]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest/ztest.c
34bae1102b829087db67015f9857d6265dbefc26
[mirror_zfs.git] / cmd / ztest / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 */
27
28 /*
29 * The objective of this program is to provide a DMU/ZAP/SPA stress test
30 * that runs entirely in userland, is easy to use, and easy to extend.
31 *
32 * The overall design of the ztest program is as follows:
33 *
34 * (1) For each major functional area (e.g. adding vdevs to a pool,
35 * creating and destroying datasets, reading and writing objects, etc)
36 * we have a simple routine to test that functionality. These
37 * individual routines do not have to do anything "stressful".
38 *
39 * (2) We turn these simple functionality tests into a stress test by
40 * running them all in parallel, with as many threads as desired,
41 * and spread across as many datasets, objects, and vdevs as desired.
42 *
43 * (3) While all this is happening, we inject faults into the pool to
44 * verify that self-healing data really works.
45 *
46 * (4) Every time we open a dataset, we change its checksum and compression
47 * functions. Thus even individual objects vary from block to block
48 * in which checksum they use and whether they're compressed.
49 *
50 * (5) To verify that we never lose on-disk consistency after a crash,
51 * we run the entire test in a child of the main process.
52 * At random times, the child self-immolates with a SIGKILL.
53 * This is the software equivalent of pulling the power cord.
54 * The parent then runs the test again, using the existing
55 * storage pool, as many times as desired. If backwards compatibility
56 * testing is enabled ztest will sometimes run the "older" version
57 * of ztest after a SIGKILL.
58 *
59 * (6) To verify that we don't have future leaks or temporal incursions,
60 * many of the functional tests record the transaction group number
61 * as part of their data. When reading old data, they verify that
62 * the transaction group number is less than the current, open txg.
63 * If you add a new test, please do this if applicable.
64 *
65 * (7) Threads are created with a reduced stack size, for sanity checking.
66 * Therefore, it's important not to allocate huge buffers on the stack.
67 *
68 * When run with no arguments, ztest runs for about five minutes and
69 * produces no output if successful. To get a little bit of information,
70 * specify -V. To get more information, specify -VV, and so on.
71 *
72 * To turn this into an overnight stress test, use -T to specify run time.
73 *
74 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
75 * to increase the pool capacity, fanout, and overall stress level.
76 *
77 * Use the -k option to set the desired frequency of kills.
78 *
79 * When ztest invokes itself it passes all relevant information through a
80 * temporary file which is mmap-ed in the child process. This allows shared
81 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
82 * stored at offset 0 of this file and contains information on the size and
83 * number of shared structures in the file. The information stored in this file
84 * must remain backwards compatible with older versions of ztest so that
85 * ztest can invoke them during backwards compatibility testing (-B).
86 */
87
88 #include <sys/zfs_context.h>
89 #include <sys/spa.h>
90 #include <sys/dmu.h>
91 #include <sys/txg.h>
92 #include <sys/dbuf.h>
93 #include <sys/zap.h>
94 #include <sys/dmu_objset.h>
95 #include <sys/poll.h>
96 #include <sys/stat.h>
97 #include <sys/time.h>
98 #include <sys/wait.h>
99 #include <sys/mman.h>
100 #include <sys/resource.h>
101 #include <sys/zio.h>
102 #include <sys/zil.h>
103 #include <sys/zil_impl.h>
104 #include <sys/vdev_impl.h>
105 #include <sys/vdev_file.h>
106 #include <sys/spa_impl.h>
107 #include <sys/metaslab_impl.h>
108 #include <sys/dsl_prop.h>
109 #include <sys/dsl_dataset.h>
110 #include <sys/dsl_destroy.h>
111 #include <sys/dsl_scan.h>
112 #include <sys/zio_checksum.h>
113 #include <sys/refcount.h>
114 #include <sys/zfeature.h>
115 #include <sys/dsl_userhold.h>
116 #include <stdio.h>
117 #include <stdio_ext.h>
118 #include <stdlib.h>
119 #include <unistd.h>
120 #include <signal.h>
121 #include <umem.h>
122 #include <ctype.h>
123 #include <math.h>
124 #include <sys/fs/zfs.h>
125 #include <libnvpair.h>
126 #ifdef __GNUC__
127 #include <execinfo.h> /* for backtrace() */
128 #endif
129
130 static int ztest_fd_data = -1;
131 static int ztest_fd_rand = -1;
132
133 typedef struct ztest_shared_hdr {
134 uint64_t zh_hdr_size;
135 uint64_t zh_opts_size;
136 uint64_t zh_size;
137 uint64_t zh_stats_size;
138 uint64_t zh_stats_count;
139 uint64_t zh_ds_size;
140 uint64_t zh_ds_count;
141 } ztest_shared_hdr_t;
142
143 static ztest_shared_hdr_t *ztest_shared_hdr;
144
145 typedef struct ztest_shared_opts {
146 char zo_pool[MAXNAMELEN];
147 char zo_dir[MAXNAMELEN];
148 char zo_alt_ztest[MAXNAMELEN];
149 char zo_alt_libpath[MAXNAMELEN];
150 uint64_t zo_vdevs;
151 uint64_t zo_vdevtime;
152 size_t zo_vdev_size;
153 int zo_ashift;
154 int zo_mirrors;
155 int zo_raidz;
156 int zo_raidz_parity;
157 int zo_datasets;
158 int zo_threads;
159 uint64_t zo_passtime;
160 uint64_t zo_killrate;
161 int zo_verbose;
162 int zo_init;
163 uint64_t zo_time;
164 uint64_t zo_maxloops;
165 uint64_t zo_metaslab_gang_bang;
166 } ztest_shared_opts_t;
167
168 static const ztest_shared_opts_t ztest_opts_defaults = {
169 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
170 .zo_dir = { '/', 't', 'm', 'p', '\0' },
171 .zo_alt_ztest = { '\0' },
172 .zo_alt_libpath = { '\0' },
173 .zo_vdevs = 5,
174 .zo_ashift = SPA_MINBLOCKSHIFT,
175 .zo_mirrors = 2,
176 .zo_raidz = 4,
177 .zo_raidz_parity = 1,
178 .zo_vdev_size = SPA_MINDEVSIZE,
179 .zo_datasets = 7,
180 .zo_threads = 23,
181 .zo_passtime = 60, /* 60 seconds */
182 .zo_killrate = 70, /* 70% kill rate */
183 .zo_verbose = 0,
184 .zo_init = 1,
185 .zo_time = 300, /* 5 minutes */
186 .zo_maxloops = 50, /* max loops during spa_freeze() */
187 .zo_metaslab_gang_bang = 32 << 10
188 };
189
190 extern uint64_t metaslab_gang_bang;
191 extern uint64_t metaslab_df_alloc_threshold;
192 extern int metaslab_preload_limit;
193
194 static ztest_shared_opts_t *ztest_shared_opts;
195 static ztest_shared_opts_t ztest_opts;
196
197 typedef struct ztest_shared_ds {
198 uint64_t zd_seq;
199 } ztest_shared_ds_t;
200
201 static ztest_shared_ds_t *ztest_shared_ds;
202 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
203
204 #define BT_MAGIC 0x123456789abcdefULL
205 #define MAXFAULTS() \
206 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
207
208 enum ztest_io_type {
209 ZTEST_IO_WRITE_TAG,
210 ZTEST_IO_WRITE_PATTERN,
211 ZTEST_IO_WRITE_ZEROES,
212 ZTEST_IO_TRUNCATE,
213 ZTEST_IO_SETATTR,
214 ZTEST_IO_REWRITE,
215 ZTEST_IO_TYPES
216 };
217
218 typedef struct ztest_block_tag {
219 uint64_t bt_magic;
220 uint64_t bt_objset;
221 uint64_t bt_object;
222 uint64_t bt_offset;
223 uint64_t bt_gen;
224 uint64_t bt_txg;
225 uint64_t bt_crtxg;
226 } ztest_block_tag_t;
227
228 typedef struct bufwad {
229 uint64_t bw_index;
230 uint64_t bw_txg;
231 uint64_t bw_data;
232 } bufwad_t;
233
234 /*
235 * XXX -- fix zfs range locks to be generic so we can use them here.
236 */
237 typedef enum {
238 RL_READER,
239 RL_WRITER,
240 RL_APPEND
241 } rl_type_t;
242
243 typedef struct rll {
244 void *rll_writer;
245 int rll_readers;
246 kmutex_t rll_lock;
247 kcondvar_t rll_cv;
248 } rll_t;
249
250 typedef struct rl {
251 uint64_t rl_object;
252 uint64_t rl_offset;
253 uint64_t rl_size;
254 rll_t *rl_lock;
255 } rl_t;
256
257 #define ZTEST_RANGE_LOCKS 64
258 #define ZTEST_OBJECT_LOCKS 64
259
260 /*
261 * Object descriptor. Used as a template for object lookup/create/remove.
262 */
263 typedef struct ztest_od {
264 uint64_t od_dir;
265 uint64_t od_object;
266 dmu_object_type_t od_type;
267 dmu_object_type_t od_crtype;
268 uint64_t od_blocksize;
269 uint64_t od_crblocksize;
270 uint64_t od_gen;
271 uint64_t od_crgen;
272 char od_name[MAXNAMELEN];
273 } ztest_od_t;
274
275 /*
276 * Per-dataset state.
277 */
278 typedef struct ztest_ds {
279 ztest_shared_ds_t *zd_shared;
280 objset_t *zd_os;
281 rwlock_t zd_zilog_lock;
282 zilog_t *zd_zilog;
283 ztest_od_t *zd_od; /* debugging aid */
284 char zd_name[MAXNAMELEN];
285 kmutex_t zd_dirobj_lock;
286 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
287 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
288 } ztest_ds_t;
289
290 /*
291 * Per-iteration state.
292 */
293 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
294
295 typedef struct ztest_info {
296 ztest_func_t *zi_func; /* test function */
297 uint64_t zi_iters; /* iterations per execution */
298 uint64_t *zi_interval; /* execute every <interval> seconds */
299 const char *zi_funcname; /* name of test function */
300 } ztest_info_t;
301
302 typedef struct ztest_shared_callstate {
303 uint64_t zc_count; /* per-pass count */
304 uint64_t zc_time; /* per-pass time */
305 uint64_t zc_next; /* next time to call this function */
306 } ztest_shared_callstate_t;
307
308 static ztest_shared_callstate_t *ztest_shared_callstate;
309 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
310
311 ztest_func_t ztest_dmu_read_write;
312 ztest_func_t ztest_dmu_write_parallel;
313 ztest_func_t ztest_dmu_object_alloc_free;
314 ztest_func_t ztest_dmu_commit_callbacks;
315 ztest_func_t ztest_zap;
316 ztest_func_t ztest_zap_parallel;
317 ztest_func_t ztest_zil_commit;
318 ztest_func_t ztest_zil_remount;
319 ztest_func_t ztest_dmu_read_write_zcopy;
320 ztest_func_t ztest_dmu_objset_create_destroy;
321 ztest_func_t ztest_dmu_prealloc;
322 ztest_func_t ztest_fzap;
323 ztest_func_t ztest_dmu_snapshot_create_destroy;
324 ztest_func_t ztest_dsl_prop_get_set;
325 ztest_func_t ztest_spa_prop_get_set;
326 ztest_func_t ztest_spa_create_destroy;
327 ztest_func_t ztest_fault_inject;
328 ztest_func_t ztest_ddt_repair;
329 ztest_func_t ztest_dmu_snapshot_hold;
330 ztest_func_t ztest_spa_rename;
331 ztest_func_t ztest_scrub;
332 ztest_func_t ztest_dsl_dataset_promote_busy;
333 ztest_func_t ztest_vdev_attach_detach;
334 ztest_func_t ztest_vdev_LUN_growth;
335 ztest_func_t ztest_vdev_add_remove;
336 ztest_func_t ztest_vdev_aux_add_remove;
337 ztest_func_t ztest_split_pool;
338 ztest_func_t ztest_reguid;
339 ztest_func_t ztest_spa_upgrade;
340
341 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
342 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
343 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
344 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
345 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
346
347 #define ZTI_INIT(func, iters, interval) \
348 { .zi_func = (func), \
349 .zi_iters = (iters), \
350 .zi_interval = (interval), \
351 .zi_funcname = # func }
352
353 ztest_info_t ztest_info[] = {
354 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
355 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
356 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
357 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
358 ZTI_INIT(ztest_zap, 30, &zopt_always),
359 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
360 ZTI_INIT(ztest_split_pool, 1, &zopt_always),
361 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
362 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
363 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
364 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
365 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
366 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
367 #if 0
368 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
369 #endif
370 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
371 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
372 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
373 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
374 ZTI_INIT(ztest_ddt_repair, 1, &zopt_sometimes),
375 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
376 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
377 ZTI_INIT(ztest_spa_rename, 1, &zopt_rarely),
378 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
379 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
380 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
381 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
382 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
383 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
384 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
385 };
386
387 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
388
389 /*
390 * The following struct is used to hold a list of uncalled commit callbacks.
391 * The callbacks are ordered by txg number.
392 */
393 typedef struct ztest_cb_list {
394 kmutex_t zcl_callbacks_lock;
395 list_t zcl_callbacks;
396 } ztest_cb_list_t;
397
398 /*
399 * Stuff we need to share writably between parent and child.
400 */
401 typedef struct ztest_shared {
402 boolean_t zs_do_init;
403 hrtime_t zs_proc_start;
404 hrtime_t zs_proc_stop;
405 hrtime_t zs_thread_start;
406 hrtime_t zs_thread_stop;
407 hrtime_t zs_thread_kill;
408 uint64_t zs_enospc_count;
409 uint64_t zs_vdev_next_leaf;
410 uint64_t zs_vdev_aux;
411 uint64_t zs_alloc;
412 uint64_t zs_space;
413 uint64_t zs_splits;
414 uint64_t zs_mirrors;
415 uint64_t zs_metaslab_sz;
416 uint64_t zs_metaslab_df_alloc_threshold;
417 uint64_t zs_guid;
418 } ztest_shared_t;
419
420 #define ID_PARALLEL -1ULL
421
422 static char ztest_dev_template[] = "%s/%s.%llua";
423 static char ztest_aux_template[] = "%s/%s.%s.%llu";
424 ztest_shared_t *ztest_shared;
425
426 static spa_t *ztest_spa = NULL;
427 static ztest_ds_t *ztest_ds;
428
429 static kmutex_t ztest_vdev_lock;
430
431 /*
432 * The ztest_name_lock protects the pool and dataset namespace used by
433 * the individual tests. To modify the namespace, consumers must grab
434 * this lock as writer. Grabbing the lock as reader will ensure that the
435 * namespace does not change while the lock is held.
436 */
437 static rwlock_t ztest_name_lock;
438
439 static boolean_t ztest_dump_core = B_TRUE;
440 static boolean_t ztest_exiting;
441
442 /* Global commit callback list */
443 static ztest_cb_list_t zcl;
444 /* Commit cb delay */
445 static uint64_t zc_min_txg_delay = UINT64_MAX;
446 static int zc_cb_counter = 0;
447
448 /*
449 * Minimum number of commit callbacks that need to be registered for us to check
450 * whether the minimum txg delay is acceptable.
