]> git.proxmox.com Git - ceph.git/blob - ceph/src/zstd/lib/common/xxhash.c
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / zstd / lib / common / xxhash.c
1 /*
2 * xxHash - Fast Hash algorithm
3 * Copyright (c) 2012-2020, Yann Collet, Facebook, Inc.
4 *
5 * You can contact the author at :
6 * - xxHash homepage: http://www.xxhash.com
7 * - xxHash source repository : https://github.com/Cyan4973/xxHash
8 *
9 * This source code is licensed under both the BSD-style license (found in the
10 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11 * in the COPYING file in the root directory of this source tree).
12 * You may select, at your option, one of the above-listed licenses.
13 */
14
15
16 /* *************************************
17 * Tuning parameters
18 ***************************************/
19 /*!XXH_FORCE_MEMORY_ACCESS :
20 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
21 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
22 * The below switch allow to select different access method for improved performance.
23 * Method 0 (default) : use `memcpy()`. Safe and portable.
24 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
25 * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
26 * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
27 * It can generate buggy code on targets which do not support unaligned memory accesses.
28 * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
29 * See http://stackoverflow.com/a/32095106/646947 for details.
30 * Prefer these methods in priority order (0 > 1 > 2)
31 */
32 #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
33 # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
34 # define XXH_FORCE_MEMORY_ACCESS 2
35 # elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
36 (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
37 defined(__ICCARM__)
38 # define XXH_FORCE_MEMORY_ACCESS 1
39 # endif
40 #endif
41
42 /*!XXH_ACCEPT_NULL_INPUT_POINTER :
43 * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
44 * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
45 * By default, this option is disabled. To enable it, uncomment below define :
46 */
47 /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
48
49 /*!XXH_FORCE_NATIVE_FORMAT :
50 * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
51 * Results are therefore identical for little-endian and big-endian CPU.
52 * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
53 * Should endian-independence be of no importance for your application, you may set the #define below to 1,
54 * to improve speed for Big-endian CPU.
55 * This option has no impact on Little_Endian CPU.
56 */
57 #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
58 # define XXH_FORCE_NATIVE_FORMAT 0
59 #endif
60
61 /*!XXH_FORCE_ALIGN_CHECK :
62 * This is a minor performance trick, only useful with lots of very small keys.
63 * It means : check for aligned/unaligned input.
64 * The check costs one initial branch per hash; set to 0 when the input data
65 * is guaranteed to be aligned.
66 */
67 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
68 # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
69 # define XXH_FORCE_ALIGN_CHECK 0
70 # else
71 # define XXH_FORCE_ALIGN_CHECK 1
72 # endif
73 #endif
74
75
76 /* *************************************
77 * Includes & Memory related functions
78 ***************************************/
79 /* Modify the local functions below should you wish to use some other memory routines */
80 /* for malloc(), free() */
81 #include <stdlib.h>
82 #include <stddef.h> /* size_t */
83 static void* XXH_malloc(size_t s) { return malloc(s); }
84 static void XXH_free (void* p) { free(p); }
85 /* for memcpy() */
86 #include <string.h>
87 static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
88
89 #ifndef XXH_STATIC_LINKING_ONLY
90 # define XXH_STATIC_LINKING_ONLY
91 #endif
92 #include "xxhash.h"
93
94
95 /* *************************************
96 * Compiler Specific Options
97 ***************************************/
98 #if (defined(__GNUC__) && !defined(__STRICT_ANSI__)) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
99 # define INLINE_KEYWORD inline
100 #else
101 # define INLINE_KEYWORD
102 #endif
103
104 #if defined(__GNUC__) || defined(__ICCARM__)
105 # define FORCE_INLINE_ATTR __attribute__((always_inline))
106 #elif defined(_MSC_VER)
107 # define FORCE_INLINE_ATTR __forceinline
108 #else
109 # define FORCE_INLINE_ATTR
110 #endif
111
112 #define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
113
114
115 #ifdef _MSC_VER
116 # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
117 #endif
118
119
120 /* *************************************
121 * Basic Types
122 ***************************************/
123 #ifndef MEM_MODULE
124 # define MEM_MODULE
125 # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
126 # include <stdint.h>
127 typedef uint8_t BYTE;
128 typedef uint16_t U16;
129 typedef uint32_t U32;
130 typedef int32_t S32;
131 typedef uint64_t U64;
132 # else
133 typedef unsigned char BYTE;
134 typedef unsigned short U16;
135 typedef unsigned int U32;
136 typedef signed int S32;
137 typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
138 # endif
139 #endif
140
141
142 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
143
144 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
145 static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
146 static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
147
148 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
149
150 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
151 /* currently only defined for gcc and icc */
152 typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
153
154 static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
155 static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
156
157 #else
158
159 /* portable and safe solution. Generally efficient.
