]> git.proxmox.com Git - ceph.git/blob - ceph/src/spdk/test/unit/lib/bdev/compress.c/compress_ut.c
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / test / unit / lib / bdev / compress.c / compress_ut.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) Intel Corporation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include "spdk_cunit.h"
35 /* We have our own mock for this */
36 #define UNIT_TEST_NO_VTOPHYS
37 #include "common/lib/test_env.c"
38 #include "spdk_internal/mock.h"
39 #include "unit/lib/json_mock.c"
40 #include "spdk/reduce.h"
41
42 #include <rte_compressdev.h>
43
44 /* There will be one if the data perfectly matches the chunk size,
45 * or there could be an offset into the data and a remainder after
46 * the data or both for a max of 3.
47 */
48 #define UT_MBUFS_PER_OP 3
49 /* For testing the crossing of a huge page boundary on address translation,
50 * we'll have an extra one but we only test on the source side.
51 */
52 #define UT_MBUFS_PER_OP_BOUND_TEST 4
53
54 struct spdk_bdev_io *g_bdev_io;
55 struct spdk_io_channel *g_io_ch;
56 struct rte_comp_op g_comp_op[2];
57 struct vbdev_compress g_comp_bdev;
58 struct comp_device_qp g_device_qp;
59 struct compress_dev g_device;
60 struct rte_compressdev_capabilities g_cdev_cap;
61 static struct rte_mbuf *g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST];
62 static struct rte_mbuf *g_dst_mbufs[UT_MBUFS_PER_OP];
63 static struct rte_mbuf g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST];
64 static struct rte_mbuf g_expected_dst_mbufs[UT_MBUFS_PER_OP];
65 struct comp_bdev_io *g_io_ctx;
66 struct comp_io_channel *g_comp_ch;
67
68 /* Those functions are defined as static inline in DPDK, so we can't
69 * mock them straight away. We use defines to redirect them into
70 * our custom functions.
71 */
72
73 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova,
74 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo);
75 #define rte_pktmbuf_attach_extbuf mock_rte_pktmbuf_attach_extbuf
76 static void mock_rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr, rte_iova_t buf_iova,
77 uint16_t buf_len, struct rte_mbuf_ext_shared_info *shinfo)
78 {
79 assert(m != NULL);
80 m->buf_addr = buf_addr;
81 m->buf_iova = buf_iova;
82 m->buf_len = buf_len;
83 m->data_len = m->pkt_len = 0;
84 }
85
86 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len);
87 #define rte_pktmbuf_append mock_rte_pktmbuf_append
88 static char *mock_rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
89 {
90 m->pkt_len = m->pkt_len + len;
91 return NULL;
92 }
93
94 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail);
95 #define rte_pktmbuf_chain mock_rte_pktmbuf_chain
96 static inline int mock_rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
97 {
98 struct rte_mbuf *cur_tail;
99
100 cur_tail = rte_pktmbuf_lastseg(head);
101 cur_tail->next = tail;
102
103 return 0;
104 }
105
106 uint16_t ut_max_nb_queue_pairs = 0;
107 void __rte_experimental mock_rte_compressdev_info_get(uint8_t dev_id,
108 struct rte_compressdev_info *dev_info);
109 #define rte_compressdev_info_get mock_rte_compressdev_info_get
110 void __rte_experimental
111 mock_rte_compressdev_info_get(uint8_t dev_id, struct rte_compressdev_info *dev_info)
112 {
113 dev_info->max_nb_queue_pairs = ut_max_nb_queue_pairs;
114 dev_info->capabilities = &g_cdev_cap;
115 dev_info->driver_name = "compress_isal";
116 }
117
118 int ut_rte_compressdev_configure = 0;
119 int __rte_experimental mock_rte_compressdev_configure(uint8_t dev_id,
120 struct rte_compressdev_config *config);
121 #define rte_compressdev_configure mock_rte_compressdev_configure
122 int __rte_experimental
123 mock_rte_compressdev_configure(uint8_t dev_id, struct rte_compressdev_config *config)
124 {
125 return ut_rte_compressdev_configure;
126 }
127
128 int ut_rte_compressdev_queue_pair_setup = 0;
129 int __rte_experimental mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
130 uint32_t max_inflight_ops, int socket_id);
131 #define rte_compressdev_queue_pair_setup mock_rte_compressdev_queue_pair_setup
132 int __rte_experimental
133 mock_rte_compressdev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
134 uint32_t max_inflight_ops, int socket_id)
135 {
136 return ut_rte_compressdev_queue_pair_setup;
137 }
138
139 int ut_rte_compressdev_start = 0;
140 int __rte_experimental mock_rte_compressdev_start(uint8_t dev_id);
141 #define rte_compressdev_start mock_rte_compressdev_start
142 int __rte_experimental
143 mock_rte_compressdev_start(uint8_t dev_id)
144 {
145 return ut_rte_compressdev_start;
146 }
147
148 int ut_rte_compressdev_private_xform_create = 0;
149 int __rte_experimental mock_rte_compressdev_private_xform_create(uint8_t dev_id,
150 const struct rte_comp_xform *xform, void **private_xform);
151 #define rte_compressdev_private_xform_create mock_rte_compressdev_private_xform_create
152 int __rte_experimental
153 mock_rte_compressdev_private_xform_create(uint8_t dev_id,
154 const struct rte_comp_xform *xform, void **private_xform)
155 {
156 return ut_rte_compressdev_private_xform_create;
157 }
158
159 uint8_t ut_rte_compressdev_count = 0;
160 uint8_t __rte_experimental mock_rte_compressdev_count(void);
161 #define rte_compressdev_count mock_rte_compressdev_count
162 uint8_t __rte_experimental
163 mock_rte_compressdev_count(void)