451 */
452 #define ZTEST_COMMIT_CB_MIN_REG 100
453
454 /*
455 * If a number of txgs equal to this threshold have been created after a commit
456 * callback has been registered but not called, then we assume there is an
457 * implementation bug.
458 */
459 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
460
461 extern uint64_t metaslab_gang_bang;
462 extern uint64_t metaslab_df_alloc_threshold;
463
464 enum ztest_object {
465 ZTEST_META_DNODE = 0,
466 ZTEST_DIROBJ,
467 ZTEST_OBJECTS
468 };
469
470 static void usage(boolean_t) __NORETURN;
471
472 /*
473 * These libumem hooks provide a reasonable set of defaults for the allocator's
474 * debugging facilities.
475 */
476 const char *
477 _umem_debug_init(void)
478 {
479 return ("default,verbose"); /* $UMEM_DEBUG setting */
480 }
481
482 const char *
483 _umem_logging_init(void)
484 {
485 return ("fail,contents"); /* $UMEM_LOGGING setting */
486 }
487
488 #define BACKTRACE_SZ 100
489
490 static void sig_handler(int signo)
491 {
492 struct sigaction action;
493 #ifdef __GNUC__ /* backtrace() is a GNU extension */
494 int nptrs;
495 void *buffer[BACKTRACE_SZ];
496
497 nptrs = backtrace(buffer, BACKTRACE_SZ);
498 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
499 #endif
500
501 /*
502 * Restore default action and re-raise signal so SIGSEGV and
503 * SIGABRT can trigger a core dump.
504 */
505 action.sa_handler = SIG_DFL;
506 sigemptyset(&action.sa_mask);
507 action.sa_flags = 0;
508 (void) sigaction(signo, &action, NULL);
509 raise(signo);
510 }
511
512 #define FATAL_MSG_SZ 1024
513
514 char *fatal_msg;
515
516 static void
517 fatal(int do_perror, char *message, ...)
518 {
519 va_list args;
520 int save_errno = errno;
521 char *buf;
522
523 (void) fflush(stdout);
524 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
525
526 va_start(args, message);
527 (void) sprintf(buf, "ztest: ");
528 /* LINTED */
529 (void) vsprintf(buf + strlen(buf), message, args);
530 va_end(args);
531 if (do_perror) {
532 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
533 ": %s", strerror(save_errno));
534 }
535 (void) fprintf(stderr, "%s\n", buf);
536 fatal_msg = buf; /* to ease debugging */
537 if (ztest_dump_core)
538 abort();
539 exit(3);
540 }
541
542 static int
543 str2shift(const char *buf)
544 {
545 const char *ends = "BKMGTPEZ";
546 int i;
547
548 if (buf[0] == '\0')
549 return (0);
550 for (i = 0; i < strlen(ends); i++) {
551 if (toupper(buf[0]) == ends[i])
552 break;
553 }
554 if (i == strlen(ends)) {
555 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
556 buf);
557 usage(B_FALSE);
558 }
559 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
560 return (10*i);
561 }
562 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
563 usage(B_FALSE);
564 /* NOTREACHED */
565 }
566
567 static uint64_t
568 nicenumtoull(const char *buf)
569 {
570 char *end;
571 uint64_t val;
572
573 val = strtoull(buf, &end, 0);
574 if (end == buf) {
575 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
576 usage(B_FALSE);
577 } else if (end[0] == '.') {
578 double fval = strtod(buf, &end);
579 fval *= pow(2, str2shift(end));
580 if (fval > UINT64_MAX) {
581 (void) fprintf(stderr, "ztest: value too large: %s\n",
582 buf);
583 usage(B_FALSE);
584 }
585 val = (uint64_t)fval;
586 } else {
587 int shift = str2shift(end);
588 if (shift >= 64 || (val << shift) >> shift != val) {
589 (void) fprintf(stderr, "ztest: value too large: %s\n",
590 buf);
591 usage(B_FALSE);
592 }
593 val <<= shift;
594 }
595 return (val);
596 }
597
598 static void
599 usage(boolean_t requested)
600 {
601 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
602
603 char nice_vdev_size[10];
604 char nice_gang_bang[10];
605 FILE *fp = requested ? stdout : stderr;
606
607 nicenum(zo->zo_vdev_size, nice_vdev_size);
608 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
609
610 (void) fprintf(fp, "Usage: %s\n"
611 "\t[-v vdevs (default: %llu)]\n"
612 "\t[-s size_of_each_vdev (default: %s)]\n"
613 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
614 "\t[-m mirror_copies (default: %d)]\n"
615 "\t[-r raidz_disks (default: %d)]\n"
616 "\t[-R raidz_parity (default: %d)]\n"
617 "\t[-d datasets (default: %d)]\n"
618 "\t[-t threads (default: %d)]\n"
619 "\t[-g gang_block_threshold (default: %s)]\n"
620 "\t[-i init_count (default: %d)] initialize pool i times\n"
621 "\t[-k kill_percentage (default: %llu%%)]\n"
622 "\t[-p pool_name (default: %s)]\n"
623 "\t[-f dir (default: %s)] file directory for vdev files\n"
624 "\t[-V] verbose (use multiple times for ever more blather)\n"
625 "\t[-E] use existing pool instead of creating new one\n"
626 "\t[-T time (default: %llu sec)] total run time\n"
627 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
628 "\t[-P passtime (default: %llu sec)] time per pass\n"
629 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
630 "\t[-h] (print help)\n"
631 "",
632 zo->zo_pool,
633 (u_longlong_t)zo->zo_vdevs, /* -v */
634 nice_vdev_size, /* -s */
635 zo->zo_ashift, /* -a */
636 zo->zo_mirrors, /* -m */
637 zo->zo_raidz, /* -r */
638 zo->zo_raidz_parity, /* -R */
639 zo->zo_datasets, /* -d */
640 zo->zo_threads, /* -t */
641 nice_gang_bang, /* -g */
642 zo->zo_init, /* -i */
643 (u_longlong_t)zo->zo_killrate, /* -k */
644 zo->zo_pool, /* -p */
645 zo->zo_dir, /* -f */
646 (u_longlong_t)zo->zo_time, /* -T */
647 (u_longlong_t)zo->zo_maxloops, /* -F */
648 (u_longlong_t)zo->zo_passtime);
649 exit(requested ? 0 : 1);
650 }
651
652 static void
653 process_options(int argc, char **argv)
654 {
655 char *path;
656 ztest_shared_opts_t *zo = &ztest_opts;
657
658 int opt;
659 uint64_t value;
660 char altdir[MAXNAMELEN] = { 0 };
661
662 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
663
664 while ((opt = getopt(argc, argv,
665 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
666 value = 0;
667 switch (opt) {
668 case 'v':
669 case 's':
670 case 'a':
671 case 'm':
672 case 'r':
673 case 'R':
674 case 'd':
675 case 't':
676 case 'g':
677 case 'i':
678 case 'k':
679 case 'T':
680 case 'P':
681 case 'F':
682 value = nicenumtoull(optarg);
683 }
684 switch (opt) {
685 case 'v':
686 zo->zo_vdevs = value;
687 break;
688 case 's':
689 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
690 break;
691 case 'a':
692 zo->zo_ashift = value;
693 break;
694 case 'm':
695 zo->zo_mirrors = value;
696 break;
697 case 'r':
698 zo->zo_raidz = MAX(1, value);
699 break;
700 case 'R':
701 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
702 break;
703 case 'd':
704 zo->zo_datasets = MAX(1, value);
705 break;
706 case 't':
707 zo->zo_threads = MAX(1, value);
708 break;
709 case 'g':
710 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
711 value);
712 break;
713 case 'i':
714 zo->zo_init = value;
715 break;
716 case 'k':
717 zo->zo_killrate = value;
718 break;
719 case 'p':
720 (void) strlcpy(zo->zo_pool, optarg,
721 sizeof (zo->zo_pool));
722 break;
723 case 'f':
724 path = realpath(optarg, NULL);
725 if (path == NULL) {
726 (void) fprintf(stderr, "error: %s: %s\n",
727 optarg, strerror(errno));
728 usage(B_FALSE);
729 } else {
730 (void) strlcpy(zo->zo_dir, path,
731 sizeof (zo->zo_dir));
732 }
733 break;
734 case 'V':
735 zo->zo_verbose++;
736 break;
737 case 'E':
738 zo->zo_init = 0;
739 break;
740 case 'T':
741 zo->zo_time = value;
742 break;
743 case 'P':
744 zo->zo_passtime = MAX(1, value);
745 break;
746 case 'F':
747 zo->zo_maxloops = MAX(1, value);
748 break;
749 case 'B':
750 (void) strlcpy(altdir, optarg, sizeof (altdir));
751 break;
752 case 'h':
753 usage(B_TRUE);
754 break;
755 case '?':
756 default:
757 usage(B_FALSE);
758 break;
759 }
760 }
761
762 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
763
764 zo->zo_vdevtime =
765 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
766 UINT64_MAX >> 2);
767
768 if (strlen(altdir) > 0) {
769 char *cmd;
770 char *realaltdir;
771 char *bin;
772 char *ztest;
773 char *isa;
774 int isalen;
775
776 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
777 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
778
779 VERIFY(NULL != realpath(getexecname(), cmd));
780 if (0 != access(altdir, F_OK)) {
781 ztest_dump_core = B_FALSE;
782 fatal(B_TRUE, "invalid alternate ztest path: %s",
783 altdir);
784 }
785 VERIFY(NULL != realpath(altdir, realaltdir));
786
787 /*
788 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
789 * We want to extract <isa> to determine if we should use
790 * 32 or 64 bit binaries.
791 */
792 bin = strstr(cmd, "/usr/bin/");
793 ztest = strstr(bin, "/ztest");
794 isa = bin + 9;
795 isalen = ztest - isa;
796 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
797 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
798 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
799 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
800
801 if (0 != access(zo->zo_alt_ztest, X_OK)) {
802 ztest_dump_core = B_FALSE;
803 fatal(B_TRUE, "invalid alternate ztest: %s",
804 zo->zo_alt_ztest);
805 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
806 ztest_dump_core = B_FALSE;
807 fatal(B_TRUE, "invalid alternate lib directory %s",
808 zo->zo_alt_libpath);
809 }
810
811 umem_free(cmd, MAXPATHLEN);
812 umem_free(realaltdir, MAXPATHLEN);
813 }
814 }
815
816 static void
817 ztest_kill(ztest_shared_t *zs)
818 {
819 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
820 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
821
822 /*
823 * Before we kill off ztest, make sure that the config is updated.
824 * See comment above spa_config_sync().
825 */
826 mutex_enter(&spa_namespace_lock);
827 spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
828 mutex_exit(&spa_namespace_lock);
829
830 (void) kill(getpid(), SIGKILL);
831 }
832
833 static uint64_t
834 ztest_random(uint64_t range)
835 {
836 uint64_t r;
837
838 ASSERT3S(ztest_fd_rand, >=, 0);
839
840 if (range == 0)
841 return (0);
842
843 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
844 fatal(1, "short read from /dev/urandom");
845
846 return (r % range);
847 }
848
849 /* ARGSUSED */
850 static void
851 ztest_record_enospc(const char *s)
852 {
853 ztest_shared->zs_enospc_count++;
854 }
855
856 static uint64_t
857 ztest_get_ashift(void)
858 {
859 if (ztest_opts.zo_ashift == 0)
860 return (SPA_MINBLOCKSHIFT + ztest_random(5));
861 return (ztest_opts.zo_ashift);
862 }
863
864 static nvlist_t *
865 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
866 {
867 char *pathbuf;
868 uint64_t vdev;
869 nvlist_t *file;
870
871 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
872
873 if (ashift == 0)
874 ashift = ztest_get_ashift();
875
876 if (path == NULL) {
877 path = pathbuf;
878
879 if (aux != NULL) {
880 vdev = ztest_shared->zs_vdev_aux;
881 (void) snprintf(path, MAXPATHLEN,
882 ztest_aux_template, ztest_opts.zo_dir,
883 pool == NULL ? ztest_opts.zo_pool : pool,
884 aux, vdev);
885 } else {
886 vdev = ztest_shared->zs_vdev_next_leaf++;
887 (void) snprintf(path, MAXPATHLEN,
888 ztest_dev_template, ztest_opts.zo_dir,
889 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
890 }
891 }
892
893 if (size != 0) {
894 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
895 if (fd == -1)
896 fatal(1, "can't open %s", path);
897 if (ftruncate(fd, size) != 0)
898 fatal(1, "can't ftruncate %s", path);
899 (void) close(fd);
900 }
901
902 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
903 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
904 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
905 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
906 umem_free(pathbuf, MAXPATHLEN);
907
908 return (file);
909 }
910
911 static nvlist_t *
912 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
913 uint64_t ashift, int r)
914 {
915 nvlist_t *raidz, **child;
916 int c;
917
918 if (r < 2)
919 return (make_vdev_file(path, aux, pool, size, ashift));
920 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
921
922 for (c = 0; c < r; c++)
923 child[c] = make_vdev_file(path, aux, pool, size, ashift);
924
925 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
926 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
927 VDEV_TYPE_RAIDZ) == 0);
928 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
929 ztest_opts.zo_raidz_parity) == 0);
930 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
931 child, r) == 0);
932
933 for (c = 0; c < r; c++)
934 nvlist_free(child[c]);
935
936 umem_free(child, r * sizeof (nvlist_t *));
937
938 return (raidz);
939 }
940
941 static nvlist_t *
942 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
943 uint64_t ashift, int r, int m)
944 {
945 nvlist_t *mirror, **child;
946 int c;
947
948 if (m < 1)
949 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
950
951 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
952
953 for (c = 0; c < m; c++)
954 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
955
956 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
957 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
958 VDEV_TYPE_MIRROR) == 0);
959 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
960 child, m) == 0);
961
962 for (c = 0; c < m; c++)
963 nvlist_free(child[c]);
964
965 umem_free(child, m * sizeof (nvlist_t *));
966
967 return (mirror);
968 }
969
970 static nvlist_t *
971 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
972 int log, int r, int m, int t)
973 {
974 nvlist_t *root, **child;
975 int c;
976
977 ASSERT(t > 0);
978
979 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
980
981 for (c = 0; c < t; c++) {
982 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
983 r, m);
984 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
985 log) == 0);
986 }
987
988 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
989 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
990 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
991 child, t) == 0);
992
993 for (c = 0; c < t; c++)
994 nvlist_free(child[c]);
995
996 umem_free(child, t * sizeof (nvlist_t *));
997
998 return (root);
999 }
1000
1001 /*
1002 * Find a random spa version. Returns back a random spa version in the
1003 * range [initial_version, SPA_VERSION_FEATURES].
1004 */
1005 static uint64_t
1006 ztest_random_spa_version(uint64_t initial_version)
1007 {
1008 uint64_t version = initial_version;
1009
1010 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1011 version = version +
1012 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1013 }
1014
1015 if (version > SPA_VERSION_BEFORE_FEATURES)
1016 version = SPA_VERSION_FEATURES;
1017
1018 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1019 return (version);
1020 }
1021
1022 static int
1023 ztest_random_blocksize(void)
1024 {
1025 /*
1026 * Choose a block size >= the ashift.