160 * see : http://stackoverflow.com/a/32095106/646947
161 */
162
163 static U32 XXH_read32(const void* memPtr)
164 {
165 U32 val;
166 memcpy(&val, memPtr, sizeof(val));
167 return val;
168 }
169
170 static U64 XXH_read64(const void* memPtr)
171 {
172 U64 val;
173 memcpy(&val, memPtr, sizeof(val));
174 return val;
175 }
176
177 #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
178
179
180 /* ****************************************
181 * Compiler-specific Functions and Macros
182 ******************************************/
183 #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
184
185 /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
186 #if defined(_MSC_VER)
187 # define XXH_rotl32(x,r) _rotl(x,r)
188 # define XXH_rotl64(x,r) _rotl64(x,r)
189 #else
190 #if defined(__ICCARM__)
191 # include <intrinsics.h>
192 # define XXH_rotl32(x,r) __ROR(x,(32 - r))
193 #else
194 # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
195 #endif
196 # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
197 #endif
198
199 #if defined(_MSC_VER) /* Visual Studio */
200 # define XXH_swap32 _byteswap_ulong
201 # define XXH_swap64 _byteswap_uint64
202 #elif GCC_VERSION >= 403
203 # define XXH_swap32 __builtin_bswap32
204 # define XXH_swap64 __builtin_bswap64
205 #else
206 static U32 XXH_swap32 (U32 x)
207 {
208 return ((x << 24) & 0xff000000 ) |
209 ((x << 8) & 0x00ff0000 ) |
210 ((x >> 8) & 0x0000ff00 ) |
211 ((x >> 24) & 0x000000ff );
212 }
213 static U64 XXH_swap64 (U64 x)
214 {
215 return ((x << 56) & 0xff00000000000000ULL) |
216 ((x << 40) & 0x00ff000000000000ULL) |
217 ((x << 24) & 0x0000ff0000000000ULL) |
218 ((x << 8) & 0x000000ff00000000ULL) |
219 ((x >> 8) & 0x00000000ff000000ULL) |
220 ((x >> 24) & 0x0000000000ff0000ULL) |
221 ((x >> 40) & 0x000000000000ff00ULL) |
222 ((x >> 56) & 0x00000000000000ffULL);
223 }
224 #endif
225
226
227 /* *************************************
228 * Architecture Macros
229 ***************************************/
230 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
231
232 /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
233 #ifndef XXH_CPU_LITTLE_ENDIAN
234 static const int g_one = 1;
235 # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
236 #endif
237
238
239 /* ***************************
240 * Memory reads
241 *****************************/
242 typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
243
244 FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
245 {
246 if (align==XXH_unaligned)
247 return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
248 else
249 return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
250 }
251
252 FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
253 {
254 return XXH_readLE32_align(ptr, endian, XXH_unaligned);
255 }
256
257 static U32 XXH_readBE32(const void* ptr)
258 {
259 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
260 }
261
262 FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
263 {
264 if (align==XXH_unaligned)
265 return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
266 else
267 return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
268 }
269
270 FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
271 {
272 return XXH_readLE64_align(ptr, endian, XXH_unaligned);
273 }
274
275 static U64 XXH_readBE64(const void* ptr)
276 {
277 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
278 }
279
280
281 /* *************************************
282 * Macros
283 ***************************************/
284 #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
285
286
287 /* *************************************
288 * Constants
289 ***************************************/
290 static const U32 PRIME32_1 = 2654435761U;
291 static const U32 PRIME32_2 = 2246822519U;
292 static const U32 PRIME32_3 = 3266489917U;
293 static const U32 PRIME32_4 = 668265263U;
294 static const U32 PRIME32_5 = 374761393U;
295
296 static const U64 PRIME64_1 = 11400714785074694791ULL;
297 static const U64 PRIME64_2 = 14029467366897019727ULL;
298 static const U64 PRIME64_3 = 1609587929392839161ULL;
299 static const U64 PRIME64_4 = 9650029242287828579ULL;
300 static const U64 PRIME64_5 = 2870177450012600261ULL;
301
302 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
303
304
305 /* **************************
306 * Utils
307 ****************************/
308 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
309 {
310 memcpy(dstState, srcState, sizeof(*dstState));
311 }
312
313 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
314 {
315 memcpy(dstState, srcState, sizeof(*dstState));
316 }
317
318
319 /* ***************************
320 * Simple Hash Functions
321 *****************************/
322
323 static U32 XXH32_round(U32 seed, U32 input)
324 {
325 seed += input * PRIME32_2;
326 seed = XXH_rotl32(seed, 13);