164 {
165 return ut_rte_compressdev_count;
166 }
167
168 struct rte_mempool *ut_rte_comp_op_pool_create = NULL;
169 struct rte_mempool *__rte_experimental mock_rte_comp_op_pool_create(const char *name,
170 unsigned int nb_elts, unsigned int cache_size, uint16_t user_size,
171 int socket_id);
172 #define rte_comp_op_pool_create mock_rte_comp_op_pool_create
173 struct rte_mempool *__rte_experimental
174 mock_rte_comp_op_pool_create(const char *name, unsigned int nb_elts,
175 unsigned int cache_size, uint16_t user_size, int socket_id)
176 {
177 return ut_rte_comp_op_pool_create;
178 }
179
180 void mock_rte_pktmbuf_free(struct rte_mbuf *m);
181 #define rte_pktmbuf_free mock_rte_pktmbuf_free
182 void mock_rte_pktmbuf_free(struct rte_mbuf *m)
183 {
184 }
185
186 static bool ut_boundary_alloc = false;
187 static int ut_rte_pktmbuf_alloc_bulk = 0;
188 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs,
189 unsigned count);
190 #define rte_pktmbuf_alloc_bulk mock_rte_pktmbuf_alloc_bulk
191 int mock_rte_pktmbuf_alloc_bulk(struct rte_mempool *pool, struct rte_mbuf **mbufs,
192 unsigned count)
193 {
194 int i;
195
196 /* This mocked function only supports the alloc of up to 3 src and 3 dst. */
197 ut_rte_pktmbuf_alloc_bulk += count;
198
199 if (ut_rte_pktmbuf_alloc_bulk == 1) {
200 /* allocation of an extra mbuf for boundary cross test */
201 ut_boundary_alloc = true;
202 g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1]->next = NULL;
203 *mbufs = g_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1];
204 ut_rte_pktmbuf_alloc_bulk = 0;
205 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP) {
206 /* first test allocation, src mbufs */
207 for (i = 0; i < UT_MBUFS_PER_OP; i++) {
208 g_src_mbufs[i]->next = NULL;
209 *mbufs++ = g_src_mbufs[i];
210 }
211 } else if (ut_rte_pktmbuf_alloc_bulk == UT_MBUFS_PER_OP * 2) {
212 /* second test allocation, dst mbufs */
213 for (i = 0; i < UT_MBUFS_PER_OP; i++) {
214 g_dst_mbufs[i]->next = NULL;
215 *mbufs++ = g_dst_mbufs[i];
216 }
217 ut_rte_pktmbuf_alloc_bulk = 0;
218 } else {
219 return -1;
220 }
221 return 0;
222 }
223
224 struct rte_mempool *
225 rte_pktmbuf_pool_create(const char *name, unsigned n, unsigned cache_size,
226 uint16_t priv_size, uint16_t data_room_size, int socket_id)
227 {
228 struct spdk_mempool *tmp;
229
230 tmp = spdk_mempool_create("mbuf_mp", 1024, sizeof(struct rte_mbuf),
231 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
232 SPDK_ENV_SOCKET_ID_ANY);
233
234 return (struct rte_mempool *)tmp;
235 }
236
237 void
238 rte_mempool_free(struct rte_mempool *mp)
239 {
240 if (mp) {
241 spdk_mempool_free((struct spdk_mempool *)mp);
242 }
243 }
244
245 static int ut_spdk_reduce_vol_op_complete_err = 0;
246 void
247 spdk_reduce_vol_writev(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
248 uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn,
249 void *cb_arg)
250 {
251 cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err);
252 }
253
254 void
255 spdk_reduce_vol_readv(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
256 uint64_t offset, uint64_t length, spdk_reduce_vol_op_complete cb_fn,
257 void *cb_arg)
258 {
259 cb_fn(cb_arg, ut_spdk_reduce_vol_op_complete_err);
260 }
261
262 #include "bdev/compress/vbdev_compress.c"
263
264 /* SPDK stubs */
265 DEFINE_STUB(spdk_bdev_get_aliases, const struct spdk_bdev_aliases_list *,
266 (const struct spdk_bdev *bdev), NULL);
267 DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module));
268 DEFINE_STUB_V(spdk_bdev_free_io, (struct spdk_bdev_io *g_bdev_io));
269 DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev,
270 enum spdk_bdev_io_type io_type), 0);
271 DEFINE_STUB_V(spdk_bdev_module_release_bdev, (struct spdk_bdev *bdev));
272 DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc));
273 DEFINE_STUB(spdk_bdev_get_name, const char *, (const struct spdk_bdev *bdev), 0);
274 DEFINE_STUB(spdk_bdev_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_desc *desc), 0);
275 DEFINE_STUB_V(spdk_bdev_unregister, (struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn,
276 void *cb_arg));
277 DEFINE_STUB(spdk_bdev_open, int, (struct spdk_bdev *bdev, bool write,
278 spdk_bdev_remove_cb_t remove_cb,
279 void *remove_ctx, struct spdk_bdev_desc **_desc), 0);
280 DEFINE_STUB(spdk_bdev_module_claim_bdev, int, (struct spdk_bdev *bdev, struct spdk_bdev_desc *desc,
281 struct spdk_bdev_module *module), 0);
282 DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module));
283 DEFINE_STUB(spdk_bdev_register, int, (struct spdk_bdev *bdev), 0);
284 DEFINE_STUB(spdk_bdev_get_by_name, struct spdk_bdev *, (const char *bdev_name), NULL);
285 DEFINE_STUB(spdk_bdev_io_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_io *bdev_io),
286 0);
287 DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch,
288 struct spdk_bdev_io_wait_entry *entry), 0);
289 DEFINE_STUB_V(spdk_reduce_vol_unload, (struct spdk_reduce_vol *vol,
290 spdk_reduce_vol_op_complete cb_fn, void *cb_arg));
291 DEFINE_STUB_V(spdk_reduce_vol_load, (struct spdk_reduce_backing_dev *backing_dev,
292 spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg));
293 DEFINE_STUB(spdk_reduce_vol_get_params, const struct spdk_reduce_vol_params *,
294 (struct spdk_reduce_vol *vol), NULL);
295
296 /* DPDK stubs */