1027 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1028 */
1029 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1030 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1031 maxbs = 20;
1032 uint64_t block_shift =
1033 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1034 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1035 }
1036
1037 static int
1038 ztest_random_ibshift(void)
1039 {
1040 return (DN_MIN_INDBLKSHIFT +
1041 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1042 }
1043
1044 static uint64_t
1045 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1046 {
1047 uint64_t top;
1048 vdev_t *rvd = spa->spa_root_vdev;
1049 vdev_t *tvd;
1050
1051 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1052
1053 do {
1054 top = ztest_random(rvd->vdev_children);
1055 tvd = rvd->vdev_child[top];
1056 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1057 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1058
1059 return (top);
1060 }
1061
1062 static uint64_t
1063 ztest_random_dsl_prop(zfs_prop_t prop)
1064 {
1065 uint64_t value;
1066
1067 do {
1068 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1069 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1070
1071 return (value);
1072 }
1073
1074 static int
1075 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1076 boolean_t inherit)
1077 {
1078 const char *propname = zfs_prop_to_name(prop);
1079 const char *valname;
1080 char *setpoint;
1081 uint64_t curval;
1082 int error;
1083
1084 error = dsl_prop_set_int(osname, propname,
1085 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1086
1087 if (error == ENOSPC) {
1088 ztest_record_enospc(FTAG);
1089 return (error);
1090 }
1091 ASSERT0(error);
1092
1093 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1094 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1095
1096 if (ztest_opts.zo_verbose >= 6) {
1097 int err;
1098
1099 err = zfs_prop_index_to_string(prop, curval, &valname);
1100 if (err)
1101 (void) printf("%s %s = %llu at '%s'\n",
1102 osname, propname, (unsigned long long)curval,
1103 setpoint);
1104 else
1105 (void) printf("%s %s = %s at '%s'\n",
1106 osname, propname, valname, setpoint);
1107 }
1108 umem_free(setpoint, MAXPATHLEN);
1109
1110 return (error);
1111 }
1112
1113 static int
1114 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1115 {
1116 spa_t *spa = ztest_spa;
1117 nvlist_t *props = NULL;
1118 int error;
1119
1120 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1121 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1122
1123 error = spa_prop_set(spa, props);
1124
1125 nvlist_free(props);
1126
1127 if (error == ENOSPC) {
1128 ztest_record_enospc(FTAG);
1129 return (error);
1130 }
1131 ASSERT0(error);
1132
1133 return (error);
1134 }
1135
1136 static void
1137 ztest_rll_init(rll_t *rll)
1138 {
1139 rll->rll_writer = NULL;
1140 rll->rll_readers = 0;
1141 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1142 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1143 }
1144
1145 static void
1146 ztest_rll_destroy(rll_t *rll)
1147 {
1148 ASSERT(rll->rll_writer == NULL);
1149 ASSERT(rll->rll_readers == 0);
1150 mutex_destroy(&rll->rll_lock);
1151 cv_destroy(&rll->rll_cv);
1152 }
1153
1154 static void
1155 ztest_rll_lock(rll_t *rll, rl_type_t type)
1156 {
1157 mutex_enter(&rll->rll_lock);
1158
1159 if (type == RL_READER) {
1160 while (rll->rll_writer != NULL)
1161 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1162 rll->rll_readers++;
1163 } else {
1164 while (rll->rll_writer != NULL || rll->rll_readers)
1165 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1166 rll->rll_writer = curthread;
1167 }
1168
1169 mutex_exit(&rll->rll_lock);
1170 }
1171
1172 static void
1173 ztest_rll_unlock(rll_t *rll)
1174 {
1175 mutex_enter(&rll->rll_lock);
1176
1177 if (rll->rll_writer) {
1178 ASSERT(rll->rll_readers == 0);
1179 rll->rll_writer = NULL;
1180 } else {
1181 ASSERT(rll->rll_readers != 0);
1182 ASSERT(rll->rll_writer == NULL);
1183 rll->rll_readers--;
1184 }
1185
1186 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1187 cv_broadcast(&rll->rll_cv);
1188
1189 mutex_exit(&rll->rll_lock);
1190 }
1191
1192 static void
1193 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1194 {
1195 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1196
1197 ztest_rll_lock(rll, type);
1198 }
1199
1200 static void
1201 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1202 {
1203 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1204
1205 ztest_rll_unlock(rll);
1206 }
1207
1208 static rl_t *
1209 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1210 uint64_t size, rl_type_t type)
1211 {
1212 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1213 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1214 rl_t *rl;
1215
1216 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1217 rl->rl_object = object;
1218 rl->rl_offset = offset;
1219 rl->rl_size = size;
1220 rl->rl_lock = rll;
1221
1222 ztest_rll_lock(rll, type);
1223
1224 return (rl);
1225 }
1226
1227 static void
1228 ztest_range_unlock(rl_t *rl)
1229 {
1230 rll_t *rll = rl->rl_lock;
1231
1232 ztest_rll_unlock(rll);
1233
1234 umem_free(rl, sizeof (*rl));
1235 }
1236
1237 static void
1238 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1239 {
1240 zd->zd_os = os;
1241 zd->zd_zilog = dmu_objset_zil(os);
1242 zd->zd_shared = szd;
1243 dmu_objset_name(os, zd->zd_name);
1244 int l;
1245
1246 if (zd->zd_shared != NULL)
1247 zd->zd_shared->zd_seq = 0;
1248
1249 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1250 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1251
1252 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1253 ztest_rll_init(&zd->zd_object_lock[l]);
1254
1255 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1256 ztest_rll_init(&zd->zd_range_lock[l]);
1257 }
1258
1259 static void
1260 ztest_zd_fini(ztest_ds_t *zd)
1261 {
1262 int l;
1263
1264 mutex_destroy(&zd->zd_dirobj_lock);
1265 (void) rwlock_destroy(&zd->zd_zilog_lock);
1266
1267 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1268 ztest_rll_destroy(&zd->zd_object_lock[l]);
1269
1270 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1271 ztest_rll_destroy(&zd->zd_range_lock[l]);
1272 }
1273
1274 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1275
1276 static uint64_t
1277 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1278 {
1279 uint64_t txg;
1280 int error;
1281
1282 /*
1283 * Attempt to assign tx to some transaction group.
1284 */
1285 error = dmu_tx_assign(tx, txg_how);
1286 if (error) {
1287 if (error == ERESTART) {
1288 ASSERT(txg_how == TXG_NOWAIT);
1289 dmu_tx_wait(tx);
1290 } else {
1291 ASSERT3U(error, ==, ENOSPC);
1292 ztest_record_enospc(tag);
1293 }
1294 dmu_tx_abort(tx);
1295 return (0);
1296 }
1297 txg = dmu_tx_get_txg(tx);
1298 ASSERT(txg != 0);
1299 return (txg);
1300 }
1301
1302 static void
1303 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1304 {
1305 uint64_t *ip = buf;
1306 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1307
1308 while (ip < ip_end)
1309 *ip++ = value;
1310 }
1311
1312 #ifndef NDEBUG
1313 static boolean_t
1314 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1315 {
1316 uint64_t *ip = buf;
1317 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1318 uint64_t diff = 0;
1319
1320 while (ip < ip_end)
1321 diff |= (value - *ip++);
1322
1323 return (diff == 0);
1324 }
1325 #endif
1326
1327 static void
1328 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1329 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1330 {
1331 bt->bt_magic = BT_MAGIC;
1332 bt->bt_objset = dmu_objset_id(os);
1333 bt->bt_object = object;
1334 bt->bt_offset = offset;
1335 bt->bt_gen = gen;
1336 bt->bt_txg = txg;
1337 bt->bt_crtxg = crtxg;
1338 }
1339
1340 static void
1341 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1342 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1343 {
1344 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1345 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1346 ASSERT3U(bt->bt_object, ==, object);
1347 ASSERT3U(bt->bt_offset, ==, offset);
1348 ASSERT3U(bt->bt_gen, <=, gen);
1349 ASSERT3U(bt->bt_txg, <=, txg);
1350 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1351 }
1352
1353 static ztest_block_tag_t *
1354 ztest_bt_bonus(dmu_buf_t *db)
1355 {
1356 dmu_object_info_t doi;
1357 ztest_block_tag_t *bt;
1358
1359 dmu_object_info_from_db(db, &doi);
1360 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1361 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1362 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1363
1364 return (bt);
1365 }
1366
1367 /*
1368 * ZIL logging ops
1369 */
1370
1371 #define lrz_type lr_mode
1372 #define lrz_blocksize lr_uid
1373 #define lrz_ibshift lr_gid
1374 #define lrz_bonustype lr_rdev
1375 #define lrz_bonuslen lr_crtime[1]
1376
1377 static void
1378 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1379 {
1380 char *name = (void *)(lr + 1); /* name follows lr */
1381 size_t namesize = strlen(name) + 1;
1382 itx_t *itx;
1383
1384 if (zil_replaying(zd->zd_zilog, tx))
1385 return;
1386
1387 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1388 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1389 sizeof (*lr) + namesize - sizeof (lr_t));
1390
1391 zil_itx_assign(zd->zd_zilog, itx, tx);
1392 }
1393
1394 static void
1395 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1396 {
1397 char *name = (void *)(lr + 1); /* name follows lr */
1398 size_t namesize = strlen(name) + 1;
1399 itx_t *itx;
1400
1401 if (zil_replaying(zd->zd_zilog, tx))
1402 return;
1403
1404 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1405 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1406 sizeof (*lr) + namesize - sizeof (lr_t));
1407
1408 itx->itx_oid = object;
1409 zil_itx_assign(zd->zd_zilog, itx, tx);
1410 }
1411
1412 static void
1413 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1414 {
1415 itx_t *itx;
1416 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1417
1418 if (zil_replaying(zd->zd_zilog, tx))
1419 return;
1420
1421 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1422 write_state = WR_INDIRECT;
1423
1424 itx = zil_itx_create(TX_WRITE,
1425 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1426
1427 if (write_state == WR_COPIED &&
1428 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1429 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1430 zil_itx_destroy(itx);
1431 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1432 write_state = WR_NEED_COPY;
1433 }
1434 itx->itx_private = zd;
1435 itx->itx_wr_state = write_state;
1436 itx->itx_sync = (ztest_random(8) == 0);
1437 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1438
1439 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1440 sizeof (*lr) - sizeof (lr_t));
1441
1442 zil_itx_assign(zd->zd_zilog, itx, tx);
1443 }
1444
1445 static void
1446 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1447 {
1448 itx_t *itx;
1449
1450 if (zil_replaying(zd->zd_zilog, tx))
1451 return;
1452
1453 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1454 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1455 sizeof (*lr) - sizeof (lr_t));
1456
1457 itx->itx_sync = B_FALSE;
1458 zil_itx_assign(zd->zd_zilog, itx, tx);
1459 }
1460
1461 static void
1462 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1463 {
1464 itx_t *itx;
1465
1466 if (zil_replaying(zd->zd_zilog, tx))
1467 return;
1468
1469 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1470 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1471 sizeof (*lr) - sizeof (lr_t));
1472
1473 itx->itx_sync = B_FALSE;
1474 zil_itx_assign(zd->zd_zilog, itx, tx);
1475 }
1476
1477 /*
1478 * ZIL replay ops
1479 */
1480 static int
1481 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1482 {
1483 char *name = (void *)(lr + 1); /* name follows lr */
1484 objset_t *os = zd->zd_os;
1485 ztest_block_tag_t *bbt;
1486 dmu_buf_t *db;
1487 dmu_tx_t *tx;
1488 uint64_t txg;
1489 int error = 0;
1490
1491 if (byteswap)
1492 byteswap_uint64_array(lr, sizeof (*lr));
1493
1494 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1495 ASSERT(name[0] != '\0');
1496
1497 tx = dmu_tx_create(os);
1498
1499 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1500
1501 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1502 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1503 } else {
1504 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1505 }
1506
1507 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1508 if (txg == 0)
1509 return (ENOSPC);
1510
1511 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1512
1513 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1514 if (lr->lr_foid == 0) {
1515 lr->lr_foid = zap_create(os,
1516 lr->lrz_type, lr->lrz_bonustype,
1517 lr->lrz_bonuslen, tx);
1518 } else {
1519 error = zap_create_claim(os, lr->lr_foid,
1520 lr->lrz_type, lr->lrz_bonustype,
1521 lr->lrz_bonuslen, tx);
1522 }
1523 } else {
1524 if (lr->lr_foid == 0) {
1525 lr->lr_foid = dmu_object_alloc(os,
1526 lr->lrz_type, 0, lr->lrz_bonustype,
1527 lr->lrz_bonuslen, tx);
1528 } else {
1529 error = dmu_object_claim(os, lr->lr_foid,
1530 lr->lrz_type, 0, lr->lrz_bonustype,
1531 lr->lrz_bonuslen, tx);
1532 }
1533 }
1534
1535 if (error) {
1536 ASSERT3U(error, ==, EEXIST);
1537 ASSERT(zd->zd_zilog->zl_replay);
1538 dmu_tx_commit(tx);
1539 return (error);
1540 }
1541
1542 ASSERT(lr->lr_foid != 0);
1543
1544 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1545 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1546 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1547
1548 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1549 bbt = ztest_bt_bonus(db);
1550 dmu_buf_will_dirty(db, tx);
1551 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1552 dmu_buf_rele(db, FTAG);
1553
1554 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1555 &lr->lr_foid, tx));
1556
1557 (void) ztest_log_create(zd, tx, lr);
1558
1559 dmu_tx_commit(tx);
1560
1561 return (0);
1562 }
1563
1564 static int
1565 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1566 {
1567 char *name = (void *)(lr + 1); /* name follows lr */
1568 objset_t *os = zd->zd_os;
1569 dmu_object_info_t doi;
1570 dmu_tx_t *tx;
1571 uint64_t object, txg;
1572
1573 if (byteswap)
1574 byteswap_uint64_array(lr, sizeof (*lr));
1575
1576 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1577 ASSERT(name[0] != '\0');
1578
1579 VERIFY3U(0, ==,
1580 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1581 ASSERT(object != 0);
1582
1583 ztest_object_lock(zd, object, RL_WRITER);
1584
1585 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1586
1587 tx = dmu_tx_create(os);
1588
1589 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1590 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1591
1592 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1593 if (txg == 0) {
1594 ztest_object_unlock(zd, object);
1595 return (ENOSPC);
1596 }
1597
1598 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1599 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1600 } else {
1601 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1602 }
1603
1604 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1605
1606 (void) ztest_log_remove(zd, tx, lr, object);
1607
1608 dmu_tx_commit(tx);
1609
1610 ztest_object_unlock(zd, object);
1611
1612 return (0);
1613 }
1614
1615 static int
1616 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1617 {
1618 objset_t *os = zd->zd_os;
1619 void *data = lr + 1; /* data follows lr */
1620 uint64_t offset, length;
1621 ztest_block_tag_t *bt = data;
1622 ztest_block_tag_t *bbt;
1623 uint64_t gen, txg, lrtxg, crtxg;
1624 dmu_object_info_t doi;
1625 dmu_tx_t *tx;
1626 dmu_buf_t *db;
1627 arc_buf_t *abuf = NULL;
1628 rl_t *rl;
1629
1630 if (byteswap)
1631 byteswap_uint64_array(lr, sizeof (*lr));
1632
1633 offset = lr->lr_offset;
1634 length = lr->lr_length;
1635
1636 /* If it's a dmu_sync() block, write the whole block */
1637 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1638 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1639 if (length < blocksize) {
1640 offset -= offset % blocksize;
1641 length = blocksize;
1642 }
1643 }
1644
1645 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1646 byteswap_uint64_array(bt, sizeof (*bt));
1647
1648 if (bt->bt_magic != BT_MAGIC)
1649 bt = NULL;
1650
1651 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1652 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1653
1654 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1655
1656 dmu_object_info_from_db(db, &doi);
1657
1658 bbt = ztest_bt_bonus(db);
1659 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1660 gen = bbt->bt_gen;
1661 crtxg = bbt->bt_crtxg;
1662 lrtxg = lr->lr_common.lrc_txg;
1663
1664 tx = dmu_tx_create(os);
1665
1666 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1667
1668 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1669 P2PHASE(offset, length) == 0)
1670 abuf = dmu_request_arcbuf(db, length);
1671
1672 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1673 if (txg == 0) {
1674 if (abuf != NULL)
1675 dmu_return_arcbuf(abuf);
1676 dmu_buf_rele(db, FTAG);
1677 ztest_range_unlock(rl);
1678 ztest_object_unlock(zd, lr->lr_foid);
1679 return (ENOSPC);
1680 }
1681
1682 if (bt != NULL) {
1683 /*
1684 * Usually, verify the old data before writing new data --
1685 * but not always, because we also want to verify correct
1686 * behavior when the data was not recently read into cache.