327 seed *= PRIME32_1;
328 return seed;
329 }
330
331 FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
332 {
333 const BYTE* p = (const BYTE*)input;
334 const BYTE* bEnd = p + len;
335 U32 h32;
336 #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
337
338 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
339 if (p==NULL) {
340 len=0;
341 bEnd=p=(const BYTE*)(size_t)16;
342 }
343 #endif
344
345 if (len>=16) {
346 const BYTE* const limit = bEnd - 16;
347 U32 v1 = seed + PRIME32_1 + PRIME32_2;
348 U32 v2 = seed + PRIME32_2;
349 U32 v3 = seed + 0;
350 U32 v4 = seed - PRIME32_1;
351
352 do {
353 v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
354 v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
355 v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
356 v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
357 } while (p<=limit);
358
359 h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
360 } else {
361 h32 = seed + PRIME32_5;
362 }
363
364 h32 += (U32) len;
365
366 while (p+4<=bEnd) {
367 h32 += XXH_get32bits(p) * PRIME32_3;
368 h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
369 p+=4;
370 }
371
372 while (p<bEnd) {
373 h32 += (*p) * PRIME32_5;
374 h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
375 p++;
376 }
377
378 h32 ^= h32 >> 15;
379 h32 *= PRIME32_2;
380 h32 ^= h32 >> 13;
381 h32 *= PRIME32_3;
382 h32 ^= h32 >> 16;
383
384 return h32;
385 }
386
387
388 XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
389 {
390 #if 0
391 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
392 XXH32_CREATESTATE_STATIC(state);
393 XXH32_reset(state, seed);
394 XXH32_update(state, input, len);
395 return XXH32_digest(state);
396 #else
397 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
398
399 if (XXH_FORCE_ALIGN_CHECK) {
400 if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
401 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
402 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
403 else
404 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
405 } }
406
407 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
408 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
409 else
410 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
411 #endif
412 }
413
414
415 static U64 XXH64_round(U64 acc, U64 input)
416 {
417 acc += input * PRIME64_2;
418 acc = XXH_rotl64(acc, 31);
419 acc *= PRIME64_1;
420 return acc;
421 }
422
423 static U64 XXH64_mergeRound(U64 acc, U64 val)
424 {
425 val = XXH64_round(0, val);
426 acc ^= val;
427 acc = acc * PRIME64_1 + PRIME64_4;
428 return acc;
429 }
430
431 FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
432 {
433 const BYTE* p = (const BYTE*)input;
434 const BYTE* const bEnd = p + len;
435 U64 h64;
436 #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
437
438 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
439 if (p==NULL) {
440 len=0;
441 bEnd=p=(const BYTE*)(size_t)32;
442 }
443 #endif
444
445 if (len>=32) {
446 const BYTE* const limit = bEnd - 32;
447 U64 v1 = seed + PRIME64_1 + PRIME64_2;
448 U64 v2 = seed + PRIME64_2;
449 U64 v3 = seed + 0;
450 U64 v4 = seed - PRIME64_1;
451
452 do {
453 v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
454 v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
455 v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
456 v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
457 } while (p<=limit);
458
459 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
460 h64 = XXH64_mergeRound(h64, v1);
461 h64 = XXH64_mergeRound(h64, v2);
462 h64 = XXH64_mergeRound(h64, v3);
463 h64 = XXH64_mergeRound(h64, v4);
464
465 } else {
466 h64 = seed + PRIME64_5;
467 }
468
469 h64 += (U64) len;
470
471 while (p+8<=bEnd) {
472 U64 const k1 = XXH64_round(0, XXH_get64bits(p));
473 h64 ^= k1;
474 h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
475 p+=8;
476 }
477
478 if (p+4<=bEnd) {
479 h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
480 h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
481 p+=4;
482 }
483
484 while (p<bEnd) {
485 h64 ^= (*p) * PRIME64_5;
486 h64 = XXH_rotl64(h64, 11) * PRIME64_1;
487 p++;
488 }
489
490 h64 ^= h64 >> 33;
491 h64 *= PRIME64_2;
492 h64 ^= h64 >> 29;
493 h64 *= PRIME64_3;
494 h64 ^= h64 >> 32;
495
496 return h64;
497 }
498
499
500 XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
501 {
502 #if 0
503 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
504 XXH64_CREATESTATE_STATIC(state);
505 XXH64_reset(state, seed);
506 XXH64_update(state, input, len);
507 return XXH64_digest(state);
508 #else
509 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
510
511 if (XXH_FORCE_ALIGN_CHECK) {
512 if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
513 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
514 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
