]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/isa-l/crc/crc32_gzip_refl_by8.asm
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / isa-l / crc / crc32_gzip_refl_by8.asm
1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2 ; Copyright(c) 2011-2017 Intel Corporation All rights reserved.
3 ;
4 ; Redistribution and use in source and binary forms, with or without
5 ; modification, are permitted provided that the following conditions
6 ; are met:
7 ; * Redistributions of source code must retain the above copyright
8 ; notice, this list of conditions and the following disclaimer.
9 ; * Redistributions in binary form must reproduce the above copyright
10 ; notice, this list of conditions and the following disclaimer in
11 ; the documentation and/or other materials provided with the
12 ; distribution.
13 ; * Neither the name of Intel Corporation nor the names of its
14 ; contributors may be used to endorse or promote products derived
15 ; from this software without specific prior written permission.
16 ;
17 ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
29
30 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
31 ; Function API:
32 ; UINT32 crc32_gzip_refl_by8(
33 ; UINT32 init_crc, //initial CRC value, 32 bits
34 ; const unsigned char *buf, //buffer pointer to calculate CRC on
35 ; UINT64 len //buffer length in bytes (64-bit data)
36 ; );
37 ;
38 ; Authors:
39 ; Erdinc Ozturk
40 ; Vinodh Gopal
41 ; James Guilford
42 ;
43 ; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
44 ; URL: http://download.intel.com/design/intarch/papers/323102.pdf
45 ;
46 ;
47 ; sample yasm command line:
48 ; yasm -f x64 -f elf64 -X gnu -g dwarf2 crc32_gzip_refl_by8
49 ;
50 ; As explained here:
51 ; http://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html
52 ; CRC-32 checksum is described in RFC 1952
53 ; Implementing RFC 1952 CRC:
54 ; http://www.ietf.org/rfc/rfc1952.txt
55
56 %include "reg_sizes.asm"
57
58 %define fetch_dist 1024
59
60 [bits 64]
61 default rel
62
63 section .text
64
65
66 %ifidn __OUTPUT_FORMAT__, win64
67 %xdefine arg1 rcx
68 %xdefine arg2 rdx
69 %xdefine arg3 r8
70
71 %xdefine arg1_low32 ecx
72 %else
73 %xdefine arg1 rdi
74 %xdefine arg2 rsi
75 %xdefine arg3 rdx
76
77 %xdefine arg1_low32 edi
78 %endif
79
80 %define TMP 16*0
81 %ifidn __OUTPUT_FORMAT__, win64
82 %define XMM_SAVE 16*2
83 %define VARIABLE_OFFSET 16*10+8
84 %else
85 %define VARIABLE_OFFSET 16*2+8
86 %endif
87
88 align 16
89 global crc32_gzip_refl_by8:ISAL_SYM_TYPE_FUNCTION
90 crc32_gzip_refl_by8:
91
92 ; unsigned long c = crc ^ 0xffffffffL;
93 not arg1_low32 ;
94
95
96 sub rsp, VARIABLE_OFFSET
97 %ifidn __OUTPUT_FORMAT__, win64
98 ; push the xmm registers into the stack to maintain
99 movdqa [rsp + XMM_SAVE + 16*0], xmm6
100 movdqa [rsp + XMM_SAVE + 16*1], xmm7
101 movdqa [rsp + XMM_SAVE + 16*2], xmm8
102 movdqa [rsp + XMM_SAVE + 16*3], xmm9
103 movdqa [rsp + XMM_SAVE + 16*4], xmm10
104 movdqa [rsp + XMM_SAVE + 16*5], xmm11
105 movdqa [rsp + XMM_SAVE + 16*6], xmm12
106 movdqa [rsp + XMM_SAVE + 16*7], xmm13
107 %endif
108
109 ; check if smaller than 256B
110 cmp arg3, 256
111
112 ; for sizes less than 256, we can't fold 128B at a time...