1687 */
1688 ASSERT(offset % doi.doi_data_block_size == 0);
1689 if (ztest_random(4) != 0) {
1690 int prefetch = ztest_random(2) ?
1691 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1692 ztest_block_tag_t rbt;
1693
1694 VERIFY(dmu_read(os, lr->lr_foid, offset,
1695 sizeof (rbt), &rbt, prefetch) == 0);
1696 if (rbt.bt_magic == BT_MAGIC) {
1697 ztest_bt_verify(&rbt, os, lr->lr_foid,
1698 offset, gen, txg, crtxg);
1699 }
1700 }
1701
1702 /*
1703 * Writes can appear to be newer than the bonus buffer because
1704 * the ztest_get_data() callback does a dmu_read() of the
1705 * open-context data, which may be different than the data
1706 * as it was when the write was generated.
1707 */
1708 if (zd->zd_zilog->zl_replay) {
1709 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1710 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1711 bt->bt_crtxg);
1712 }
1713
1714 /*
1715 * Set the bt's gen/txg to the bonus buffer's gen/txg
1716 * so that all of the usual ASSERTs will work.
1717 */
1718 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1719 }
1720
1721 if (abuf == NULL) {
1722 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1723 } else {
1724 bcopy(data, abuf->b_data, length);
1725 dmu_assign_arcbuf(db, offset, abuf, tx);
1726 }
1727
1728 (void) ztest_log_write(zd, tx, lr);
1729
1730 dmu_buf_rele(db, FTAG);
1731
1732 dmu_tx_commit(tx);
1733
1734 ztest_range_unlock(rl);
1735 ztest_object_unlock(zd, lr->lr_foid);
1736
1737 return (0);
1738 }
1739
1740 static int
1741 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1742 {
1743 objset_t *os = zd->zd_os;
1744 dmu_tx_t *tx;
1745 uint64_t txg;
1746 rl_t *rl;
1747
1748 if (byteswap)
1749 byteswap_uint64_array(lr, sizeof (*lr));
1750
1751 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1752 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1753 RL_WRITER);
1754
1755 tx = dmu_tx_create(os);
1756
1757 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1758
1759 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1760 if (txg == 0) {
1761 ztest_range_unlock(rl);
1762 ztest_object_unlock(zd, lr->lr_foid);
1763 return (ENOSPC);
1764 }
1765
1766 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1767 lr->lr_length, tx) == 0);
1768
1769 (void) ztest_log_truncate(zd, tx, lr);
1770
1771 dmu_tx_commit(tx);
1772
1773 ztest_range_unlock(rl);
1774 ztest_object_unlock(zd, lr->lr_foid);
1775
1776 return (0);
1777 }
1778
1779 static int
1780 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1781 {
1782 objset_t *os = zd->zd_os;
1783 dmu_tx_t *tx;
1784 dmu_buf_t *db;
1785 ztest_block_tag_t *bbt;
1786 uint64_t txg, lrtxg, crtxg;
1787
1788 if (byteswap)
1789 byteswap_uint64_array(lr, sizeof (*lr));
1790
1791 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1792
1793 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1794
1795 tx = dmu_tx_create(os);
1796 dmu_tx_hold_bonus(tx, lr->lr_foid);
1797
1798 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1799 if (txg == 0) {
1800 dmu_buf_rele(db, FTAG);
1801 ztest_object_unlock(zd, lr->lr_foid);
1802 return (ENOSPC);
1803 }
1804
1805 bbt = ztest_bt_bonus(db);
1806 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1807 crtxg = bbt->bt_crtxg;
1808 lrtxg = lr->lr_common.lrc_txg;
1809
1810 if (zd->zd_zilog->zl_replay) {
1811 ASSERT(lr->lr_size != 0);
1812 ASSERT(lr->lr_mode != 0);
1813 ASSERT(lrtxg != 0);
1814 } else {
1815 /*
1816 * Randomly change the size and increment the generation.
1817 */
1818 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1819 sizeof (*bbt);
1820 lr->lr_mode = bbt->bt_gen + 1;
1821 ASSERT(lrtxg == 0);
1822 }
1823
1824 /*
1825 * Verify that the current bonus buffer is not newer than our txg.
1826 */
1827 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1828 MAX(txg, lrtxg), crtxg);
1829
1830 dmu_buf_will_dirty(db, tx);
1831
1832 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1833 ASSERT3U(lr->lr_size, <=, db->db_size);
1834 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1835 bbt = ztest_bt_bonus(db);
1836
1837 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1838
1839 dmu_buf_rele(db, FTAG);
1840
1841 (void) ztest_log_setattr(zd, tx, lr);
1842
1843 dmu_tx_commit(tx);
1844
1845 ztest_object_unlock(zd, lr->lr_foid);
1846
1847 return (0);
1848 }
1849
1850 zil_replay_func_t ztest_replay_vector[TX_MAX_TYPE] = {
1851 NULL, /* 0 no such transaction type */
1852 (zil_replay_func_t)ztest_replay_create, /* TX_CREATE */
1853 NULL, /* TX_MKDIR */
1854 NULL, /* TX_MKXATTR */
1855 NULL, /* TX_SYMLINK */
1856 (zil_replay_func_t)ztest_replay_remove, /* TX_REMOVE */
1857 NULL, /* TX_RMDIR */
1858 NULL, /* TX_LINK */
1859 NULL, /* TX_RENAME */
1860 (zil_replay_func_t)ztest_replay_write, /* TX_WRITE */
1861 (zil_replay_func_t)ztest_replay_truncate, /* TX_TRUNCATE */
1862 (zil_replay_func_t)ztest_replay_setattr, /* TX_SETATTR */
1863 NULL, /* TX_ACL */
1864 NULL, /* TX_CREATE_ACL */
1865 NULL, /* TX_CREATE_ATTR */
1866 NULL, /* TX_CREATE_ACL_ATTR */
1867 NULL, /* TX_MKDIR_ACL */
1868 NULL, /* TX_MKDIR_ATTR */
1869 NULL, /* TX_MKDIR_ACL_ATTR */
1870 NULL, /* TX_WRITE2 */
1871 };
1872
1873 /*
1874 * ZIL get_data callbacks
1875 */
1876
1877 static void
1878 ztest_get_done(zgd_t *zgd, int error)
1879 {
1880 ztest_ds_t *zd = zgd->zgd_private;
1881 uint64_t object = zgd->zgd_rl->rl_object;
1882
1883 if (zgd->zgd_db)
1884 dmu_buf_rele(zgd->zgd_db, zgd);
1885
1886 ztest_range_unlock(zgd->zgd_rl);
1887 ztest_object_unlock(zd, object);
1888
1889 if (error == 0 && zgd->zgd_bp)
1890 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1891
1892 umem_free(zgd, sizeof (*zgd));
1893 }
1894
1895 static int
1896 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1897 {
1898 ztest_ds_t *zd = arg;
1899 objset_t *os = zd->zd_os;
1900 uint64_t object = lr->lr_foid;
1901 uint64_t offset = lr->lr_offset;
1902 uint64_t size = lr->lr_length;
1903 blkptr_t *bp = &lr->lr_blkptr;
1904 uint64_t txg = lr->lr_common.lrc_txg;
1905 uint64_t crtxg;
1906 dmu_object_info_t doi;
1907 dmu_buf_t *db;
1908 zgd_t *zgd;
1909 int error;
1910
1911 ztest_object_lock(zd, object, RL_READER);
1912 error = dmu_bonus_hold(os, object, FTAG, &db);
1913 if (error) {
1914 ztest_object_unlock(zd, object);
1915 return (error);
1916 }
1917
1918 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1919
1920 if (crtxg == 0 || crtxg > txg) {
1921 dmu_buf_rele(db, FTAG);
1922 ztest_object_unlock(zd, object);
1923 return (ENOENT);
1924 }
1925
1926 dmu_object_info_from_db(db, &doi);
1927 dmu_buf_rele(db, FTAG);
1928 db = NULL;
1929
1930 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1931 zgd->zgd_zilog = zd->zd_zilog;
1932 zgd->zgd_private = zd;
1933
1934 if (buf != NULL) { /* immediate write */
1935 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1936 RL_READER);
1937
1938 error = dmu_read(os, object, offset, size, buf,
1939 DMU_READ_NO_PREFETCH);
1940 ASSERT(error == 0);
1941 } else {
1942 size = doi.doi_data_block_size;
1943 if (ISP2(size)) {
1944 offset = P2ALIGN(offset, size);
1945 } else {
1946 ASSERT(offset < size);
1947 offset = 0;
1948 }
1949
1950 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1951 RL_READER);
1952
1953 error = dmu_buf_hold(os, object, offset, zgd, &db,
1954 DMU_READ_NO_PREFETCH);
1955
1956 if (error == 0) {
1957 blkptr_t *obp = dmu_buf_get_blkptr(db);
1958 if (obp) {
1959 ASSERT(BP_IS_HOLE(bp));
1960 *bp = *obp;
1961 }
1962
1963 zgd->zgd_db = db;
1964 zgd->zgd_bp = bp;
1965
1966 ASSERT(db->db_offset == offset);
1967 ASSERT(db->db_size == size);
1968
1969 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1970 ztest_get_done, zgd);
1971
1972 if (error == 0)
1973 return (0);
1974 }
1975 }
1976
1977 ztest_get_done(zgd, error);
1978
1979 return (error);
1980 }
1981
1982 static void *
1983 ztest_lr_alloc(size_t lrsize, char *name)
1984 {
1985 char *lr;
1986 size_t namesize = name ? strlen(name) + 1 : 0;
1987
1988 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1989
1990 if (name)
1991 bcopy(name, lr + lrsize, namesize);
1992
1993 return (lr);
1994 }
1995
1996 void
1997 ztest_lr_free(void *lr, size_t lrsize, char *name)
1998 {
1999 size_t namesize = name ? strlen(name) + 1 : 0;
2000
2001 umem_free(lr, lrsize + namesize);
2002 }
2003
2004 /*
2005 * Lookup a bunch of objects. Returns the number of objects not found.
2006 */
2007 static int
2008 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2009 {
2010 int missing = 0;
2011 int error;
2012 int i;
2013
2014 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2015
2016 for (i = 0; i < count; i++, od++) {
2017 od->od_object = 0;
2018 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2019 sizeof (uint64_t), 1, &od->od_object);
2020 if (error) {
2021 ASSERT(error == ENOENT);
2022 ASSERT(od->od_object == 0);
2023 missing++;
2024 } else {
2025 dmu_buf_t *db;
2026 ztest_block_tag_t *bbt;
2027 dmu_object_info_t doi;
2028
2029 ASSERT(od->od_object != 0);
2030 ASSERT(missing == 0); /* there should be no gaps */
2031
2032 ztest_object_lock(zd, od->od_object, RL_READER);
2033 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2034 od->od_object, FTAG, &db));
2035 dmu_object_info_from_db(db, &doi);
2036 bbt = ztest_bt_bonus(db);
2037 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2038 od->od_type = doi.doi_type;
2039 od->od_blocksize = doi.doi_data_block_size;
2040 od->od_gen = bbt->bt_gen;
2041 dmu_buf_rele(db, FTAG);
2042 ztest_object_unlock(zd, od->od_object);
2043 }
2044 }
2045
2046 return (missing);
2047 }
2048
2049 static int
2050 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2051 {
2052 int missing = 0;
2053 int i;
2054
2055 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2056
2057 for (i = 0; i < count; i++, od++) {
2058 if (missing) {
2059 od->od_object = 0;
2060 missing++;
2061 continue;
2062 }
2063
2064 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2065
2066 lr->lr_doid = od->od_dir;
2067 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2068 lr->lrz_type = od->od_crtype;
2069 lr->lrz_blocksize = od->od_crblocksize;
2070 lr->lrz_ibshift = ztest_random_ibshift();
2071 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2072 lr->lrz_bonuslen = dmu_bonus_max();
2073 lr->lr_gen = od->od_crgen;
2074 lr->lr_crtime[0] = time(NULL);
2075
2076 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2077 ASSERT(missing == 0);
2078 od->od_object = 0;
2079 missing++;
2080 } else {
2081 od->od_object = lr->lr_foid;
2082 od->od_type = od->od_crtype;
2083 od->od_blocksize = od->od_crblocksize;
2084 od->od_gen = od->od_crgen;
2085 ASSERT(od->od_object != 0);
2086 }
2087
2088 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2089 }
2090
2091 return (missing);
2092 }
2093
2094 static int
2095 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2096 {
2097 int missing = 0;
2098 int error;
2099 int i;
2100
2101 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2102
2103 od += count - 1;
2104
2105 for (i = count - 1; i >= 0; i--, od--) {
2106 if (missing) {
2107 missing++;
2108 continue;
2109 }
2110
2111 /*
2112 * No object was found.