297 DEFINE_STUB(rte_socket_id, unsigned, (void), 0);
298 DEFINE_STUB(rte_vdev_init, int, (const char *name, const char *args), 0);
299 DEFINE_STUB_V(rte_comp_op_free, (struct rte_comp_op *op));
300 DEFINE_STUB(rte_comp_op_alloc, struct rte_comp_op *, (struct rte_mempool *mempool), NULL);
301
302 int g_small_size_counter = 0;
303 int g_small_size_modify = 0;
304 uint64_t g_small_size = 0;
305 uint64_t
306 spdk_vtophys(void *buf, uint64_t *size)
307 {
308 g_small_size_counter++;
309 if (g_small_size_counter == g_small_size_modify) {
310 *size = g_small_size;
311 g_small_size_counter = 0;
312 g_small_size_modify = 0;
313 }
314 return (uint64_t)buf;
315 }
316
317 void
318 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len)
319 {
320 cb(g_io_ch, g_bdev_io, true);
321 }
322
323 /* Mock these functions to call the callback and then return the value we require */
324 int ut_spdk_bdev_readv_blocks = 0;
325 int
326 spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
327 struct iovec *iov, int iovcnt,
328 uint64_t offset_blocks, uint64_t num_blocks,
329 spdk_bdev_io_completion_cb cb, void *cb_arg)
330 {
331 cb(g_bdev_io, !ut_spdk_bdev_readv_blocks, cb_arg);
332 return ut_spdk_bdev_readv_blocks;
333 }
334
335 int ut_spdk_bdev_writev_blocks = 0;
336 bool ut_spdk_bdev_writev_blocks_mocked = false;
337 int
338 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
339 struct iovec *iov, int iovcnt,
340 uint64_t offset_blocks, uint64_t num_blocks,
341 spdk_bdev_io_completion_cb cb, void *cb_arg)
342 {
343 cb(g_bdev_io, !ut_spdk_bdev_writev_blocks, cb_arg);
344 return ut_spdk_bdev_writev_blocks;
345 }
346
347 int ut_spdk_bdev_unmap_blocks = 0;
348 bool ut_spdk_bdev_unmap_blocks_mocked = false;
349 int
350 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
351 uint64_t offset_blocks, uint64_t num_blocks,
352 spdk_bdev_io_completion_cb cb, void *cb_arg)
353 {
354 cb(g_bdev_io, !ut_spdk_bdev_unmap_blocks, cb_arg);
355 return ut_spdk_bdev_unmap_blocks;
356 }
357
358 int ut_spdk_bdev_flush_blocks = 0;
359 bool ut_spdk_bdev_flush_blocks_mocked = false;
360 int
361 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
362 uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb,
363 void *cb_arg)
364 {
365 cb(g_bdev_io, !ut_spdk_bdev_flush_blocks, cb_arg);
366 return ut_spdk_bdev_flush_blocks;
367 }
368
369 int ut_spdk_bdev_reset = 0;
370 bool ut_spdk_bdev_reset_mocked = false;
371 int
372 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
373 spdk_bdev_io_completion_cb cb, void *cb_arg)
374 {
375 cb(g_bdev_io, !ut_spdk_bdev_reset, cb_arg);
376 return ut_spdk_bdev_reset;
377 }
378
379 bool g_completion_called = false;
380 void
381 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status)
382 {
383 bdev_io->internal.status = status;
384 g_completion_called = true;
385 }
386
387 static uint16_t ut_rte_compressdev_dequeue_burst = 0;
388 uint16_t
389 rte_compressdev_dequeue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops,
390 uint16_t nb_op)
391 {
392 if (ut_rte_compressdev_dequeue_burst == 0) {
393 return 0;
394 }
395
396 ops[0] = &g_comp_op[0];
397 ops[1] = &g_comp_op[1];
398
399 return ut_rte_compressdev_dequeue_burst;
400 }
401
402 static int ut_compress_done[2];
403 /* done_count and done_idx together control which expected assertion
404 * value to use when dequeuing 2 operations.
405 */
406 static uint16_t done_count = 1;
407 static uint16_t done_idx = 0;
408 static void
409 _compress_done(void *_req, int reduce_errno)
410 {
411 if (done_count == 1) {
412 CU_ASSERT(reduce_errno == ut_compress_done[0]);
413 } else if (done_count == 2) {
414 CU_ASSERT(reduce_errno == ut_compress_done[done_idx++]);
415 }
416 }
417
418 static void
419 _get_mbuf_array(struct rte_mbuf *mbuf_array[UT_MBUFS_PER_OP_BOUND_TEST],
420 struct rte_mbuf *mbuf_head, int mbuf_count, bool null_final)
421 {
422 int i;
423
424 for (i = 0; i < mbuf_count; i++) {
425 mbuf_array[i] = mbuf_head;
426 if (mbuf_head) {
427 mbuf_head = mbuf_head->next;
428 }
429 }
430 if (null_final) {
431 mbuf_array[i - 1] = NULL;
432 }
433 }
434
435 #define FAKE_ENQUEUE_SUCCESS 255
436 #define FAKE_ENQUEUE_ERROR 128
437 #define FAKE_ENQUEUE_BUSY 64
438 static uint16_t ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
439 static struct rte_comp_op ut_expected_op;
440 uint16_t
441 rte_compressdev_enqueue_burst(uint8_t dev_id, uint16_t qp_id, struct rte_comp_op **ops,
442 uint16_t nb_ops)
443 {
444 struct rte_comp_op *op = *ops;
445 struct rte_mbuf *op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
446 struct rte_mbuf *exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
447 int i, num_src_mbufs = UT_MBUFS_PER_OP;
448
449 switch (ut_enqueue_value) {
450 case FAKE_ENQUEUE_BUSY:
451 op->status = RTE_COMP_OP_STATUS_NOT_PROCESSED;
452 return 0;
453 break;
454 case FAKE_ENQUEUE_SUCCESS:
455 op->status = RTE_COMP_OP_STATUS_SUCCESS;
456 return 1;
457 break;
458 case FAKE_ENQUEUE_ERROR:
459 op->status = RTE_COMP_OP_STATUS_ERROR;
460 return 0;
461 break;
462 default:
463 break;
464 }
465
466 /* by design the compress module will never send more than 1 op at a time */
467 CU_ASSERT(op->private_xform == ut_expected_op.private_xform);
468
469 /* setup our local pointers to the chained mbufs, those pointed to in the
470 * operation struct and the expected values.