113 jl _less_than_256
114
115
116 ; load the initial crc value
117 movd xmm10, arg1_low32 ; initial crc
118
119 ; receive the initial 64B data, xor the initial crc value
120 movdqu xmm0, [arg2+16*0]
121 movdqu xmm1, [arg2+16*1]
122 movdqu xmm2, [arg2+16*2]
123 movdqu xmm3, [arg2+16*3]
124 movdqu xmm4, [arg2+16*4]
125 movdqu xmm5, [arg2+16*5]
126 movdqu xmm6, [arg2+16*6]
127 movdqu xmm7, [arg2+16*7]
128
129 ; XOR the initial_crc value
130 pxor xmm0, xmm10
131 movdqa xmm10, [rk3] ;xmm10 has rk3 and rk4
132 ;imm value of pclmulqdq instruction will determine which constant to use
133 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
134 ; we subtract 256 instead of 128 to save one instruction from the loop
135 sub arg3, 256
136
137 ; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The _fold_128_B_loop
138 ; loop will fold 128B at a time until we have 128+y Bytes of buffer
139
140
141 ; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
142 _fold_128_B_loop:
143
144 ; update the buffer pointer
145 add arg2, 128
146
147 prefetchnta [arg2+fetch_dist+0]
148 movdqu xmm9, [arg2+16*0]
149 movdqu xmm12, [arg2+16*1]
150 movdqa xmm8, xmm0
151 movdqa xmm13, xmm1
152 pclmulqdq xmm0, xmm10, 0x10
153 pclmulqdq xmm8, xmm10 , 0x1
154 pclmulqdq xmm1, xmm10, 0x10
155 pclmulqdq xmm13, xmm10 , 0x1
156 pxor xmm0, xmm9
157 xorps xmm0, xmm8
158 pxor xmm1, xmm12
159 xorps xmm1, xmm13
160
161 prefetchnta [arg2+fetch_dist+32]
162 movdqu xmm9, [arg2+16*2]
163 movdqu xmm12, [arg2+16*3]
164 movdqa xmm8, xmm2
165 movdqa xmm13, xmm3
166 pclmulqdq xmm2, xmm10, 0x10
167 pclmulqdq xmm8, xmm10 , 0x1
168 pclmulqdq xmm3, xmm10, 0x10
169 pclmulqdq xmm13, xmm10 , 0x1
170 pxor xmm2, xmm9
171 xorps xmm2, xmm8
172 pxor xmm3, xmm12
173 xorps xmm3, xmm13
174
175 prefetchnta [arg2+fetch_dist+64]
176 movdqu xmm9, [arg2+16*4]
177 movdqu xmm12, [arg2+16*5]
178 movdqa xmm8, xmm4
179 movdqa xmm13, xmm5
180 pclmulqdq xmm4, xmm10, 0x10
181 pclmulqdq xmm8, xmm10 , 0x1
182 pclmulqdq xmm5, xmm10, 0x10
183 pclmulqdq xmm13, xmm10 , 0x1
184 pxor xmm4, xmm9
185 xorps xmm4, xmm8
186 pxor xmm5, xmm12
187 xorps xmm5, xmm13
188
189 prefetchnta [arg2+fetch_dist+96]
190 movdqu xmm9, [arg2+16*6]
191 movdqu xmm12, [arg2+16*7]
192 movdqa xmm8, xmm6
193 movdqa xmm13, xmm7
194 pclmulqdq xmm6, xmm10, 0x10
195 pclmulqdq xmm8, xmm10 , 0x1
196 pclmulqdq xmm7, xmm10, 0x10
197 pclmulqdq xmm13, xmm10 , 0x1
198 pxor xmm6, xmm9
199 xorps xmm6, xmm8
200 pxor xmm7, xmm12
201 xorps xmm7, xmm13
202
203 sub arg3, 128
204
205 ; check if there is another 128B in the buffer to be able to fold
206 jge _fold_128_B_loop
207 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