2113 */
2114 if (od->od_object == 0)
2115 continue;
2116
2117 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2118
2119 lr->lr_doid = od->od_dir;
2120
2121 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2122 ASSERT3U(error, ==, ENOSPC);
2123 missing++;
2124 } else {
2125 od->od_object = 0;
2126 }
2127 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2128 }
2129
2130 return (missing);
2131 }
2132
2133 static int
2134 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2135 void *data)
2136 {
2137 lr_write_t *lr;
2138 int error;
2139
2140 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2141
2142 lr->lr_foid = object;
2143 lr->lr_offset = offset;
2144 lr->lr_length = size;
2145 lr->lr_blkoff = 0;
2146 BP_ZERO(&lr->lr_blkptr);
2147
2148 bcopy(data, lr + 1, size);
2149
2150 error = ztest_replay_write(zd, lr, B_FALSE);
2151
2152 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2153
2154 return (error);
2155 }
2156
2157 static int
2158 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2159 {
2160 lr_truncate_t *lr;
2161 int error;
2162
2163 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2164
2165 lr->lr_foid = object;
2166 lr->lr_offset = offset;
2167 lr->lr_length = size;
2168
2169 error = ztest_replay_truncate(zd, lr, B_FALSE);
2170
2171 ztest_lr_free(lr, sizeof (*lr), NULL);
2172
2173 return (error);
2174 }
2175
2176 static int
2177 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2178 {
2179 lr_setattr_t *lr;
2180 int error;
2181
2182 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2183
2184 lr->lr_foid = object;
2185 lr->lr_size = 0;
2186 lr->lr_mode = 0;
2187
2188 error = ztest_replay_setattr(zd, lr, B_FALSE);
2189
2190 ztest_lr_free(lr, sizeof (*lr), NULL);
2191
2192 return (error);
2193 }
2194
2195 static void
2196 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2197 {
2198 objset_t *os = zd->zd_os;
2199 dmu_tx_t *tx;
2200 uint64_t txg;
2201 rl_t *rl;
2202
2203 txg_wait_synced(dmu_objset_pool(os), 0);
2204
2205 ztest_object_lock(zd, object, RL_READER);
2206 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2207
2208 tx = dmu_tx_create(os);
2209
2210 dmu_tx_hold_write(tx, object, offset, size);
2211
2212 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2213
2214 if (txg != 0) {
2215 dmu_prealloc(os, object, offset, size, tx);
2216 dmu_tx_commit(tx);
2217 txg_wait_synced(dmu_objset_pool(os), txg);
2218 } else {
2219 (void) dmu_free_long_range(os, object, offset, size);
2220 }
2221
2222 ztest_range_unlock(rl);
2223 ztest_object_unlock(zd, object);
2224 }
2225
2226 static void
2227 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2228 {
2229 int err;
2230 ztest_block_tag_t wbt;
2231 dmu_object_info_t doi;
2232 enum ztest_io_type io_type;
2233 uint64_t blocksize;
2234 void *data;
2235
2236 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2237 blocksize = doi.doi_data_block_size;
2238 data = umem_alloc(blocksize, UMEM_NOFAIL);
2239
2240 /*
2241 * Pick an i/o type at random, biased toward writing block tags.
2242 */
2243 io_type = ztest_random(ZTEST_IO_TYPES);
2244 if (ztest_random(2) == 0)
2245 io_type = ZTEST_IO_WRITE_TAG;
2246
2247 (void) rw_rdlock(&zd->zd_zilog_lock);
2248
2249 switch (io_type) {
2250
2251 case ZTEST_IO_WRITE_TAG:
2252 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2253 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2254 break;
2255
2256 case ZTEST_IO_WRITE_PATTERN:
2257 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2258 if (ztest_random(2) == 0) {
2259 /*
2260 * Induce fletcher2 collisions to ensure that
2261 * zio_ddt_collision() detects and resolves them
2262 * when using fletcher2-verify for deduplication.
2263 */
2264 ((uint64_t *)data)[0] ^= 1ULL << 63;
2265 ((uint64_t *)data)[4] ^= 1ULL << 63;
2266 }
2267 (void) ztest_write(zd, object, offset, blocksize, data);
2268 break;
2269
2270 case ZTEST_IO_WRITE_ZEROES:
2271 bzero(data, blocksize);
2272 (void) ztest_write(zd, object, offset, blocksize, data);
2273 break;
2274
2275 case ZTEST_IO_TRUNCATE:
2276 (void) ztest_truncate(zd, object, offset, blocksize);
2277 break;
2278
2279 case ZTEST_IO_SETATTR:
2280 (void) ztest_setattr(zd, object);
2281 break;
2282 default:
2283 break;
2284
2285 case ZTEST_IO_REWRITE:
2286 (void) rw_rdlock(&ztest_name_lock);
2287 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2288 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2289 B_FALSE);
2290 VERIFY(err == 0 || err == ENOSPC);
2291 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2292 ZFS_PROP_COMPRESSION,
2293 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2294 B_FALSE);
2295 VERIFY(err == 0 || err == ENOSPC);
2296 (void) rw_unlock(&ztest_name_lock);
2297
2298 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2299 DMU_READ_NO_PREFETCH));
2300
2301 (void) ztest_write(zd, object, offset, blocksize, data);
2302 break;
2303 }
2304
2305 (void) rw_unlock(&zd->zd_zilog_lock);
2306
2307 umem_free(data, blocksize);
2308 }
2309
2310 /*
2311 * Initialize an object description template.
2312 */
2313 static void
2314 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2315 dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2316 {
2317 od->od_dir = ZTEST_DIROBJ;
2318 od->od_object = 0;
2319
2320 od->od_crtype = type;
2321 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2322 od->od_crgen = gen;
2323
2324 od->od_type = DMU_OT_NONE;
2325 od->od_blocksize = 0;
2326 od->od_gen = 0;
2327
2328 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2329 tag, (longlong_t)id, (u_longlong_t)index);
2330 }
2331
2332 /*
2333 * Lookup or create the objects for a test using the od template.
2334 * If the objects do not all exist, or if 'remove' is specified,
2335 * remove any existing objects and create new ones. Otherwise,
2336 * use the existing objects.
2337 */
2338 static int
2339 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2340 {
2341 int count = size / sizeof (*od);
2342 int rv = 0;
2343
2344 mutex_enter(&zd->zd_dirobj_lock);
2345 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2346 (ztest_remove(zd, od, count) != 0 ||
2347 ztest_create(zd, od, count) != 0))
2348 rv = -1;
2349 zd->zd_od = od;
2350 mutex_exit(&zd->zd_dirobj_lock);
2351
2352 return (rv);
2353 }
2354
2355 /* ARGSUSED */
2356 void
2357 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2358 {
2359 zilog_t *zilog = zd->zd_zilog;
2360
2361 (void) rw_rdlock(&zd->zd_zilog_lock);
2362
2363 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2364
2365 /*
2366 * Remember the committed values in zd, which is in parent/child
2367 * shared memory. If we die, the next iteration of ztest_run()
2368 * will verify that the log really does contain this record.
2369 */
2370 mutex_enter(&zilog->zl_lock);
2371 ASSERT(zd->zd_shared != NULL);
2372 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2373 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2374 mutex_exit(&zilog->zl_lock);
2375
2376 (void) rw_unlock(&zd->zd_zilog_lock);
2377 }
2378
2379 /*
2380 * This function is designed to simulate the operations that occur during a
2381 * mount/unmount operation. We hold the dataset across these operations in an
2382 * attempt to expose any implicit assumptions about ZIL management.
2383 */
2384 /* ARGSUSED */
2385 void
2386 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2387 {
2388 objset_t *os = zd->zd_os;
2389
2390 /*
2391 * We grab the zd_dirobj_lock to ensure that no other thread is
2392 * updating the zil (i.e. adding in-memory log records) and the
2393 * zd_zilog_lock to block any I/O.
2394 */
2395 mutex_enter(&zd->zd_dirobj_lock);
2396 (void) rw_wrlock(&zd->zd_zilog_lock);
2397
2398 /* zfs_sb_teardown() */
2399 zil_close(zd->zd_zilog);
2400
2401 /* zfsvfs_setup() */
2402 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2403 zil_replay(os, zd, ztest_replay_vector);
2404
2405 (void) rw_unlock(&zd->zd_zilog_lock);
2406 mutex_exit(&zd->zd_dirobj_lock);
2407 }
2408
2409 /*
2410 * Verify that we can't destroy an active pool, create an existing pool,
2411 * or create a pool with a bad vdev spec.
2412 */
2413 /* ARGSUSED */
2414 void
2415 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2416 {
2417 ztest_shared_opts_t *zo = &ztest_opts;
2418 spa_t *spa;
2419 nvlist_t *nvroot;
2420
2421 /*
2422 * Attempt to create using a bad file.
2423 */
2424 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2425 VERIFY3U(ENOENT, ==,
2426 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2427 nvlist_free(nvroot);
2428
2429 /*
2430 * Attempt to create using a bad mirror.
2431 */
2432 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2433 VERIFY3U(ENOENT, ==,
2434 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2435 nvlist_free(nvroot);
2436
2437 /*
2438 * Attempt to create an existing pool. It shouldn't matter
2439 * what's in the nvroot; we should fail with EEXIST.
2440 */
2441 (void) rw_rdlock(&ztest_name_lock);
2442 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2443 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2444 nvlist_free(nvroot);
2445 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2446 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2447 spa_close(spa, FTAG);
2448
2449 (void) rw_unlock(&ztest_name_lock);
2450 }
2451
2452 /* ARGSUSED */
2453 void
2454 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2455 {
2456 spa_t *spa;
2457 uint64_t initial_version = SPA_VERSION_INITIAL;
2458 uint64_t version, newversion;
2459 nvlist_t *nvroot, *props;
2460 char *name;
2461
2462 mutex_enter(&ztest_vdev_lock);
2463 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2464
2465 /*
2466 * Clean up from previous runs.
2467 */
2468 (void) spa_destroy(name);
2469
2470 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2471 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2472
2473 /*
2474 * If we're configuring a RAIDZ device then make sure that the
2475 * the initial version is capable of supporting that feature.
2476 */
2477 switch (ztest_opts.zo_raidz_parity) {
2478 case 0:
2479 case 1:
2480 initial_version = SPA_VERSION_INITIAL;
2481 break;
2482 case 2:
2483 initial_version = SPA_VERSION_RAIDZ2;
2484 break;
2485 case 3:
2486 initial_version = SPA_VERSION_RAIDZ3;
2487 break;
2488 }
2489
2490 /*
2491 * Create a pool with a spa version that can be upgraded. Pick
2492 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2493 */
2494 do {
2495 version = ztest_random_spa_version(initial_version);
2496 } while (version > SPA_VERSION_BEFORE_FEATURES);
2497
2498 props = fnvlist_alloc();
2499 fnvlist_add_uint64(props,
2500 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2501 VERIFY3S(spa_create(name, nvroot, props, NULL), ==, 0);
2502 fnvlist_free(nvroot);
2503 fnvlist_free(props);
2504
2505 VERIFY3S(spa_open(name, &spa, FTAG), ==, 0);
2506 VERIFY3U(spa_version(spa), ==, version);
2507 newversion = ztest_random_spa_version(version + 1);
2508
2509 if (ztest_opts.zo_verbose >= 4) {
2510 (void) printf("upgrading spa version from %llu to %llu\n",
2511 (u_longlong_t)version, (u_longlong_t)newversion);
2512 }
2513
2514 spa_upgrade(spa, newversion);
2515 VERIFY3U(spa_version(spa), >, version);
2516 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2517 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2518 spa_close(spa, FTAG);
2519
2520 strfree(name);
2521 mutex_exit(&ztest_vdev_lock);
2522 }
2523
2524 static vdev_t *
2525 vdev_lookup_by_path(vdev_t *vd, const char *path)
2526 {
2527 vdev_t *mvd;
2528 int c;
2529
2530 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2531 return (vd);
2532
2533 for (c = 0; c < vd->vdev_children; c++)
2534 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2535 NULL)
2536 return (mvd);
2537
2538 return (NULL);
2539 }
2540
2541 /*
2542 * Find the first available hole which can be used as a top-level.
2543 */
2544 int
2545 find_vdev_hole(spa_t *spa)
2546 {
2547 vdev_t *rvd = spa->spa_root_vdev;
2548 int c;
2549
2550 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2551
2552 for (c = 0; c < rvd->vdev_children; c++) {
2553 vdev_t *cvd = rvd->vdev_child[c];
2554
2555 if (cvd->vdev_ishole)
2556 break;
2557 }
2558 return (c);
2559 }
2560
2561 /*
2562 * Verify that vdev_add() works as expected.
2563 */
2564 /* ARGSUSED */
2565 void
2566 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2567 {
2568 ztest_shared_t *zs = ztest_shared;
2569 spa_t *spa = ztest_spa;
2570 uint64_t leaves;
2571 uint64_t guid;
2572 nvlist_t *nvroot;
2573 int error;
2574
2575 mutex_enter(&ztest_vdev_lock);
2576 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2577
2578 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2579
2580 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2581
2582 /*
2583 * If we have slogs then remove them 1/4 of the time.
2584 */
2585 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2586 /*
2587 * Grab the guid from the head of the log class rotor.
2588 */
2589 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2590
2591 spa_config_exit(spa, SCL_VDEV, FTAG);
2592
2593 /*
2594 * We have to grab the zs_name_lock as writer to
2595 * prevent a race between removing a slog (dmu_objset_find)
2596 * and destroying a dataset. Removing the slog will
2597 * grab a reference on the dataset which may cause
2598 * dsl_destroy_head() to fail with EBUSY thus
2599 * leaving the dataset in an inconsistent state.
2600 */
2601 rw_wrlock(&ztest_name_lock);
2602 error = spa_vdev_remove(spa, guid, B_FALSE);
2603 rw_unlock(&ztest_name_lock);
2604
2605 if (error && error != EEXIST)
2606 fatal(0, "spa_vdev_remove() = %d", error);
2607 } else {
2608 spa_config_exit(spa, SCL_VDEV, FTAG);
2609
2610 /*
2611 * Make 1/4 of the devices be log devices.
2612 */
2613 nvroot = make_vdev_root(NULL, NULL, NULL,
2614 ztest_opts.zo_vdev_size, 0,
2615 ztest_random(4) == 0, ztest_opts.zo_raidz,
2616 zs->zs_mirrors, 1);
2617
2618 error = spa_vdev_add(spa, nvroot);
2619 nvlist_free(nvroot);
2620
2621 if (error == ENOSPC)
2622 ztest_record_enospc("spa_vdev_add");
2623 else if (error != 0)
2624 fatal(0, "spa_vdev_add() = %d", error);
2625 }
2626
2627 mutex_exit(&ztest_vdev_lock);
2628 }
2629
2630 /*
2631 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2632 */
2633 /* ARGSUSED */
2634 void
2635 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2636 {
2637 ztest_shared_t *zs = ztest_shared;
2638 spa_t *spa = ztest_spa;
2639 vdev_t *rvd = spa->spa_root_vdev;
2640 spa_aux_vdev_t *sav;
2641 char *aux;
2642 char *path;
2643 uint64_t guid = 0;
2644 int error;
2645
2646 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2647
2648 if (ztest_random(2) == 0) {
2649 sav = &spa->spa_spares;
2650 aux = ZPOOL_CONFIG_SPARES;
2651 } else {
2652 sav = &spa->spa_l2cache;
2653 aux = ZPOOL_CONFIG_L2CACHE;
2654 }
2655
2656 mutex_enter(&ztest_vdev_lock);
2657
2658 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2659
2660 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2661 /*
2662 * Pick a random device to remove.
2663 */
2664 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2665 } else {
2666 /*
2667 * Find an unused device we can add.
