3202 &cfg->encap,
3203 ip0,
3204 total_length0,
3205 ip_offset);
3206
3207 pkt_work_encap(mbuf1,
3208 data1,
3209 &cfg->encap,
3210 ip1,
3211 total_length1,
3212 ip_offset);
3213
3214 pkt_work_encap(mbuf2,
3215 data2,
3216 &cfg->encap,
3217 ip2,
3218 total_length2,
3219 ip_offset);
3220
3221 pkt_work_encap(mbuf3,
3222 data3,
3223 &cfg->encap,
3224 ip3,
3225 total_length3,
3226 ip_offset);
3227 }
3228
3229 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_NAT)) {
3230 void *data0 =
3231 action_data_get(table_entry0, action, RTE_TABLE_ACTION_NAT);
3232 void *data1 =
3233 action_data_get(table_entry1, action, RTE_TABLE_ACTION_NAT);
3234 void *data2 =
3235 action_data_get(table_entry2, action, RTE_TABLE_ACTION_NAT);
3236 void *data3 =
3237 action_data_get(table_entry3, action, RTE_TABLE_ACTION_NAT);
3238
3239 if (cfg->common.ip_version) {
3240 pkt_ipv4_work_nat(ip0, data0, &cfg->nat);
3241 pkt_ipv4_work_nat(ip1, data1, &cfg->nat);
3242 pkt_ipv4_work_nat(ip2, data2, &cfg->nat);
3243 pkt_ipv4_work_nat(ip3, data3, &cfg->nat);
3244 } else {
3245 pkt_ipv6_work_nat(ip0, data0, &cfg->nat);
3246 pkt_ipv6_work_nat(ip1, data1, &cfg->nat);
3247 pkt_ipv6_work_nat(ip2, data2, &cfg->nat);
3248 pkt_ipv6_work_nat(ip3, data3, &cfg->nat);
3249 }
3250 }
3251
3252 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_TTL)) {
3253 void *data0 =
3254 action_data_get(table_entry0, action, RTE_TABLE_ACTION_TTL);
3255 void *data1 =
3256 action_data_get(table_entry1, action, RTE_TABLE_ACTION_TTL);
3257 void *data2 =
3258 action_data_get(table_entry2, action, RTE_TABLE_ACTION_TTL);
3259 void *data3 =
3260 action_data_get(table_entry3, action, RTE_TABLE_ACTION_TTL);
3261
3262 if (cfg->common.ip_version) {
3263 drop_mask0 |= pkt_ipv4_work_ttl(ip0, data0);
3264 drop_mask1 |= pkt_ipv4_work_ttl(ip1, data1);
3265 drop_mask2 |= pkt_ipv4_work_ttl(ip2, data2);
3266 drop_mask3 |= pkt_ipv4_work_ttl(ip3, data3);
3267 } else {
3268 drop_mask0 |= pkt_ipv6_work_ttl(ip0, data0);
3269 drop_mask1 |= pkt_ipv6_work_ttl(ip1, data1);
3270 drop_mask2 |= pkt_ipv6_work_ttl(ip2, data2);
3271 drop_mask3 |= pkt_ipv6_work_ttl(ip3, data3);
3272 }
3273 }
3274
3275 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_STATS)) {
3276 void *data0 =
3277 action_data_get(table_entry0, action, RTE_TABLE_ACTION_STATS);
3278 void *data1 =
3279 action_data_get(table_entry1, action, RTE_TABLE_ACTION_STATS);
3280 void *data2 =
3281 action_data_get(table_entry2, action, RTE_TABLE_ACTION_STATS);
3282 void *data3 =
3283 action_data_get(table_entry3, action, RTE_TABLE_ACTION_STATS);
3284
3285 pkt_work_stats(data0, total_length0);
3286 pkt_work_stats(data1, total_length1);
3287 pkt_work_stats(data2, total_length2);
3288 pkt_work_stats(data3, total_length3);
3289 }
3290
3291 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_TIME)) {
3292 void *data0 =
3293 action_data_get(table_entry0, action, RTE_TABLE_ACTION_TIME);
3294 void *data1 =
3295 action_data_get(table_entry1, action, RTE_TABLE_ACTION_TIME);
3296 void *data2 =
3297 action_data_get(table_entry2, action, RTE_TABLE_ACTION_TIME);
3298 void *data3 =
3299 action_data_get(table_entry3, action, RTE_TABLE_ACTION_TIME);
3300
3301 pkt_work_time(data0, time);
3302 pkt_work_time(data1, time);
3303 pkt_work_time(data2, time);
3304 pkt_work_time(data3, time);
3305 }
3306
3307 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_SYM_CRYPTO)) {
3308 void *data0 = action_data_get(table_entry0, action,
3309 RTE_TABLE_ACTION_SYM_CRYPTO);
3310 void *data1 = action_data_get(table_entry1, action,
3311 RTE_TABLE_ACTION_SYM_CRYPTO);
3312 void *data2 = action_data_get(table_entry2, action,
3313 RTE_TABLE_ACTION_SYM_CRYPTO);
3314 void *data3 = action_data_get(table_entry3, action,
3315 RTE_TABLE_ACTION_SYM_CRYPTO);
3316
3317 drop_mask0 |= pkt_work_sym_crypto(mbuf0, data0, &cfg->sym_crypto,