208
209
210 add arg2, 128
211 ; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
212 ; the 128B of folded data is in 8 of the xmm registers: xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
213
214
215 ; fold the 8 xmm registers to 1 xmm register with different constants
216
217 movdqa xmm10, [rk9]
218 movdqa xmm8, xmm0
219 pclmulqdq xmm0, xmm10, 0x1
220 pclmulqdq xmm8, xmm10, 0x10
221 pxor xmm7, xmm8
222 xorps xmm7, xmm0
223
224 movdqa xmm10, [rk11]
225 movdqa xmm8, xmm1
226 pclmulqdq xmm1, xmm10, 0x1
227 pclmulqdq xmm8, xmm10, 0x10
228 pxor xmm7, xmm8
229 xorps xmm7, xmm1
230
231 movdqa xmm10, [rk13]
232 movdqa xmm8, xmm2
233 pclmulqdq xmm2, xmm10, 0x1
234 pclmulqdq xmm8, xmm10, 0x10
235 pxor xmm7, xmm8
236 pxor xmm7, xmm2
237
238 movdqa xmm10, [rk15]
239 movdqa xmm8, xmm3
240 pclmulqdq xmm3, xmm10, 0x1
241 pclmulqdq xmm8, xmm10, 0x10
242 pxor xmm7, xmm8
243 xorps xmm7, xmm3
244
245 movdqa xmm10, [rk17]
246 movdqa xmm8, xmm4
247 pclmulqdq xmm4, xmm10, 0x1
248 pclmulqdq xmm8, xmm10, 0x10
249 pxor xmm7, xmm8
250 pxor xmm7, xmm4
251
252 movdqa xmm10, [rk19]
253 movdqa xmm8, xmm5
254 pclmulqdq xmm5, xmm10, 0x1
255 pclmulqdq xmm8, xmm10, 0x10
256 pxor xmm7, xmm8
257 xorps xmm7, xmm5
258
259 movdqa xmm10, [rk1]
260 movdqa xmm8, xmm6
261 pclmulqdq xmm6, xmm10, 0x1
262 pclmulqdq xmm8, xmm10, 0x10
263 pxor xmm7, xmm8
264 pxor xmm7, xmm6
265
266
267 ; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
268 ; instead of a cmp instruction, we use the negative flag with the jl instruction
269 add arg3, 128-16
270 jl _final_reduction_for_128
271
272 ; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
273 ; we can fold 16 bytes at a time if y>=16
274 ; continue folding 16B at a time
275
276 _16B_reduction_loop:
277 movdqa xmm8, xmm7
278 pclmulqdq xmm7, xmm10, 0x1
279 pclmulqdq xmm8, xmm10, 0x10
280 pxor xmm7, xmm8
281 movdqu xmm0, [arg2]
282 pxor xmm7, xmm0
283 add arg2, 16
284 sub arg3, 16
285 ; instead of a cmp instruction, we utilize the flags with the jge instruction
286 ; equivalent of: cmp arg3, 16-16
287 ; check if there is any more 16B in the buffer to be able to fold
288 jge _16B_reduction_loop
289
290 ;now we have 16+z bytes left to reduce, where 0<= z < 16.
291 ;first, we reduce the data in the xmm7 register
292
293
294 _final_reduction_for_128:
295 add arg3, 16
296 je _128_done
297
298 ; here we are getting data that is less than 16 bytes.
299 ; since we know that there was data before the pointer, we can offset the input pointer before the actual point, to receive exactly 16 bytes.
300 ; after that the registers need to be adjusted.