2668 */
2669 zs->zs_vdev_aux = 0;
2670 for (;;) {
2671 int c;
2672 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
2673 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2674 zs->zs_vdev_aux);
2675 for (c = 0; c < sav->sav_count; c++)
2676 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2677 path) == 0)
2678 break;
2679 if (c == sav->sav_count &&
2680 vdev_lookup_by_path(rvd, path) == NULL)
2681 break;
2682 zs->zs_vdev_aux++;
2683 }
2684 }
2685
2686 spa_config_exit(spa, SCL_VDEV, FTAG);
2687
2688 if (guid == 0) {
2689 /*
2690 * Add a new device.
2691 */
2692 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2693 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2694 error = spa_vdev_add(spa, nvroot);
2695 if (error != 0)
2696 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2697 nvlist_free(nvroot);
2698 } else {
2699 /*
2700 * Remove an existing device. Sometimes, dirty its
2701 * vdev state first to make sure we handle removal
2702 * of devices that have pending state changes.
2703 */
2704 if (ztest_random(2) == 0)
2705 (void) vdev_online(spa, guid, 0, NULL);
2706
2707 error = spa_vdev_remove(spa, guid, B_FALSE);
2708 if (error != 0 && error != EBUSY)
2709 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2710 }
2711
2712 mutex_exit(&ztest_vdev_lock);
2713
2714 umem_free(path, MAXPATHLEN);
2715 }
2716
2717 /*
2718 * split a pool if it has mirror tlvdevs
2719 */
2720 /* ARGSUSED */
2721 void
2722 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2723 {
2724 ztest_shared_t *zs = ztest_shared;
2725 spa_t *spa = ztest_spa;
2726 vdev_t *rvd = spa->spa_root_vdev;
2727 nvlist_t *tree, **child, *config, *split, **schild;
2728 uint_t c, children, schildren = 0, lastlogid = 0;
2729 int error = 0;
2730
2731 mutex_enter(&ztest_vdev_lock);
2732
2733 /* ensure we have a useable config; mirrors of raidz aren't supported */
2734 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2735 mutex_exit(&ztest_vdev_lock);
2736 return;
2737 }
2738
2739 /* clean up the old pool, if any */
2740 (void) spa_destroy("splitp");
2741
2742 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2743
2744 /* generate a config from the existing config */
2745 mutex_enter(&spa->spa_props_lock);
2746 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2747 &tree) == 0);
2748 mutex_exit(&spa->spa_props_lock);
2749
2750 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2751 &children) == 0);
2752
2753 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2754 for (c = 0; c < children; c++) {
2755 vdev_t *tvd = rvd->vdev_child[c];
2756 nvlist_t **mchild;
2757 uint_t mchildren;
2758
2759 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2760 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2761 0) == 0);
2762 VERIFY(nvlist_add_string(schild[schildren],
2763 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2764 VERIFY(nvlist_add_uint64(schild[schildren],
2765 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2766 if (lastlogid == 0)
2767 lastlogid = schildren;
2768 ++schildren;
2769 continue;
2770 }
2771 lastlogid = 0;
2772 VERIFY(nvlist_lookup_nvlist_array(child[c],
2773 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2774 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2775 }
2776
2777 /* OK, create a config that can be used to split */
2778 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2779 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2780 VDEV_TYPE_ROOT) == 0);
2781 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2782 lastlogid != 0 ? lastlogid : schildren) == 0);
2783
2784 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2785 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2786
2787 for (c = 0; c < schildren; c++)
2788 nvlist_free(schild[c]);
2789 free(schild);
2790 nvlist_free(split);
2791
2792 spa_config_exit(spa, SCL_VDEV, FTAG);
2793
2794 (void) rw_wrlock(&ztest_name_lock);
2795 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2796 (void) rw_unlock(&ztest_name_lock);
2797
2798 nvlist_free(config);
2799
2800 if (error == 0) {
2801 (void) printf("successful split - results:\n");
2802 mutex_enter(&spa_namespace_lock);
2803 show_pool_stats(spa);
2804 show_pool_stats(spa_lookup("splitp"));
2805 mutex_exit(&spa_namespace_lock);
2806 ++zs->zs_splits;
2807 --zs->zs_mirrors;
2808 }
2809 mutex_exit(&ztest_vdev_lock);
2810
2811 }
2812
2813 /*
2814 * Verify that we can attach and detach devices.
2815 */
2816 /* ARGSUSED */
2817 void
2818 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2819 {
2820 ztest_shared_t *zs = ztest_shared;
2821 spa_t *spa = ztest_spa;
2822 spa_aux_vdev_t *sav = &spa->spa_spares;
2823 vdev_t *rvd = spa->spa_root_vdev;
2824 vdev_t *oldvd, *newvd, *pvd;
2825 nvlist_t *root;
2826 uint64_t leaves;
2827 uint64_t leaf, top;
2828 uint64_t ashift = ztest_get_ashift();
2829 uint64_t oldguid, pguid;
2830 uint64_t oldsize, newsize;
2831 char *oldpath, *newpath;
2832 int replacing;
2833 int oldvd_has_siblings = B_FALSE;
2834 int newvd_is_spare = B_FALSE;
2835 int oldvd_is_log;
2836 int error, expected_error;
2837
2838 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2839 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2840
2841 mutex_enter(&ztest_vdev_lock);
2842 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2843
2844 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2845
2846 /*
2847 * Decide whether to do an attach or a replace.
2848 */
2849 replacing = ztest_random(2);
2850
2851 /*
2852 * Pick a random top-level vdev.
2853 */
2854 top = ztest_random_vdev_top(spa, B_TRUE);
2855
2856 /*
2857 * Pick a random leaf within it.
2858 */
2859 leaf = ztest_random(leaves);
2860
2861 /*
2862 * Locate this vdev.
2863 */
2864 oldvd = rvd->vdev_child[top];
2865 if (zs->zs_mirrors >= 1) {
2866 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2867 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2868 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2869 }
2870 if (ztest_opts.zo_raidz > 1) {
2871 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2872 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2873 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2874 }
2875
2876 /*
2877 * If we're already doing an attach or replace, oldvd may be a
2878 * mirror vdev -- in which case, pick a random child.
2879 */
2880 while (oldvd->vdev_children != 0) {
2881 oldvd_has_siblings = B_TRUE;
2882 ASSERT(oldvd->vdev_children >= 2);
2883 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2884 }
2885
2886 oldguid = oldvd->vdev_guid;
2887 oldsize = vdev_get_min_asize(oldvd);
2888 oldvd_is_log = oldvd->vdev_top->vdev_islog;
2889 (void) strcpy(oldpath, oldvd->vdev_path);
2890 pvd = oldvd->vdev_parent;
2891 pguid = pvd->vdev_guid;
2892
2893 /*
2894 * If oldvd has siblings, then half of the time, detach it.
2895 */
2896 if (oldvd_has_siblings && ztest_random(2) == 0) {
2897 spa_config_exit(spa, SCL_VDEV, FTAG);
2898 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2899 if (error != 0 && error != ENODEV && error != EBUSY &&
2900 error != ENOTSUP)
2901 fatal(0, "detach (%s) returned %d", oldpath, error);
2902 goto out;
2903 }
2904
2905 /*
2906 * For the new vdev, choose with equal probability between the two
2907 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2908 */
2909 if (sav->sav_count != 0 && ztest_random(3) == 0) {
2910 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2911 newvd_is_spare = B_TRUE;
2912 (void) strcpy(newpath, newvd->vdev_path);
2913 } else {
2914 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
2915 ztest_opts.zo_dir, ztest_opts.zo_pool,
2916 top * leaves + leaf);
2917 if (ztest_random(2) == 0)
2918 newpath[strlen(newpath) - 1] = 'b';
2919 newvd = vdev_lookup_by_path(rvd, newpath);
2920 }
2921
2922 if (newvd) {
2923 newsize = vdev_get_min_asize(newvd);
2924 } else {
2925 /*
2926 * Make newsize a little bigger or smaller than oldsize.
2927 * If it's smaller, the attach should fail.
2928 * If it's larger, and we're doing a replace,
2929 * we should get dynamic LUN growth when we're done.
2930 */
2931 newsize = 10 * oldsize / (9 + ztest_random(3));
2932 }
2933
2934 /*
2935 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2936 * unless it's a replace; in that case any non-replacing parent is OK.
2937 *
2938 * If newvd is already part of the pool, it should fail with EBUSY.
2939 *
2940 * If newvd is too small, it should fail with EOVERFLOW.
2941 */
2942 if (pvd->vdev_ops != &vdev_mirror_ops &&
2943 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2944 pvd->vdev_ops == &vdev_replacing_ops ||
2945 pvd->vdev_ops == &vdev_spare_ops))
2946 expected_error = ENOTSUP;
2947 else if (newvd_is_spare && (!replacing || oldvd_is_log))
2948 expected_error = ENOTSUP;
2949 else if (newvd == oldvd)
2950 expected_error = replacing ? 0 : EBUSY;
2951 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2952 expected_error = EBUSY;
2953 else if (newsize < oldsize)
2954 expected_error = EOVERFLOW;
2955 else if (ashift > oldvd->vdev_top->vdev_ashift)
2956 expected_error = EDOM;
2957 else
2958 expected_error = 0;
2959
2960 spa_config_exit(spa, SCL_VDEV, FTAG);
2961
2962 /*
2963 * Build the nvlist describing newpath.
2964 */
2965 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2966 ashift, 0, 0, 0, 1);
2967
2968 error = spa_vdev_attach(spa, oldguid, root, replacing);
2969
2970 nvlist_free(root);
2971
2972 /*
2973 * If our parent was the replacing vdev, but the replace completed,
2974 * then instead of failing with ENOTSUP we may either succeed,
2975 * fail with ENODEV, or fail with EOVERFLOW.
2976 */
2977 if (expected_error == ENOTSUP &&
2978 (error == 0 || error == ENODEV || error == EOVERFLOW))
2979 expected_error = error;
2980
2981 /*
2982 * If someone grew the LUN, the replacement may be too small.
2983 */
2984 if (error == EOVERFLOW || error == EBUSY)
2985 expected_error = error;
2986
2987 /* XXX workaround 6690467 */
2988 if (error != expected_error && expected_error != EBUSY) {
2989 fatal(0, "attach (%s %llu, %s %llu, %d) "
2990 "returned %d, expected %d",
2991 oldpath, oldsize, newpath,
2992 newsize, replacing, error, expected_error);
2993 }
2994 out:
2995 mutex_exit(&ztest_vdev_lock);
2996
2997 umem_free(oldpath, MAXPATHLEN);
2998 umem_free(newpath, MAXPATHLEN);
2999 }
3000
3001 /*
3002 * Callback function which expands the physical size of the vdev.
3003 */
3004 vdev_t *
3005 grow_vdev(vdev_t *vd, void *arg)
3006 {
3007 ASSERTV(spa_t *spa = vd->vdev_spa);
3008 size_t *newsize = arg;
3009 size_t fsize;
3010 int fd;
3011
3012 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3013 ASSERT(vd->vdev_ops->vdev_op_leaf);
3014
3015 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3016 return (vd);
3017
3018 fsize = lseek(fd, 0, SEEK_END);
3019 VERIFY(ftruncate(fd, *newsize) == 0);
3020
3021 if (ztest_opts.zo_verbose >= 6) {
3022 (void) printf("%s grew from %lu to %lu bytes\n",
3023 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3024 }
3025 (void) close(fd);
3026 return (NULL);
3027 }
3028
3029 /*
3030 * Callback function which expands a given vdev by calling vdev_online().
3031 */
3032 /* ARGSUSED */
3033 vdev_t *
3034 online_vdev(vdev_t *vd, void *arg)
3035 {
3036 spa_t *spa = vd->vdev_spa;
3037 vdev_t *tvd = vd->vdev_top;
3038 uint64_t guid = vd->vdev_guid;
3039 uint64_t generation = spa->spa_config_generation + 1;
3040 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3041 int error;
3042
3043 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3044 ASSERT(vd->vdev_ops->vdev_op_leaf);
3045
3046 /* Calling vdev_online will initialize the new metaslabs */
3047 spa_config_exit(spa, SCL_STATE, spa);
3048 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3049 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3050
3051 /*
3052 * If vdev_online returned an error or the underlying vdev_open
3053 * failed then we abort the expand. The only way to know that
3054 * vdev_open fails is by checking the returned newstate.
3055 */
3056 if (error || newstate != VDEV_STATE_HEALTHY) {
3057 if (ztest_opts.zo_verbose >= 5) {
3058 (void) printf("Unable to expand vdev, state %llu, "
3059 "error %d\n", (u_longlong_t)newstate, error);
3060 }
3061 return (vd);
3062 }
3063 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3064
3065 /*
3066 * Since we dropped the lock we need to ensure that we're
3067 * still talking to the original vdev. It's possible this
3068 * vdev may have been detached/replaced while we were
3069 * trying to online it.
3070 */
3071 if (generation != spa->spa_config_generation) {
3072 if (ztest_opts.zo_verbose >= 5) {
3073 (void) printf("vdev configuration has changed, "
3074 "guid %llu, state %llu, expected gen %llu, "
3075 "got gen %llu\n",
3076 (u_longlong_t)guid,
3077 (u_longlong_t)tvd->vdev_state,
3078 (u_longlong_t)generation,
3079 (u_longlong_t)spa->spa_config_generation);
3080 }
3081 return (vd);
3082 }
3083 return (NULL);
3084 }
3085
3086 /*
3087 * Traverse the vdev tree calling the supplied function.
3088 * We continue to walk the tree until we either have walked all
3089 * children or we receive a non-NULL return from the callback.
3090 * If a NULL callback is passed, then we just return back the first
3091 * leaf vdev we encounter.
3092 */
3093 vdev_t *
3094 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3095 {
3096 uint_t c;
3097
3098 if (vd->vdev_ops->vdev_op_leaf) {
3099 if (func == NULL)
3100 return (vd);
3101 else
3102 return (func(vd, arg));
3103 }
3104
3105 for (c = 0; c < vd->vdev_children; c++) {
3106 vdev_t *cvd = vd->vdev_child[c];
3107 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3108 return (cvd);
3109 }
3110 return (NULL);
3111 }
3112
3113 /*
3114 * Verify that dynamic LUN growth works as expected.
3115 */
3116 /* ARGSUSED */
3117 void
3118 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3119 {
3120 spa_t *spa = ztest_spa;
3121 vdev_t *vd, *tvd;
3122 metaslab_class_t *mc;
3123 metaslab_group_t *mg;
3124 size_t psize, newsize;
3125 uint64_t top;
3126 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3127
3128 mutex_enter(&ztest_vdev_lock);
3129 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3130
3131 top = ztest_random_vdev_top(spa, B_TRUE);
3132
3133 tvd = spa->spa_root_vdev->vdev_child[top];
3134 mg = tvd->vdev_mg;
3135 mc = mg->mg_class;
3136 old_ms_count = tvd->vdev_ms_count;
3137 old_class_space = metaslab_class_get_space(mc);
3138
3139 /*
3140 * Determine the size of the first leaf vdev associated with
3141 * our top-level device.
3142 */
3143 vd = vdev_walk_tree(tvd, NULL, NULL);
3144 ASSERT3P(vd, !=, NULL);
3145 ASSERT(vd->vdev_ops->vdev_op_leaf);
3146
3147 psize = vd->vdev_psize;
3148
3149 /*
3150 * We only try to expand the vdev if it's healthy, less than 4x its
3151 * original size, and it has a valid psize.