471 */
472 _get_mbuf_array(op_mbuf, op->m_src, SPDK_COUNTOF(op_mbuf), true);
473 _get_mbuf_array(exp_mbuf, ut_expected_op.m_src, SPDK_COUNTOF(exp_mbuf), true);
474
475 if (ut_boundary_alloc == true) {
476 /* if we crossed a boundary, we need to check the 4th src mbuf and
477 * reset the global that is used to identify whether we crossed
478 * or not
479 */
480 num_src_mbufs = UT_MBUFS_PER_OP_BOUND_TEST;
481 exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = ut_expected_op.m_src->next->next->next;
482 op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] = op->m_src->next->next->next;
483 ut_boundary_alloc = false;
484 }
485
486
487 for (i = 0; i < num_src_mbufs; i++) {
488 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr);
489 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova);
490 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len);
491 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len);
492 }
493
494 /* if only 3 mbufs were used in the test, the 4th should be zeroed */
495 if (num_src_mbufs == UT_MBUFS_PER_OP) {
496 CU_ASSERT(op_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL);
497 CU_ASSERT(exp_mbuf[UT_MBUFS_PER_OP_BOUND_TEST - 1] == NULL);
498 }
499
500 CU_ASSERT(op->m_src->userdata == ut_expected_op.m_src->userdata);
501 CU_ASSERT(op->src.offset == ut_expected_op.src.offset);
502 CU_ASSERT(op->src.length == ut_expected_op.src.length);
503
504 /* check dst mbuf values */
505 _get_mbuf_array(op_mbuf, op->m_dst, SPDK_COUNTOF(op_mbuf), true);
506 _get_mbuf_array(exp_mbuf, ut_expected_op.m_dst, SPDK_COUNTOF(exp_mbuf), true);
507
508 for (i = 0; i < UT_MBUFS_PER_OP; i++) {
509 CU_ASSERT(op_mbuf[i]->buf_addr == exp_mbuf[i]->buf_addr);
510 CU_ASSERT(op_mbuf[i]->buf_iova == exp_mbuf[i]->buf_iova);
511 CU_ASSERT(op_mbuf[i]->buf_len == exp_mbuf[i]->buf_len);
512 CU_ASSERT(op_mbuf[i]->pkt_len == exp_mbuf[i]->pkt_len);
513 }
514 CU_ASSERT(op->dst.offset == ut_expected_op.dst.offset);
515
516 return ut_enqueue_value;
517 }
518
519 /* Global setup for all tests that share a bunch of preparation... */
520 static int
521 test_setup(void)
522 {
523 struct spdk_thread *thread;
524 int i;
525
526 spdk_thread_lib_init(NULL, 0);
527
528 thread = spdk_thread_create(NULL, NULL);
529 spdk_set_thread(thread);
530
531 g_comp_bdev.reduce_thread = thread;
532 g_comp_bdev.backing_dev.unmap = _comp_reduce_unmap;
533 g_comp_bdev.backing_dev.readv = _comp_reduce_readv;
534 g_comp_bdev.backing_dev.writev = _comp_reduce_writev;
535 g_comp_bdev.backing_dev.compress = _comp_reduce_compress;
536 g_comp_bdev.backing_dev.decompress = _comp_reduce_decompress;
537 g_comp_bdev.backing_dev.blocklen = 512;
538 g_comp_bdev.backing_dev.blockcnt = 1024 * 16;
539
540 g_comp_bdev.device_qp = &g_device_qp;
541 g_comp_bdev.device_qp->device = &g_device;
542
543 TAILQ_INIT(&g_comp_bdev.queued_comp_ops);
544
545 g_comp_xform = (struct rte_comp_xform) {
546 .type = RTE_COMP_COMPRESS,
547 .compress = {
548 .algo = RTE_COMP_ALGO_DEFLATE,
549 .deflate.huffman = RTE_COMP_HUFFMAN_DEFAULT,
550 .level = RTE_COMP_LEVEL_MAX,
551 .window_size = DEFAULT_WINDOW_SIZE,
552 .chksum = RTE_COMP_CHECKSUM_NONE,
553 .hash_algo = RTE_COMP_HASH_ALGO_NONE
554 }
555 };
556
557 g_decomp_xform = (struct rte_comp_xform) {
558 .type = RTE_COMP_DECOMPRESS,
559 .decompress = {
560 .algo = RTE_COMP_ALGO_DEFLATE,
561 .chksum = RTE_COMP_CHECKSUM_NONE,
562 .window_size = DEFAULT_WINDOW_SIZE,
563 .hash_algo = RTE_COMP_HASH_ALGO_NONE
564 }
565 };
566 g_device.comp_xform = &g_comp_xform;
567 g_device.decomp_xform = &g_decomp_xform;
568 g_cdev_cap.comp_feature_flags = RTE_COMP_FF_SHAREABLE_PRIV_XFORM;
569 g_device.cdev_info.driver_name = "compress_isal";
570 g_device.cdev_info.capabilities = &g_cdev_cap;
571 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) {
572 g_src_mbufs[i] = calloc(1, sizeof(struct rte_mbuf));
573 }
574 for (i = 0; i < UT_MBUFS_PER_OP; i++) {
575 g_dst_mbufs[i] = calloc(1, sizeof(struct rte_mbuf));
576 }
577
578 g_bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct comp_bdev_io));
579 g_bdev_io->u.bdev.iovs = calloc(128, sizeof(struct iovec));
580 g_bdev_io->bdev = &g_comp_bdev.comp_bdev;
581 g_io_ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct comp_io_channel));
582 g_io_ch->thread = thread;
583 g_comp_ch = (struct comp_io_channel *)((uint8_t *)g_io_ch + sizeof(struct spdk_io_channel));
584 g_io_ctx = (struct comp_bdev_io *)g_bdev_io->driver_ctx;
585
586 g_io_ctx->comp_ch = g_comp_ch;
587 g_io_ctx->comp_bdev = &g_comp_bdev;
588 g_comp_bdev.device_qp = &g_device_qp;
589
590 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST - 1; i++) {
591 g_expected_src_mbufs[i].next = &g_expected_src_mbufs[i + 1];
592 }
593 g_expected_src_mbufs[UT_MBUFS_PER_OP_BOUND_TEST - 1].next = NULL;
594
595 /* we only test w/4 mbufs on src side */
596 for (i = 0; i < UT_MBUFS_PER_OP - 1; i++) {
597 g_expected_dst_mbufs[i].next = &g_expected_dst_mbufs[i + 1];
598 }
599 g_expected_dst_mbufs[UT_MBUFS_PER_OP - 1].next = NULL;
600
601 return 0;
602 }
603
604 /* Global teardown for all tests */
605 static int
606 test_cleanup(void)
607 {
608 struct spdk_thread *thread;
609 int i;
610
611 for (i = 0; i < UT_MBUFS_PER_OP_BOUND_TEST; i++) {
612 free(g_src_mbufs[i]);