301 _get_last_two_xmms:
302
303
304 movdqa xmm2, xmm7
305 movdqu xmm1, [arg2 - 16 + arg3]
306
307 ; get rid of the extra data that was loaded before
308 ; load the shift constant
309 lea rax, [pshufb_shf_table]
310 add rax, arg3
311 movdqu xmm0, [rax]
312
313
314 pshufb xmm7, xmm0
315 pxor xmm0, [mask3]
316 pshufb xmm2, xmm0
317
318 pblendvb xmm2, xmm1 ;xmm0 is implicit
319 ;;;;;;;;;;
320 movdqa xmm8, xmm7
321 pclmulqdq xmm7, xmm10, 0x1
322
323 pclmulqdq xmm8, xmm10, 0x10
324 pxor xmm7, xmm8
325 pxor xmm7, xmm2
326
327 _128_done:
328 ; compute crc of a 128-bit value
329 movdqa xmm10, [rk5]
330 movdqa xmm0, xmm7
331
332 ;64b fold
333 pclmulqdq xmm7, xmm10, 0
334 psrldq xmm0, 8
335 pxor xmm7, xmm0
336
337 ;32b fold
338 movdqa xmm0, xmm7
339 pslldq xmm7, 4
340 pclmulqdq xmm7, xmm10, 0x10
341
342 pxor xmm7, xmm0
343
344
345 ;barrett reduction
346 _barrett:
347 pand xmm7, [mask2]
348 movdqa xmm1, xmm7
349 movdqa xmm2, xmm7
350 movdqa xmm10, [rk7]
351
352 pclmulqdq xmm7, xmm10, 0
353 pxor xmm7, xmm2
354 pand xmm7, [mask]
355 movdqa xmm2, xmm7
356 pclmulqdq xmm7, xmm10, 0x10
357 pxor xmm7, xmm2
358 pxor xmm7, xmm1
359 pextrd eax, xmm7, 2
360
361 _cleanup:
362 ; return c ^ 0xffffffffL;
363 not eax
364
365
366 %ifidn __OUTPUT_FORMAT__, win64
367 movdqa xmm6, [rsp + XMM_SAVE + 16*0]
368 movdqa xmm7, [rsp + XMM_SAVE + 16*1]
369 movdqa xmm8, [rsp + XMM_SAVE + 16*2]
370 movdqa xmm9, [rsp + XMM_SAVE + 16*3]
371 movdqa xmm10, [rsp + XMM_SAVE + 16*4]
372 movdqa xmm11, [rsp + XMM_SAVE + 16*5]
373 movdqa xmm12, [rsp + XMM_SAVE + 16*6]
374 movdqa xmm13, [rsp + XMM_SAVE + 16*7]
375 %endif
376 add rsp, VARIABLE_OFFSET
377 ret
378
379
380 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
381 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
382 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
383 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
384
385 align 16
386 _less_than_256:
387
388 ; check if there is enough buffer to be able to fold 16B at a time
389 cmp arg3, 32
390 jl _less_than_32
391
392 ; if there is, load the constants
393 movdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
394
395 movd xmm0, arg1_low32 ; get the initial crc value
396 movdqu xmm7, [arg2] ; load the plaintext
397 pxor xmm7, xmm0
398
399 ; update the buffer pointer
400 add arg2, 16
401
402 ; update the counter. subtract 32 instead of 16 to save one instruction from the loop
403 sub arg3, 32
404
405 jmp _16B_reduction_loop
406
407
408 align 16
409 _less_than_32:
410 ; mov initial crc to the return value. this is necessary for zero-length buffers.
411 mov eax, arg1_low32
412 test arg3, arg3
413 je _cleanup
414
415 movd xmm0, arg1_low32 ; get the initial crc value
416
417 cmp arg3, 16
418 je _exact_16_left
419 jl _less_than_16_left
420
421 movdqu xmm7, [arg2] ; load the plaintext
422 pxor xmm7, xmm0 ; xor the initial crc value
423 add arg2, 16
424 sub arg3, 16
425 movdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
426 jmp _get_last_two_xmms
427
428
429 align 16
430 _less_than_16_left:
431 ; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.