3152 */
3153 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3154 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3155 spa_config_exit(spa, SCL_STATE, spa);
3156 mutex_exit(&ztest_vdev_lock);
3157 return;
3158 }
3159 ASSERT(psize > 0);
3160 newsize = psize + psize / 8;
3161 ASSERT3U(newsize, >, psize);
3162
3163 if (ztest_opts.zo_verbose >= 6) {
3164 (void) printf("Expanding LUN %s from %lu to %lu\n",
3165 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3166 }
3167
3168 /*
3169 * Growing the vdev is a two step process:
3170 * 1). expand the physical size (i.e. relabel)
3171 * 2). online the vdev to create the new metaslabs
3172 */
3173 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3174 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3175 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3176 if (ztest_opts.zo_verbose >= 5) {
3177 (void) printf("Could not expand LUN because "
3178 "the vdev configuration changed.\n");
3179 }
3180 spa_config_exit(spa, SCL_STATE, spa);
3181 mutex_exit(&ztest_vdev_lock);
3182 return;
3183 }
3184
3185 spa_config_exit(spa, SCL_STATE, spa);
3186
3187 /*
3188 * Expanding the LUN will update the config asynchronously,
3189 * thus we must wait for the async thread to complete any
3190 * pending tasks before proceeding.
3191 */
3192 for (;;) {
3193 boolean_t done;
3194 mutex_enter(&spa->spa_async_lock);
3195 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3196 mutex_exit(&spa->spa_async_lock);
3197 if (done)
3198 break;
3199 txg_wait_synced(spa_get_dsl(spa), 0);
3200 (void) poll(NULL, 0, 100);
3201 }
3202
3203 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3204
3205 tvd = spa->spa_root_vdev->vdev_child[top];
3206 new_ms_count = tvd->vdev_ms_count;
3207 new_class_space = metaslab_class_get_space(mc);
3208
3209 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3210 if (ztest_opts.zo_verbose >= 5) {
3211 (void) printf("Could not verify LUN expansion due to "
3212 "intervening vdev offline or remove.\n");
3213 }
3214 spa_config_exit(spa, SCL_STATE, spa);
3215 mutex_exit(&ztest_vdev_lock);
3216 return;
3217 }
3218
3219 /*
3220 * Make sure we were able to grow the vdev.
3221 */
3222 if (new_ms_count <= old_ms_count)
3223 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3224 old_ms_count, new_ms_count);
3225
3226 /*
3227 * Make sure we were able to grow the pool.
3228 */
3229 if (new_class_space <= old_class_space)
3230 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3231 old_class_space, new_class_space);
3232
3233 if (ztest_opts.zo_verbose >= 5) {
3234 char oldnumbuf[6], newnumbuf[6];
3235
3236 nicenum(old_class_space, oldnumbuf);
3237 nicenum(new_class_space, newnumbuf);
3238 (void) printf("%s grew from %s to %s\n",
3239 spa->spa_name, oldnumbuf, newnumbuf);
3240 }
3241
3242 spa_config_exit(spa, SCL_STATE, spa);
3243 mutex_exit(&ztest_vdev_lock);
3244 }
3245
3246 /*
3247 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3248 */
3249 /* ARGSUSED */
3250 static void
3251 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3252 {
3253 /*
3254 * Create the objects common to all ztest datasets.
3255 */
3256 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3257 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3258 }
3259
3260 static int
3261 ztest_dataset_create(char *dsname)
3262 {
3263 uint64_t zilset = ztest_random(100);
3264 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3265 ztest_objset_create_cb, NULL);
3266
3267 if (err || zilset < 80)
3268 return (err);
3269
3270 if (ztest_opts.zo_verbose >= 5)
3271 (void) printf("Setting dataset %s to sync always\n", dsname);
3272 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3273 ZFS_SYNC_ALWAYS, B_FALSE));
3274 }
3275
3276 /* ARGSUSED */
3277 static int
3278 ztest_objset_destroy_cb(const char *name, void *arg)
3279 {
3280 objset_t *os;
3281 dmu_object_info_t doi;
3282 int error;
3283
3284 /*
3285 * Verify that the dataset contains a directory object.
3286 */
3287 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3288 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3289 if (error != ENOENT) {
3290 /* We could have crashed in the middle of destroying it */
3291 ASSERT0(error);
3292 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3293 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3294 }
3295 dmu_objset_disown(os, FTAG);
3296
3297 /*
3298 * Destroy the dataset.
3299 */
3300 if (strchr(name, '@') != NULL) {
3301 VERIFY0(dsl_destroy_snapshot(name, B_FALSE));
3302 } else {
3303 VERIFY0(dsl_destroy_head(name));
3304 }
3305 return (0);
3306 }
3307
3308 static boolean_t
3309 ztest_snapshot_create(char *osname, uint64_t id)
3310 {
3311 char snapname[MAXNAMELEN];
3312 int error;
3313
3314 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3315
3316 error = dmu_objset_snapshot_one(osname, snapname);
3317 if (error == ENOSPC) {
3318 ztest_record_enospc(FTAG);
3319 return (B_FALSE);
3320 }
3321 if (error != 0 && error != EEXIST) {
3322 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3323 snapname, error);
3324 }
3325 return (B_TRUE);
3326 }
3327
3328 static boolean_t
3329 ztest_snapshot_destroy(char *osname, uint64_t id)
3330 {
3331 char snapname[MAXNAMELEN];
3332 int error;
3333
3334 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
3335 (u_longlong_t)id);
3336
3337 error = dsl_destroy_snapshot(snapname, B_FALSE);
3338 if (error != 0 && error != ENOENT)
3339 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3340 return (B_TRUE);
3341 }
3342
3343 /* ARGSUSED */
3344 void
3345 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3346 {
3347 ztest_ds_t *zdtmp;
3348 int iters;
3349 int error;
3350 objset_t *os, *os2;
3351 char *name;
3352 zilog_t *zilog;
3353 int i;
3354
3355 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
3356 name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3357
3358 (void) rw_rdlock(&ztest_name_lock);
3359
3360 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
3361 ztest_opts.zo_pool, (u_longlong_t)id);
3362
3363 /*
3364 * If this dataset exists from a previous run, process its replay log
3365 * half of the time. If we don't replay it, then dsl_destroy_head()
3366 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3367 */
3368 if (ztest_random(2) == 0 &&
3369 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3370 ztest_zd_init(zdtmp, NULL, os);
3371 zil_replay(os, zdtmp, ztest_replay_vector);
3372 ztest_zd_fini(zdtmp);
3373 dmu_objset_disown(os, FTAG);
3374 }
3375
3376 /*
3377 * There may be an old instance of the dataset we're about to
3378 * create lying around from a previous run. If so, destroy it
3379 * and all of its snapshots.
3380 */
3381 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3382 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3383
3384 /*
3385 * Verify that the destroyed dataset is no longer in the namespace.
3386 */
3387 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3388 FTAG, &os));
3389
3390 /*
3391 * Verify that we can create a new dataset.
3392 */
3393 error = ztest_dataset_create(name);
3394 if (error) {
3395 if (error == ENOSPC) {
3396 ztest_record_enospc(FTAG);
3397 goto out;
3398 }
3399 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3400 }
3401
3402 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3403
3404 ztest_zd_init(zdtmp, NULL, os);
3405
3406 /*
3407 * Open the intent log for it.
3408 */
3409 zilog = zil_open(os, ztest_get_data);
3410
3411 /*
3412 * Put some objects in there, do a little I/O to them,
3413 * and randomly take a couple of snapshots along the way.
3414 */
3415 iters = ztest_random(5);
3416 for (i = 0; i < iters; i++) {
3417 ztest_dmu_object_alloc_free(zdtmp, id);
3418 if (ztest_random(iters) == 0)
3419 (void) ztest_snapshot_create(name, i);
3420 }
3421
3422 /*
3423 * Verify that we cannot create an existing dataset.
3424 */
3425 VERIFY3U(EEXIST, ==,
3426 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3427
3428 /*
3429 * Verify that we can hold an objset that is also owned.
3430 */
3431 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3432 dmu_objset_rele(os2, FTAG);
3433
3434 /*
3435 * Verify that we cannot own an objset that is already owned.
3436 */
3437 VERIFY3U(EBUSY, ==,
3438 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3439
3440 zil_close(zilog);
3441 dmu_objset_disown(os, FTAG);
3442 ztest_zd_fini(zdtmp);
3443 out:
3444 (void) rw_unlock(&ztest_name_lock);
3445
3446 umem_free(name, MAXNAMELEN);
3447 umem_free(zdtmp, sizeof (ztest_ds_t));
3448 }
3449
3450 /*
3451 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3452 */
3453 void
3454 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3455 {
3456 (void) rw_rdlock(&ztest_name_lock);
3457 (void) ztest_snapshot_destroy(zd->zd_name, id);
3458 (void) ztest_snapshot_create(zd->zd_name, id);
3459 (void) rw_unlock(&ztest_name_lock);
3460 }
3461
3462 /*
3463 * Cleanup non-standard snapshots and clones.
3464 */
3465 void
3466 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3467 {
3468 char *snap1name;
3469 char *clone1name;
3470 char *snap2name;
3471 char *clone2name;
3472 char *snap3name;
3473 int error;
3474
3475 snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3476 clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3477 snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3478 clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3479 snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3480
3481 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
3482 osname, (u_longlong_t)id);
3483 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
3484 osname, (u_longlong_t)id);
3485 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
3486 clone1name, (u_longlong_t)id);
3487 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
3488 osname, (u_longlong_t)id);
3489 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
3490 clone1name, (u_longlong_t)id);
3491
3492 error = dsl_destroy_head(clone2name);
3493 if (error && error != ENOENT)
3494 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3495 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3496 if (error && error != ENOENT)
3497 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3498 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3499 if (error && error != ENOENT)
3500 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3501 error = dsl_destroy_head(clone1name);
3502 if (error && error != ENOENT)
3503 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3504 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3505 if (error && error != ENOENT)
3506 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3507
3508 umem_free(snap1name, MAXNAMELEN);
3509 umem_free(clone1name, MAXNAMELEN);
3510 umem_free(snap2name, MAXNAMELEN);
3511 umem_free(clone2name, MAXNAMELEN);
3512 umem_free(snap3name, MAXNAMELEN);
3513 }
3514
3515 /*
3516 * Verify dsl_dataset_promote handles EBUSY
3517 */
3518 void
3519 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3520 {
3521 objset_t *os;
3522 char *snap1name;
3523 char *clone1name;
3524 char *snap2name;
3525 char *clone2name;
3526 char *snap3name;
3527 char *osname = zd->zd_name;
3528 int error;
3529
3530 snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3531 clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3532 snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3533 clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3534 snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3535
3536 (void) rw_rdlock(&ztest_name_lock);
3537
3538 ztest_dsl_dataset_cleanup(osname, id);
3539
3540 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
3541 osname, (u_longlong_t)id);
3542 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
3543 osname, (u_longlong_t)id);
3544 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
3545 clone1name, (u_longlong_t)id);
3546 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
3547 osname, (u_longlong_t)id);
3548 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
3549 clone1name, (u_longlong_t)id);
3550
3551 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3552 if (error && error != EEXIST) {
3553 if (error == ENOSPC) {
3554 ztest_record_enospc(FTAG);
3555 goto out;
3556 }
3557 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3558 }
3559
3560 error = dmu_objset_clone(clone1name, snap1name);
3561 if (error) {
3562 if (error == ENOSPC) {
3563 ztest_record_enospc(FTAG);
3564 goto out;
3565 }
3566 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3567 }
3568
3569 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3570 if (error && error != EEXIST) {
3571 if (error == ENOSPC) {
3572 ztest_record_enospc(FTAG);
3573 goto out;
3574 }
3575 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3576 }
3577
3578 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3579 if (error && error != EEXIST) {
3580 if (error == ENOSPC) {
3581 ztest_record_enospc(FTAG);
3582 goto out;
3583 }
3584 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3585 }
3586
3587 error = dmu_objset_clone(clone2name, snap3name);
3588 if (error) {
3589 if (error == ENOSPC) {
3590 ztest_record_enospc(FTAG);
3591 goto out;
3592 }
3593 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3594 }
3595
3596 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3597 if (error)
3598 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3599 error = dsl_dataset_promote(clone2name, NULL);
3600 if (error == ENOSPC) {
3601 dmu_objset_disown(os, FTAG);
3602 ztest_record_enospc(FTAG);
3603 goto out;
3604 }
3605 if (error != EBUSY)
3606 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3607 error);
3608 dmu_objset_disown(os, FTAG);
3609
3610 out:
3611 ztest_dsl_dataset_cleanup(osname, id);
3612
3613 (void) rw_unlock(&ztest_name_lock);
3614
3615 umem_free(snap1name, MAXNAMELEN);
3616 umem_free(clone1name, MAXNAMELEN);
3617 umem_free(snap2name, MAXNAMELEN);
3618 umem_free(clone2name, MAXNAMELEN);
3619 umem_free(snap3name, MAXNAMELEN);
3620 }
3621
3622 #undef OD_ARRAY_SIZE
3623 #define OD_ARRAY_SIZE 4
3624
3625 /*
3626 * Verify that dmu_object_{alloc,free} work as expected.
3627 */
3628 void
3629 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3630 {
3631 ztest_od_t *od;
3632 int batchsize;
3633 int size;
3634 int b;
3635
3636 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3637 od = umem_alloc(size, UMEM_NOFAIL);
3638 batchsize = OD_ARRAY_SIZE;
3639
3640 for (b = 0; b < batchsize; b++)
3641 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3642
3643 /*
3644 * Destroy the previous batch of objects, create a new batch,
3645 * and do some I/O on the new objects.
3646 */
3647 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
3648 return;
3649
3650 while (ztest_random(4 * batchsize) != 0)
3651 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3652 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3653
3654 umem_free(od, size);
3655 }
3656
3657 #undef OD_ARRAY_SIZE
3658 #define OD_ARRAY_SIZE 2
3659
3660 /*
3661 * Verify that dmu_{read,write} work as expected.
3662 */
3663 void
3664 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3665 {
3666 int size;
3667 ztest_od_t *od;
3668
3669 objset_t *os = zd->zd_os;
3670 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3671 od = umem_alloc(size, UMEM_NOFAIL);
3672 dmu_tx_t *tx;
3673 int i, freeit, error;
3674 uint64_t n, s, txg;
3675 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3676 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3677 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3678 uint64_t regions = 997;
3679 uint64_t stride = 123456789ULL;
3680 uint64_t width = 40;
3681 int free_percent = 5;
3682
3683 /*
3684 * This test uses two objects, packobj and bigobj, that are always
3685 * updated together (i.e. in the same tx) so that their contents are
3686 * in sync and can be compared. Their contents relate to each other
3687 * in a simple way: packobj is a dense array of 'bufwad' structures,
3688 * while bigobj is a sparse array of the same bufwads. Specifically,
3689 * for any index n, there are three bufwads that should be identical:
3690 *
3691 * packobj, at offset n * sizeof (bufwad_t)
3692 * bigobj, at the head of the nth chunk
3693 * bigobj, at the tail of the nth chunk
3694 *
3695 * The chunk size is arbitrary. It doesn't have to be a power of two,
3696 * and it doesn't have any relation to the object blocksize.