613 }
614 for (i = 0; i < UT_MBUFS_PER_OP; i++) {
615 free(g_dst_mbufs[i]);
616 }
617 free(g_bdev_io->u.bdev.iovs);
618 free(g_bdev_io);
619 free(g_io_ch);
620
621 thread = spdk_get_thread();
622 spdk_thread_exit(thread);
623 while (!spdk_thread_is_exited(thread)) {
624 spdk_thread_poll(thread, 0, 0);
625 }
626 spdk_thread_destroy(thread);
627
628 spdk_thread_lib_fini();
629
630 return 0;
631 }
632
633 static void
634 test_compress_operation(void)
635 {
636 struct iovec src_iovs[3] = {};
637 int src_iovcnt;
638 struct iovec dst_iovs[3] = {};
639 int dst_iovcnt;
640 struct spdk_reduce_vol_cb_args cb_arg;
641 int rc, i;
642 struct vbdev_comp_op *op;
643 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP];
644 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP];
645
646 src_iovcnt = dst_iovcnt = 3;
647 for (i = 0; i < dst_iovcnt; i++) {
648 src_iovs[i].iov_len = 0x1000;
649 dst_iovs[i].iov_len = 0x1000;
650 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
651 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
652 }
653
654 /* test rte_comp_op_alloc failure */
655 MOCK_SET(rte_comp_op_alloc, NULL);
656 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
657 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
658 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
659 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
660 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
661 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
662 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
663 free(op);
664 }
665 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
666 CU_ASSERT(rc == 0);
667 MOCK_SET(rte_comp_op_alloc, &g_comp_op[0]);
668
669 /* test mempool get failure */
670 ut_rte_pktmbuf_alloc_bulk = -1;
671 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
672 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
673 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
674 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
675 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
676 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
677 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
678 free(op);
679 }
680 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
681 CU_ASSERT(rc == 0);
682 ut_rte_pktmbuf_alloc_bulk = 0;
683
684 /* test enqueue failure busy */
685 ut_enqueue_value = FAKE_ENQUEUE_BUSY;
686 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
687 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
688 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
689 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
690 while (!TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops)) {
691 op = TAILQ_FIRST(&g_comp_bdev.queued_comp_ops);
692 TAILQ_REMOVE(&g_comp_bdev.queued_comp_ops, op, link);
693 free(op);
694 }
695 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
696 CU_ASSERT(rc == 0);
697 ut_enqueue_value = 1;
698
699 /* test enqueue failure error */
700 ut_enqueue_value = FAKE_ENQUEUE_ERROR;
701 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
702 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
703 &dst_iovs[0], dst_iovcnt, true, &cb_arg);
704 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
705 CU_ASSERT(rc == -EINVAL);
706 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
707
708 /* test success with 3 vector iovec */
709 ut_expected_op.private_xform = &g_decomp_xform;
710 ut_expected_op.src.offset = 0;
711 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
712
713 /* setup the src expected values */
714 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
715 ut_expected_op.m_src = exp_src_mbuf[0];
716
717 for (i = 0; i < UT_MBUFS_PER_OP; i++) {
718 exp_src_mbuf[i]->userdata = &cb_arg;
719 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
720 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
721 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
722 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
723 }
724
725 /* setup the dst expected values */
726 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
727 ut_expected_op.dst.offset = 0;
728 ut_expected_op.m_dst = exp_dst_mbuf[0];
729
730 for (i = 0; i < UT_MBUFS_PER_OP; i++) {
731 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
732 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
733 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
734 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
735 }
736
737 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
738 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
739 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
740 CU_ASSERT(rc == 0);
741
742 }
743
744 static void
745 test_compress_operation_cross_boundary(void)
746 {
747 struct iovec src_iovs[3] = {};
748 int src_iovcnt;
749 struct iovec dst_iovs[3] = {};
750 int dst_iovcnt;
751 struct spdk_reduce_vol_cb_args cb_arg;
752 int rc, i;
753 struct rte_mbuf *exp_src_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
754 struct rte_mbuf *exp_dst_mbuf[UT_MBUFS_PER_OP_BOUND_TEST];
755
756 /* Setup the same basic 3 IOV test as used in the simple success case
757 * but then we'll start testing a vtophy boundary crossing at each
758 * position.