515 else
516 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
517 } }
518
519 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
520 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
521 else
522 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
523 #endif
524 }
525
526
527 /* **************************************************
528 * Advanced Hash Functions
529 ****************************************************/
530
531 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
532 {
533 return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
534 }
535 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
536 {
537 XXH_free(statePtr);
538 return XXH_OK;
539 }
540
541 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
542 {
543 return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
544 }
545 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
546 {
547 XXH_free(statePtr);
548 return XXH_OK;
549 }
550
551
552 /*** Hash feed ***/
553
554 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
555 {
556 XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
557 memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
558 state.v1 = seed + PRIME32_1 + PRIME32_2;
559 state.v2 = seed + PRIME32_2;
560 state.v3 = seed + 0;
561 state.v4 = seed - PRIME32_1;
562 memcpy(statePtr, &state, sizeof(state));
563 return XXH_OK;
564 }
565
566
567 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
568 {
569 XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
570 memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
571 state.v1 = seed + PRIME64_1 + PRIME64_2;
572 state.v2 = seed + PRIME64_2;
573 state.v3 = seed + 0;
574 state.v4 = seed - PRIME64_1;
575 memcpy(statePtr, &state, sizeof(state));
576 return XXH_OK;
577 }
578
579
580 FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
581 {
582 const BYTE* p = (const BYTE*)input;
583 const BYTE* const bEnd = p + len;
584
585 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
586 if (input==NULL) return XXH_ERROR;
587 #endif
588
589 state->total_len_32 += (unsigned)len;
590 state->large_len |= (len>=16) | (state->total_len_32>=16);
591
592 if (state->memsize + len < 16) { /* fill in tmp buffer */
593 XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
594 state->memsize += (unsigned)len;
595 return XXH_OK;
596 }
597
598 if (state->memsize) { /* some data left from previous update */
599 XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
600 { const U32* p32 = state->mem32;
601 state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
602 state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
603 state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
604 state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
605 }
606 p += 16-state->memsize;
607 state->memsize = 0;
608 }
609
610 if (p <= bEnd-16) {
611 const BYTE* const limit = bEnd - 16;
612 U32 v1 = state->v1;
613 U32 v2 = state->v2;
614 U32 v3 = state->v3;
615 U32 v4 = state->v4;
616
617 do {
618 v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
619 v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
620 v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
621 v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
622 } while (p<=limit);
623
624 state->v1 = v1;
625 state->v2 = v2;
626 state->v3 = v3;
627 state->v4 = v4;
628 }
629
630 if (p < bEnd) {
631 XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
632 state->memsize = (unsigned)(bEnd-p);
633 }
634
635 return XXH_OK;
636 }
637
638 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
639 {
640 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
641
642 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
643 return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
644 else
645 return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
646 }
647
648
649
650 FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
651 {
652 const BYTE * p = (const BYTE*)state->mem32;
653 const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
654 U32 h32;
655
656 if (state->large_len) {
657 h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
658 } else {
659 h32 = state->v3 /* == seed */ + PRIME32_5;
660 }
661
662 h32 += state->total_len_32;
663
664 while (p+4<=bEnd) {
665 h32 += XXH_readLE32(p, endian) * PRIME32_3;
666 h32 = XXH_rotl32(h32, 17) * PRIME32_4;
667 p+=4;
668 }
669
670 while (p<bEnd) {
671 h32 += (*p) * PRIME32_5;
672 h32 = XXH_rotl32(h32, 11) * PRIME32_1;
673 p++;
674 }
675
676 h32 ^= h32 >> 15;
677 h32 *= PRIME32_2;
678 h32 ^= h32 >> 13;
679 h32 *= PRIME32_3;
680 h32 ^= h32 >> 16;
681
682 return h32;
683 }
684
685
686 XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
687 {
688 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
689
690 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