3318 ip_offset);
3319 drop_mask1 |= pkt_work_sym_crypto(mbuf1, data1, &cfg->sym_crypto,
3320 ip_offset);
3321 drop_mask2 |= pkt_work_sym_crypto(mbuf2, data2, &cfg->sym_crypto,
3322 ip_offset);
3323 drop_mask3 |= pkt_work_sym_crypto(mbuf3, data3, &cfg->sym_crypto,
3324 ip_offset);
3325 }
3326
3327 if (cfg->action_mask & (1LLU << RTE_TABLE_ACTION_TAG)) {
3328 void *data0 = action_data_get(table_entry0,
3329 action,
3330 RTE_TABLE_ACTION_TAG);
3331 void *data1 = action_data_get(table_entry1,
3332 action,
3333 RTE_TABLE_ACTION_TAG);
3334 void *data2 = action_data_get(table_entry2,
3335 action,
3336 RTE_TABLE_ACTION_TAG);
3337 void *data3 = action_data_get(table_entry3,
3338 action,
3339 RTE_TABLE_ACTION_TAG);
3340
3341 pkt4_work_tag(mbuf0, mbuf1, mbuf2, mbuf3,
3342 data0, data1, data2, data3);
3343 }
3344
3345 return drop_mask0 |
3346 (drop_mask1 << 1) |
3347 (drop_mask2 << 2) |
3348 (drop_mask3 << 3);
3349 }
3350
3351 static __rte_always_inline int
3352 ah(struct rte_pipeline *p,
3353 struct rte_mbuf **pkts,
3354 uint64_t pkts_mask,
3355 struct rte_pipeline_table_entry **entries,
3356 struct rte_table_action *action,
3357 struct ap_config *cfg)
3358 {
3359 uint64_t pkts_drop_mask = 0;
3360 uint64_t time = 0;
3361
3362 if (cfg->action_mask & ((1LLU << RTE_TABLE_ACTION_MTR) |
3363 (1LLU << RTE_TABLE_ACTION_TIME)))
3364 time = rte_rdtsc();
3365
3366 if ((pkts_mask & (pkts_mask + 1)) == 0) {
3367 uint64_t n_pkts = __builtin_popcountll(pkts_mask);
3368 uint32_t i;
3369
3370 for (i = 0; i < (n_pkts & (~0x3LLU)); i += 4) {
3371 uint64_t drop_mask;
3372
3373 drop_mask = pkt4_work(&pkts[i],
3374 &entries[i],
3375 time,
3376 action,
3377 cfg);
3378
3379 pkts_drop_mask |= drop_mask << i;
3380 }
3381
3382 for ( ; i < n_pkts; i++) {
3383 uint64_t drop_mask;
3384
3385 drop_mask = pkt_work(pkts[i],
3386 entries[i],
3387 time,
3388 action,
3389 cfg);
3390
3391 pkts_drop_mask |= drop_mask << i;
3392 }
3393 } else
3394 for ( ; pkts_mask; ) {
3395 uint32_t pos = __builtin_ctzll(pkts_mask);
3396 uint64_t pkt_mask = 1LLU << pos;
3397 uint64_t drop_mask;
3398
3399 drop_mask = pkt_work(pkts[pos],
3400 entries[pos],
3401 time,
3402 action,
3403 cfg);
3404
3405 pkts_mask &= ~pkt_mask;
3406 pkts_drop_mask |= drop_mask << pos;
3407 }
3408
3409 rte_pipeline_ah_packet_drop(p, pkts_drop_mask);
3410
3411 return 0;
3412 }
3413
3414 static int
3415 ah_default(struct rte_pipeline *p,
3416 struct rte_mbuf **pkts,
3417 uint64_t pkts_mask,
3418 struct rte_pipeline_table_entry **entries,
3419 void *arg)
3420 {
3421 struct rte_table_action *action = arg;
3422
3423 return ah(p,
3424 pkts,
3425 pkts_mask,
3426 entries,
3427 action,
3428 &action->cfg);
3429 }
3430
3431 static rte_pipeline_table_action_handler_hit
3432 ah_selector(struct rte_table_action *action)
3433 {
3434 if (action->cfg.action_mask == (1LLU << RTE_TABLE_ACTION_FWD))
3435 return NULL;
3436
3437 return ah_default;
3438 }
3439
3440 int
3441 rte_table_action_table_params_get(struct rte_table_action *action,
3442 struct rte_pipeline_table_params *params)
3443 {
3444 rte_pipeline_table_action_handler_hit f_action_hit;
3445 uint32_t total_size;
3446
3447 /* Check input arguments */
3448 if ((action == NULL) ||
3449 (params == NULL))
3450 return -EINVAL;
3451
3452 f_action_hit = ah_selector(action);
3453 total_size = rte_align32pow2(action->data.total_size);
3454
3455 /* Fill in params */
3456 params->f_action_hit = f_action_hit;
3457 params->f_action_miss = NULL;
3458 params->arg_ah = (f_action_hit) ? action : NULL;
3459 params->action_data_size = total_size -
3460 sizeof(struct rte_pipeline_table_entry);
3461
3462 return 0;
3463 }
3464
3465 int
3466 rte_table_action_free(struct rte_table_action *action)
3467 {
3468 if (action == NULL)
3469 return 0;
3470
3471 rte_free(action);
3472
3473 return 0;
3474 }