759 */
760 src_iovcnt = dst_iovcnt = 3;
761 for (i = 0; i < dst_iovcnt; i++) {
762 src_iovs[i].iov_len = 0x1000;
763 dst_iovs[i].iov_len = 0x1000;
764 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
765 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
766 }
767
768 ut_expected_op.private_xform = &g_decomp_xform;
769 ut_expected_op.src.offset = 0;
770 ut_expected_op.src.length = src_iovs[0].iov_len + src_iovs[1].iov_len + src_iovs[2].iov_len;
771
772 /* setup the src expected values */
773 _get_mbuf_array(exp_src_mbuf, &g_expected_src_mbufs[0], SPDK_COUNTOF(exp_src_mbuf), false);
774 ut_expected_op.m_src = exp_src_mbuf[0];
775
776 for (i = 0; i < UT_MBUFS_PER_OP; i++) {
777 exp_src_mbuf[i]->userdata = &cb_arg;
778 exp_src_mbuf[i]->buf_addr = src_iovs[i].iov_base;
779 exp_src_mbuf[i]->buf_iova = spdk_vtophys(src_iovs[i].iov_base, &src_iovs[i].iov_len);
780 exp_src_mbuf[i]->buf_len = src_iovs[i].iov_len;
781 exp_src_mbuf[i]->pkt_len = src_iovs[i].iov_len;
782 }
783
784 /* setup the dst expected values, we don't test needing a 4th dst mbuf */
785 _get_mbuf_array(exp_dst_mbuf, &g_expected_dst_mbufs[0], SPDK_COUNTOF(exp_dst_mbuf), false);
786 ut_expected_op.dst.offset = 0;
787 ut_expected_op.m_dst = exp_dst_mbuf[0];
788
789 for (i = 0; i < UT_MBUFS_PER_OP; i++) {
790 exp_dst_mbuf[i]->buf_addr = dst_iovs[i].iov_base;
791 exp_dst_mbuf[i]->buf_iova = spdk_vtophys(dst_iovs[i].iov_base, &dst_iovs[i].iov_len);
792 exp_dst_mbuf[i]->buf_len = dst_iovs[i].iov_len;
793 exp_dst_mbuf[i]->pkt_len = dst_iovs[i].iov_len;
794 }
795
796 /* force the 1st IOV to get partial length from spdk_vtophys */
797 g_small_size_counter = 0;
798 g_small_size_modify = 1;
799 g_small_size = 0x800;
800 exp_src_mbuf[3]->userdata = &cb_arg;
801
802 /* first only has shorter length */
803 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x800;
804
805 /* 2nd was inserted by the boundary crossing condition and finishes off
806 * the length from the first */
807 exp_src_mbuf[1]->buf_addr = (void *)0x10000800;
808 exp_src_mbuf[1]->buf_iova = 0x10000800;
809 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800;
810
811 /* 3rd looks like that the 2nd would have */
812 exp_src_mbuf[2]->buf_addr = (void *)0x10001000;
813 exp_src_mbuf[2]->buf_iova = 0x10001000;
814 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x1000;
815
816 /* a new 4th looks like what the 3rd would have */
817 exp_src_mbuf[3]->buf_addr = (void *)0x10002000;
818 exp_src_mbuf[3]->buf_iova = 0x10002000;
819 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000;
820
821 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
822 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
823 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
824 CU_ASSERT(rc == 0);
825
826 /* Now force the 2nd IOV to get partial length from spdk_vtophys */
827 g_small_size_counter = 0;
828 g_small_size_modify = 2;
829 g_small_size = 0x800;
830
831 /* first is normal */
832 exp_src_mbuf[0]->buf_addr = (void *)0x10000000;
833 exp_src_mbuf[0]->buf_iova = 0x10000000;
834 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000;
835
836 /* second only has shorter length */
837 exp_src_mbuf[1]->buf_addr = (void *)0x10001000;
838 exp_src_mbuf[1]->buf_iova = 0x10001000;
839 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x800;
840
841 /* 3rd was inserted by the boundary crossing condition and finishes off
842 * the length from the first */
843 exp_src_mbuf[2]->buf_addr = (void *)0x10001800;
844 exp_src_mbuf[2]->buf_iova = 0x10001800;
845 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800;
846
847 /* a new 4th looks like what the 3rd would have */
848 exp_src_mbuf[3]->buf_addr = (void *)0x10002000;
849 exp_src_mbuf[3]->buf_iova = 0x10002000;
850 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x1000;
851
852 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
853 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
854 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
855 CU_ASSERT(rc == 0);
856
857 /* Finally force the 3rd IOV to get partial length from spdk_vtophys */
858 g_small_size_counter = 0;
859 g_small_size_modify = 3;
860 g_small_size = 0x800;
861
862 /* first is normal */
863 exp_src_mbuf[0]->buf_addr = (void *)0x10000000;
864 exp_src_mbuf[0]->buf_iova = 0x10000000;
865 exp_src_mbuf[0]->pkt_len = exp_src_mbuf[0]->buf_len = 0x1000;
866
867 /* second is normal */
868 exp_src_mbuf[1]->buf_addr = (void *)0x10001000;
869 exp_src_mbuf[1]->buf_iova = 0x10001000;
870 exp_src_mbuf[1]->pkt_len = exp_src_mbuf[1]->buf_len = 0x1000;
871
872 /* 3rd has shorter length */
873 exp_src_mbuf[2]->buf_addr = (void *)0x10002000;
874 exp_src_mbuf[2]->buf_iova = 0x10002000;
875 exp_src_mbuf[2]->pkt_len = exp_src_mbuf[2]->buf_len = 0x800;
876
877 /* a new 4th handles the remainder from the 3rd */
878 exp_src_mbuf[3]->buf_addr = (void *)0x10002800;
879 exp_src_mbuf[3]->buf_iova = 0x10002800;
880 exp_src_mbuf[3]->pkt_len = exp_src_mbuf[3]->buf_len = 0x800;
881
882 rc = _compress_operation(&g_comp_bdev.backing_dev, &src_iovs[0], src_iovcnt,
883 &dst_iovs[0], dst_iovcnt, false, &cb_arg);
884 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
885 CU_ASSERT(rc == 0);