691 return XXH32_digest_endian(state_in, XXH_littleEndian);
692 else
693 return XXH32_digest_endian(state_in, XXH_bigEndian);
694 }
695
696
697
698 /* **** XXH64 **** */
699
700 FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
701 {
702 const BYTE* p = (const BYTE*)input;
703 const BYTE* const bEnd = p + len;
704
705 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
706 if (input==NULL) return XXH_ERROR;
707 #endif
708
709 state->total_len += len;
710
711 if (state->memsize + len < 32) { /* fill in tmp buffer */
712 if (input != NULL) {
713 XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
714 }
715 state->memsize += (U32)len;
716 return XXH_OK;
717 }
718
719 if (state->memsize) { /* tmp buffer is full */
720 XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
721 state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
722 state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
723 state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
724 state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
725 p += 32-state->memsize;
726 state->memsize = 0;
727 }
728
729 if (p+32 <= bEnd) {
730 const BYTE* const limit = bEnd - 32;
731 U64 v1 = state->v1;
732 U64 v2 = state->v2;
733 U64 v3 = state->v3;
734 U64 v4 = state->v4;
735
736 do {
737 v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
738 v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
739 v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
740 v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
741 } while (p<=limit);
742
743 state->v1 = v1;
744 state->v2 = v2;
745 state->v3 = v3;
746 state->v4 = v4;
747 }
748
749 if (p < bEnd) {
750 XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
751 state->memsize = (unsigned)(bEnd-p);
752 }
753
754 return XXH_OK;
755 }
756
757 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
758 {
759 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
760
761 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
762 return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
763 else
764 return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
765 }
766
767
768
769 FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
770 {
771 const BYTE * p = (const BYTE*)state->mem64;
772 const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
773 U64 h64;
774
775 if (state->total_len >= 32) {
776 U64 const v1 = state->v1;
777 U64 const v2 = state->v2;
778 U64 const v3 = state->v3;
779 U64 const v4 = state->v4;
780
781 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
782 h64 = XXH64_mergeRound(h64, v1);
783 h64 = XXH64_mergeRound(h64, v2);
784 h64 = XXH64_mergeRound(h64, v3);
785 h64 = XXH64_mergeRound(h64, v4);
786 } else {
787 h64 = state->v3 + PRIME64_5;
788 }
789
790 h64 += (U64) state->total_len;
791
792 while (p+8<=bEnd) {
793 U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
794 h64 ^= k1;
795 h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
796 p+=8;
797 }
798
799 if (p+4<=bEnd) {
800 h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
801 h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
802 p+=4;
803 }
804
805 while (p<bEnd) {
806 h64 ^= (*p) * PRIME64_5;
807 h64 = XXH_rotl64(h64, 11) * PRIME64_1;
808 p++;
809 }
810
811 h64 ^= h64 >> 33;
812 h64 *= PRIME64_2;
813 h64 ^= h64 >> 29;
814 h64 *= PRIME64_3;
815 h64 ^= h64 >> 32;
816
817 return h64;
818 }
819
820
821 XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
822 {
823 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
824
825 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
826 return XXH64_digest_endian(state_in, XXH_littleEndian);
827 else
828 return XXH64_digest_endian(state_in, XXH_bigEndian);
829 }
830
831
832 /* **************************
833 * Canonical representation
834 ****************************/
835
836 /*! Default XXH result types are basic unsigned 32 and 64 bits.
837 * The canonical representation follows human-readable write convention, aka big-endian (large digits first).
838 * These functions allow transformation of hash result into and from its canonical format.
839 * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
840 */
841
842 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
843 {
844 XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
845 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
846 memcpy(dst, &hash, sizeof(*dst));
847 }
848
849 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
850 {
851 XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
852 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
853 memcpy(dst, &hash, sizeof(*dst));
854 }
855
856 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
857 {
858 return XXH_readBE32(src);
859 }
860
861 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
862 {
863 return XXH_readBE64(src);
864 }