432
433 pxor xmm1, xmm1
434 mov r11, rsp
435 movdqa [r11], xmm1
436
437 cmp arg3, 4
438 jl _only_less_than_4
439
440 ; backup the counter value
441 mov r9, arg3
442 cmp arg3, 8
443 jl _less_than_8_left
444
445 ; load 8 Bytes
446 mov rax, [arg2]
447 mov [r11], rax
448 add r11, 8
449 sub arg3, 8
450 add arg2, 8
451 _less_than_8_left:
452
453 cmp arg3, 4
454 jl _less_than_4_left
455
456 ; load 4 Bytes
457 mov eax, [arg2]
458 mov [r11], eax
459 add r11, 4
460 sub arg3, 4
461 add arg2, 4
462 _less_than_4_left:
463
464 cmp arg3, 2
465 jl _less_than_2_left
466
467 ; load 2 Bytes
468 mov ax, [arg2]
469 mov [r11], ax
470 add r11, 2
471 sub arg3, 2
472 add arg2, 2
473 _less_than_2_left:
474 cmp arg3, 1
475 jl _zero_left
476
477 ; load 1 Byte
478 mov al, [arg2]
479 mov [r11], al
480
481 _zero_left:
482 movdqa xmm7, [rsp]
483 pxor xmm7, xmm0 ; xor the initial crc value
484
485 lea rax,[pshufb_shf_table]
486 movdqu xmm0, [rax + r9]
487 pshufb xmm7,xmm0
488
489
490
491 jmp _128_done
492
493 align 16
494 _exact_16_left:
495 movdqu xmm7, [arg2]
496 pxor xmm7, xmm0 ; xor the initial crc value
497
498 jmp _128_done
499
500 _only_less_than_4:
501 cmp arg3, 3
502 jl _only_less_than_3
503
504 ; load 3 Bytes
505 mov al, [arg2]
506 mov [r11], al
507
508 mov al, [arg2+1]
509 mov [r11+1], al
510
511 mov al, [arg2+2]
512 mov [r11+2], al
513
514 movdqa xmm7, [rsp]
515 pxor xmm7, xmm0 ; xor the initial crc value
516
517 pslldq xmm7, 5
518
519 jmp _barrett
520 _only_less_than_3:
521 cmp arg3, 2
522 jl _only_less_than_2
523
524 ; load 2 Bytes
525 mov al, [arg2]
526 mov [r11], al
527
528 mov al, [arg2+1]
529 mov [r11+1], al
530
531 movdqa xmm7, [rsp]
532 pxor xmm7, xmm0 ; xor the initial crc value
533
534 pslldq xmm7, 6
535
536 jmp _barrett
537 _only_less_than_2:
538
539 ; load 1 Byte
540 mov al, [arg2]
541 mov [r11], al
542
543 movdqa xmm7, [rsp]
544 pxor xmm7, xmm0 ; xor the initial crc value
545
546 pslldq xmm7, 7
547
548 jmp _barrett
549
550 section .data
551
552 ; precomputed constants
553 align 16
554 rk1 :
555 DQ 0x00000000ccaa009e
556 rk2 :
557 DQ 0x00000001751997d0
558 rk3 :
559 DQ 0x000000014a7fe880
560 rk4 :
561 DQ 0x00000001e88ef372
562 rk5 :
563 DQ 0x00000000ccaa009e
564 rk6 :
565 DQ 0x0000000163cd6124
566 rk7 :
567 DQ 0x00000001f7011640
568 rk8 :
569 DQ 0x00000001db710640
570 rk9 :
571 DQ 0x00000001d7cfc6ac
572 rk10 :
573 DQ 0x00000001ea89367e
574 rk11 :
575 DQ 0x000000018cb44e58
576 rk12 :
577 DQ 0x00000000df068dc2
578 rk13 :
579 DQ 0x00000000ae0b5394
580 rk14 :
581 DQ 0x00000001c7569e54
582 rk15 :
583 DQ 0x00000001c6e41596
584 rk16 :
585 DQ 0x0000000154442bd4
586 rk17 :
587 DQ 0x0000000174359406
588 rk18 :
589 DQ 0x000000003db1ecdc
590 rk19 :
591 DQ 0x000000015a546366
592 rk20 :
593 DQ 0x00000000f1da05aa
594
595 mask:
596 dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
597 mask2:
598 dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
599 mask3:
600 dq 0x8080808080808080, 0x8080808080808080
601
602 pshufb_shf_table:
603 ; use these values for shift constants for the pshufb instruction
604 ; different alignments result in values as shown:
605 ; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
606 ; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
607 ; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
608 ; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
609 ; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
610 ; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
611 ; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
612 ; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
613 ; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
614 ; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
615 ; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
616 ; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
617 ; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
618 ; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
619 ; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
620 dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
621 dq 0x0706050403020100, 0x000e0d0c0b0a0908
622
623 ;;; func core, ver, snum
624 slversion crc32_gzip_refl_by8, 01, 00, 002c