886 }
887
888 static void
889 test_poller(void)
890 {
891 int rc;
892 struct spdk_reduce_vol_cb_args *cb_args;
893 struct rte_mbuf mbuf[4]; /* one src, one dst, 2 ops */
894 struct vbdev_comp_op *op_to_queue;
895 struct iovec src_iovs[3] = {};
896 struct iovec dst_iovs[3] = {};
897 int i;
898
899 cb_args = calloc(1, sizeof(*cb_args));
900 SPDK_CU_ASSERT_FATAL(cb_args != NULL);
901 cb_args->cb_fn = _compress_done;
902 memset(&g_comp_op[0], 0, sizeof(struct rte_comp_op));
903 g_comp_op[0].m_src = &mbuf[0];
904 g_comp_op[1].m_src = &mbuf[1];
905 g_comp_op[0].m_dst = &mbuf[2];
906 g_comp_op[1].m_dst = &mbuf[3];
907 for (i = 0; i < 3; i++) {
908 src_iovs[i].iov_len = 0x1000;
909 dst_iovs[i].iov_len = 0x1000;
910 src_iovs[i].iov_base = (void *)0x10000000 + 0x1000 * i;
911 dst_iovs[i].iov_base = (void *)0x20000000 + 0x1000 * i;
912 }
913
914 /* Error from dequeue, nothing needing to be resubmitted.
915 */
916 ut_rte_compressdev_dequeue_burst = 1;
917 /* setup what we want dequeue to return for the op */
918 g_comp_op[0].m_src->userdata = (void *)cb_args;
919 g_comp_op[0].produced = 1;
920 g_comp_op[0].status = 1;
921 /* value asserted in the reduce callback */
922 ut_compress_done[0] = -EINVAL;
923 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
924 rc = comp_dev_poller((void *)&g_comp_bdev);
925 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
926 CU_ASSERT(rc == SPDK_POLLER_BUSY);
927
928 /* Success from dequeue, 2 ops. nothing needing to be resubmitted.
929 */
930 ut_rte_compressdev_dequeue_burst = 2;
931 /* setup what we want dequeue to return for the op */
932 g_comp_op[0].m_src->userdata = (void *)cb_args;
933 g_comp_op[0].produced = 16;
934 g_comp_op[0].status = 0;
935 g_comp_op[1].m_src->userdata = (void *)cb_args;
936 g_comp_op[1].produced = 32;
937 g_comp_op[1].status = 0;
938 /* value asserted in the reduce callback */
939 ut_compress_done[0] = 16;
940 ut_compress_done[1] = 32;
941 done_count = 2;
942 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
943 rc = comp_dev_poller((void *)&g_comp_bdev);
944 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
945 CU_ASSERT(rc == SPDK_POLLER_BUSY);
946
947 /* Success from dequeue, one op to be resubmitted.
948 */
949 ut_rte_compressdev_dequeue_burst = 1;
950 /* setup what we want dequeue to return for the op */
951 g_comp_op[0].m_src->userdata = (void *)cb_args;
952 g_comp_op[0].produced = 16;
953 g_comp_op[0].status = 0;
954 /* value asserted in the reduce callback */
955 ut_compress_done[0] = 16;
956 done_count = 1;
957 op_to_queue = calloc(1, sizeof(struct vbdev_comp_op));
958 SPDK_CU_ASSERT_FATAL(op_to_queue != NULL);
959 op_to_queue->backing_dev = &g_comp_bdev.backing_dev;
960 op_to_queue->src_iovs = &src_iovs[0];
961 op_to_queue->src_iovcnt = 3;
962 op_to_queue->dst_iovs = &dst_iovs[0];
963 op_to_queue->dst_iovcnt = 3;
964 op_to_queue->compress = true;
965 op_to_queue->cb_arg = cb_args;
966 ut_enqueue_value = FAKE_ENQUEUE_SUCCESS;
967 TAILQ_INSERT_TAIL(&g_comp_bdev.queued_comp_ops,
968 op_to_queue,
969 link);
970 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == false);
971 rc = comp_dev_poller((void *)&g_comp_bdev);
972 CU_ASSERT(TAILQ_EMPTY(&g_comp_bdev.queued_comp_ops) == true);
973 CU_ASSERT(rc == SPDK_POLLER_BUSY);
974
975 /* op_to_queue is freed in code under test */
976 free(cb_args);
977 }
978
979 static void
980 test_vbdev_compress_submit_request(void)
981 {
982 /* Single element block size write */
983 g_bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
984 g_bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
985 g_completion_called = false;
986 vbdev_compress_submit_request(g_io_ch, g_bdev_io);
987 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
988 CU_ASSERT(g_completion_called == true);
989 CU_ASSERT(g_io_ctx->orig_io == g_bdev_io);
990 CU_ASSERT(g_io_ctx->comp_bdev == &g_comp_bdev);
991 CU_ASSERT(g_io_ctx->comp_ch == g_comp_ch);
992
993 /* same write but now fail it */
994 ut_spdk_reduce_vol_op_complete_err = 1;
995 g_completion_called = false;
996 vbdev_compress_submit_request(g_io_ch, g_bdev_io);
997 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED);
998 CU_ASSERT(g_completion_called == true);
999
1000 /* test a read success */
1001 g_bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
1002 ut_spdk_reduce_vol_op_complete_err = 0;
1003 g_completion_called = false;
1004 vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1005 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
1006 CU_ASSERT(g_completion_called == true);
1007
1008 /* test a read failure */
1009 ut_spdk_reduce_vol_op_complete_err = 1;
1010 g_completion_called = false;
1011 vbdev_compress_submit_request(g_io_ch, g_bdev_io);
1012 CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FAILED);
1013 CU_ASSERT(g_completion_called == true);
1014 }
1015
1016 static void
1017 test_passthru(void)
1018 {
1019
1020 }
1021
1022 static void
1023 test_reset(void)
1024 {
1025 /* TODO: There are a few different ways to do this given that
1026 * the code uses spdk_for_each_channel() to implement reset
1027 * handling. SUbmitting w/o UT for this function for now and
1028 * will follow up with something shortly.
1029 */
1030 }
1031
1032 static void
1033 test_initdrivers(void)
1034 {
1035 int rc;
1036
1037 /* test return values from rte_vdev_init() */
1038 MOCK_SET(rte_vdev_init, -EEXIST);
1039 rc = vbdev_init_compress_drivers();
1040 /* This is not an error condition, we already have one */
1041 CU_ASSERT(rc == 0);
1042
1043 /* error */
1044 MOCK_SET(rte_vdev_init, -2);
1045 rc = vbdev_init_compress_drivers();
1046 CU_ASSERT(rc == -EINVAL);
1047 CU_ASSERT(g_mbuf_mp == NULL);
1048 CU_ASSERT(g_comp_op_mp == NULL);
1049
1050 /* compressdev count 0 */
1051 ut_rte_compressdev_count = 0;
1052 MOCK_SET(rte_vdev_init, 0);
1053 rc = vbdev_init_compress_drivers();
1054 CU_ASSERT(rc == 0);
1055
1056 /* bogus count */
1057 ut_rte_compressdev_count = RTE_COMPRESS_MAX_DEVS + 1;
1058 rc = vbdev_init_compress_drivers();
1059 CU_ASSERT(rc == -EINVAL);
1060
1061 /* can't get mbuf pool */
1062 ut_rte_compressdev_count = 1;
1063 MOCK_SET(spdk_mempool_create, NULL);
1064 rc = vbdev_init_compress_drivers();
1065 CU_ASSERT(rc == -ENOMEM);
1066 MOCK_CLEAR(spdk_mempool_create);
1067
1068 /* can't get comp op pool */
1069 ut_rte_comp_op_pool_create = NULL;
1070 rc = vbdev_init_compress_drivers();
1071 CU_ASSERT(rc == -ENOMEM);
1072
1073 /* error on create_compress_dev() */
1074 ut_rte_comp_op_pool_create = (struct rte_mempool *)&test_initdrivers;
1075 ut_rte_compressdev_configure = -1;
1076 rc = vbdev_init_compress_drivers();
1077 CU_ASSERT(rc == -1);
1078
1079 /* error on create_compress_dev() but coverage for large num queues */
1080 ut_max_nb_queue_pairs = 99;
1081 rc = vbdev_init_compress_drivers();
1082 CU_ASSERT(rc == -1);
1083
1084 /* qpair setup fails */
1085 ut_rte_compressdev_configure = 0;
1086 ut_max_nb_queue_pairs = 0;
1087 ut_rte_compressdev_queue_pair_setup = -1;
1088 rc = vbdev_init_compress_drivers();
1089 CU_ASSERT(rc == -EINVAL);
1090
1091 /* rte_compressdev_start fails */
1092 ut_rte_compressdev_queue_pair_setup = 0;
1093 ut_rte_compressdev_start = -1;
1094 rc = vbdev_init_compress_drivers();
1095 CU_ASSERT(rc == -1);
1096
1097 /* rte_compressdev_private_xform_create() fails */
1098 ut_rte_compressdev_start = 0;
1099 ut_rte_compressdev_private_xform_create = -2;
1100 rc = vbdev_init_compress_drivers();
1101 CU_ASSERT(rc == -2);
1102
1103 /* success */
1104 ut_rte_compressdev_private_xform_create = 0;
1105 rc = vbdev_init_compress_drivers();
1106 CU_ASSERT(rc == 0);
1107 spdk_mempool_free((struct spdk_mempool *)g_mbuf_mp);
1108 }
1109
1110 static void
1111 test_supported_io(void)
1112 {
1113
1114 }
1115
1116 int
1117 main(int argc, char **argv)
1118 {
1119 CU_pSuite suite = NULL;
1120 unsigned int num_failures;
1121
1122 CU_set_error_action(CUEA_ABORT);
1123 CU_initialize_registry();
1124
1125 suite = CU_add_suite("compress", test_setup, test_cleanup);
1126 CU_ADD_TEST(suite, test_compress_operation);
1127 CU_ADD_TEST(suite, test_compress_operation_cross_boundary);
1128 CU_ADD_TEST(suite, test_vbdev_compress_submit_request);
1129 CU_ADD_TEST(suite, test_passthru);
1130 CU_ADD_TEST(suite, test_initdrivers);
1131 CU_ADD_TEST(suite, test_supported_io);
1132 CU_ADD_TEST(suite, test_poller);
1133 CU_ADD_TEST(suite, test_reset);
1134
1135 CU_basic_set_mode(CU_BRM_VERBOSE);
1136 CU_basic_run_tests();
1137 num_failures = CU_get_number_of_failures();
1138 CU_cleanup_registry();
1139 return num_failures;
1140 }