3697 * The only requirement is that it can hold at least two bufwads.
3698 *
3699 * Normally, we write the bufwad to each of these locations.
3700 * However, free_percent of the time we instead write zeroes to
3701 * packobj and perform a dmu_free_range() on bigobj. By comparing
3702 * bigobj to packobj, we can verify that the DMU is correctly
3703 * tracking which parts of an object are allocated and free,
3704 * and that the contents of the allocated blocks are correct.
3705 */
3706
3707 /*
3708 * Read the directory info. If it's the first time, set things up.
3709 */
3710 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3711 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3712
3713 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
3714 umem_free(od, size);
3715 return;
3716 }
3717
3718 bigobj = od[0].od_object;
3719 packobj = od[1].od_object;
3720 chunksize = od[0].od_gen;
3721 ASSERT(chunksize == od[1].od_gen);
3722
3723 /*
3724 * Prefetch a random chunk of the big object.
3725 * Our aim here is to get some async reads in flight
3726 * for blocks that we may free below; the DMU should
3727 * handle this race correctly.
3728 */
3729 n = ztest_random(regions) * stride + ztest_random(width);
3730 s = 1 + ztest_random(2 * width - 1);
3731 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3732 ZIO_PRIORITY_SYNC_READ);
3733
3734 /*
3735 * Pick a random index and compute the offsets into packobj and bigobj.
3736 */
3737 n = ztest_random(regions) * stride + ztest_random(width);
3738 s = 1 + ztest_random(width - 1);
3739
3740 packoff = n * sizeof (bufwad_t);
3741 packsize = s * sizeof (bufwad_t);
3742
3743 bigoff = n * chunksize;
3744 bigsize = s * chunksize;
3745
3746 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3747 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3748
3749 /*
3750 * free_percent of the time, free a range of bigobj rather than
3751 * overwriting it.
3752 */
3753 freeit = (ztest_random(100) < free_percent);
3754
3755 /*
3756 * Read the current contents of our objects.
3757 */
3758 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3759 DMU_READ_PREFETCH);
3760 ASSERT0(error);
3761 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3762 DMU_READ_PREFETCH);
3763 ASSERT0(error);
3764
3765 /*
3766 * Get a tx for the mods to both packobj and bigobj.
3767 */
3768 tx = dmu_tx_create(os);
3769
3770 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3771
3772 if (freeit)
3773 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3774 else
3775 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3776
3777 /* This accounts for setting the checksum/compression. */
3778 dmu_tx_hold_bonus(tx, bigobj);
3779
3780 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3781 if (txg == 0) {
3782 umem_free(packbuf, packsize);
3783 umem_free(bigbuf, bigsize);
3784 umem_free(od, size);
3785 return;
3786 }
3787
3788 enum zio_checksum cksum;
3789 do {
3790 cksum = (enum zio_checksum)
3791 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3792 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3793 dmu_object_set_checksum(os, bigobj, cksum, tx);
3794
3795 enum zio_compress comp;
3796 do {
3797 comp = (enum zio_compress)
3798 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3799 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3800 dmu_object_set_compress(os, bigobj, comp, tx);
3801
3802 /*
3803 * For each index from n to n + s, verify that the existing bufwad
3804 * in packobj matches the bufwads at the head and tail of the
3805 * corresponding chunk in bigobj. Then update all three bufwads
3806 * with the new values we want to write out.
3807 */
3808 for (i = 0; i < s; i++) {
3809 /* LINTED */
3810 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3811 /* LINTED */
3812 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3813 /* LINTED */
3814 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3815
3816 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3817 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3818
3819 if (pack->bw_txg > txg)
3820 fatal(0, "future leak: got %llx, open txg is %llx",
3821 pack->bw_txg, txg);
3822
3823 if (pack->bw_data != 0 && pack->bw_index != n + i)
3824 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3825 pack->bw_index, n, i);
3826
3827 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3828 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3829
3830 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3831 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3832
3833 if (freeit) {
3834 bzero(pack, sizeof (bufwad_t));
3835 } else {
3836 pack->bw_index = n + i;
3837 pack->bw_txg = txg;
3838 pack->bw_data = 1 + ztest_random(-2ULL);
3839 }
3840 *bigH = *pack;
3841 *bigT = *pack;
3842 }
3843
3844 /*
3845 * We've verified all the old bufwads, and made new ones.
3846 * Now write them out.
3847 */
3848 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3849
3850 if (freeit) {
3851 if (ztest_opts.zo_verbose >= 7) {
3852 (void) printf("freeing offset %llx size %llx"
3853 " txg %llx\n",
3854 (u_longlong_t)bigoff,
3855 (u_longlong_t)bigsize,
3856 (u_longlong_t)txg);
3857 }
3858 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3859 } else {
3860 if (ztest_opts.zo_verbose >= 7) {
3861 (void) printf("writing offset %llx size %llx"
3862 " txg %llx\n",
3863 (u_longlong_t)bigoff,
3864 (u_longlong_t)bigsize,
3865 (u_longlong_t)txg);
3866 }
3867 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3868 }
3869
3870 dmu_tx_commit(tx);
3871
3872 /*
3873 * Sanity check the stuff we just wrote.
3874 */
3875 {
3876 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3877 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3878
3879 VERIFY(0 == dmu_read(os, packobj, packoff,
3880 packsize, packcheck, DMU_READ_PREFETCH));
3881 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3882 bigsize, bigcheck, DMU_READ_PREFETCH));
3883
3884 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3885 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3886
3887 umem_free(packcheck, packsize);
3888 umem_free(bigcheck, bigsize);
3889 }
3890
3891 umem_free(packbuf, packsize);
3892 umem_free(bigbuf, bigsize);
3893 umem_free(od, size);
3894 }
3895
3896 void
3897 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3898 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3899 {
3900 uint64_t i;
3901 bufwad_t *pack;
3902 bufwad_t *bigH;
3903 bufwad_t *bigT;
3904
3905 /*
3906 * For each index from n to n + s, verify that the existing bufwad
3907 * in packobj matches the bufwads at the head and tail of the
3908 * corresponding chunk in bigobj. Then update all three bufwads
3909 * with the new values we want to write out.
3910 */
3911 for (i = 0; i < s; i++) {
3912 /* LINTED */
3913 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3914 /* LINTED */
3915 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3916 /* LINTED */
3917 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3918
3919 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3920 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3921
3922 if (pack->bw_txg > txg)
3923 fatal(0, "future leak: got %llx, open txg is %llx",
3924 pack->bw_txg, txg);
3925
3926 if (pack->bw_data != 0 && pack->bw_index != n + i)
3927 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3928 pack->bw_index, n, i);
3929
3930 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3931 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3932
3933 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3934 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3935
3936 pack->bw_index = n + i;
3937 pack->bw_txg = txg;
3938 pack->bw_data = 1 + ztest_random(-2ULL);
3939
3940 *bigH = *pack;
3941 *bigT = *pack;
3942 }
3943 }
3944
3945 #undef OD_ARRAY_SIZE
3946 #define OD_ARRAY_SIZE 2
3947
3948 void
3949 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3950 {
3951 objset_t *os = zd->zd_os;
3952 ztest_od_t *od;
3953 dmu_tx_t *tx;
3954 uint64_t i;
3955 int error;
3956 int size;
3957 uint64_t n, s, txg;
3958 bufwad_t *packbuf, *bigbuf;
3959 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3960 uint64_t blocksize = ztest_random_blocksize();
3961 uint64_t chunksize = blocksize;
3962 uint64_t regions = 997;
3963 uint64_t stride = 123456789ULL;
3964 uint64_t width = 9;
3965 dmu_buf_t *bonus_db;
3966 arc_buf_t **bigbuf_arcbufs;
3967 dmu_object_info_t doi;
3968
3969 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3970 od = umem_alloc(size, UMEM_NOFAIL);
3971
3972 /*
3973 * This test uses two objects, packobj and bigobj, that are always
3974 * updated together (i.e. in the same tx) so that their contents are
3975 * in sync and can be compared. Their contents relate to each other
3976 * in a simple way: packobj is a dense array of 'bufwad' structures,
3977 * while bigobj is a sparse array of the same bufwads. Specifically,
3978 * for any index n, there are three bufwads that should be identical:
3979 *
3980 * packobj, at offset n * sizeof (bufwad_t)
3981 * bigobj, at the head of the nth chunk
3982 * bigobj, at the tail of the nth chunk
3983 *
3984 * The chunk size is set equal to bigobj block size so that
3985 * dmu_assign_arcbuf() can be tested for object updates.
3986 */
3987
3988 /*
3989 * Read the directory info. If it's the first time, set things up.
3990 */
3991 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3992 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3993
3994
3995 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
3996 umem_free(od, size);
3997 return;
3998 }
3999
4000 bigobj = od[0].od_object;
4001 packobj = od[1].od_object;
4002 blocksize = od[0].od_blocksize;
4003 chunksize = blocksize;
4004 ASSERT(chunksize == od[1].od_gen);
4005
4006 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4007 VERIFY(ISP2(doi.doi_data_block_size));
4008 VERIFY(chunksize == doi.doi_data_block_size);
4009 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4010
4011 /*
4012 * Pick a random index and compute the offsets into packobj and bigobj.
4013 */
4014 n = ztest_random(regions) * stride + ztest_random(width);
4015 s = 1 + ztest_random(width - 1);
4016
4017 packoff = n * sizeof (bufwad_t);
4018 packsize = s * sizeof (bufwad_t);
4019
4020 bigoff = n * chunksize;
4021 bigsize = s * chunksize;
4022
4023 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4024 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4025
4026 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4027
4028 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4029
4030 /*
4031 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4032 * Iteration 1 test zcopy to already referenced dbufs.
4033 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4034 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4035 * Iteration 4 test zcopy when dbuf is no longer dirty.
4036 * Iteration 5 test zcopy when it can't be done.
4037 * Iteration 6 one more zcopy write.
4038 */
4039 for (i = 0; i < 7; i++) {
4040 uint64_t j;
4041 uint64_t off;
4042
4043 /*
4044 * In iteration 5 (i == 5) use arcbufs
4045 * that don't match bigobj blksz to test
4046 * dmu_assign_arcbuf() when it can't directly
4047 * assign an arcbuf to a dbuf.
4048 */
4049 for (j = 0; j < s; j++) {
4050 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4051 bigbuf_arcbufs[j] =
4052 dmu_request_arcbuf(bonus_db, chunksize);
4053 } else {
4054 bigbuf_arcbufs[2 * j] =
4055 dmu_request_arcbuf(bonus_db, chunksize / 2);
4056 bigbuf_arcbufs[2 * j + 1] =
4057 dmu_request_arcbuf(bonus_db, chunksize / 2);
4058 }
4059 }
4060
4061 /*
4062 * Get a tx for the mods to both packobj and bigobj.
4063 */
4064 tx = dmu_tx_create(os);
4065
4066 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4067 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4068
4069 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4070 if (txg == 0) {
4071 umem_free(packbuf, packsize);
4072 umem_free(bigbuf, bigsize);
4073 for (j = 0; j < s; j++) {
4074 if (i != 5 ||
4075 chunksize < (SPA_MINBLOCKSIZE * 2)) {
4076 dmu_return_arcbuf(bigbuf_arcbufs[j]);
4077 } else {
4078 dmu_return_arcbuf(
4079 bigbuf_arcbufs[2 * j]);
4080 dmu_return_arcbuf(
4081 bigbuf_arcbufs[2 * j + 1]);
4082 }
4083 }
4084 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4085 umem_free(od, size);
4086 dmu_buf_rele(bonus_db, FTAG);
4087 return;
4088 }
4089
4090 /*
4091 * 50% of the time don't read objects in the 1st iteration to
4092 * test dmu_assign_arcbuf() for the case when there're no
4093 * existing dbufs for the specified offsets.
4094 */
4095 if (i != 0 || ztest_random(2) != 0) {
4096 error = dmu_read(os, packobj, packoff,
4097 packsize, packbuf, DMU_READ_PREFETCH);
4098 ASSERT0(error);
4099 error = dmu_read(os, bigobj, bigoff, bigsize,
4100 bigbuf, DMU_READ_PREFETCH);
4101 ASSERT0(error);
4102 }
4103 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4104 n, chunksize, txg);
4105
4106 /*
4107 * We've verified all the old bufwads, and made new ones.
4108 * Now write them out.
4109 */
4110 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4111 if (ztest_opts.zo_verbose >= 7) {
4112 (void) printf("writing offset %llx size %llx"
4113 " txg %llx\n",
4114 (u_longlong_t)bigoff,
4115 (u_longlong_t)bigsize,
4116 (u_longlong_t)txg);
4117 }
4118 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4119 dmu_buf_t *dbt;
4120 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4121 bcopy((caddr_t)bigbuf + (off - bigoff),
4122 bigbuf_arcbufs[j]->b_data, chunksize);
4123 } else {
4124 bcopy((caddr_t)bigbuf + (off - bigoff),
4125 bigbuf_arcbufs[2 * j]->b_data,
4126 chunksize / 2);
4127 bcopy((caddr_t)bigbuf + (off - bigoff) +
4128 chunksize / 2,
4129 bigbuf_arcbufs[2 * j + 1]->b_data,
4130 chunksize / 2);
4131 }
4132
4133 if (i == 1) {
4134 VERIFY(dmu_buf_hold(os, bigobj, off,
4135 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4136 }
4137 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4138 dmu_assign_arcbuf(bonus_db, off,
4139 bigbuf_arcbufs[j], tx);
4140 } else {
4141 dmu_assign_arcbuf(bonus_db, off,
4142 bigbuf_arcbufs[2 * j], tx);
4143 dmu_assign_arcbuf(bonus_db,
4144 off + chunksize / 2,
4145 bigbuf_arcbufs[2 * j + 1], tx);
4146 }
4147 if (i == 1) {
4148 dmu_buf_rele(dbt, FTAG);
4149 }
4150 }
4151 dmu_tx_commit(tx);
4152
4153 /*
4154 * Sanity check the stuff we just wrote.
4155 */
4156 {
4157 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4158 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4159
4160 VERIFY(0 == dmu_read(os, packobj, packoff,
4161 packsize, packcheck, DMU_READ_PREFETCH));
4162 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4163 bigsize, bigcheck, DMU_READ_PREFETCH));
4164
4165 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4166 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4167
4168 umem_free(packcheck, packsize);
4169 umem_free(bigcheck, bigsize);
4170 }
4171 if (i == 2) {
4172 txg_wait_open(dmu_objset_pool(os), 0);
4173 } else if (i == 3) {
4174 txg_wait_synced(dmu_objset_pool(os), 0);
4175 }
4176 }
4177
4178 dmu_buf_rele(bonus_db, FTAG);
4179 umem_free(packbuf, packsize);
4180 umem_free(bigbuf, bigsize);
4181 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4182 umem_free(od, size);
4183 }
4184
4185 /* ARGSUSED */
4186 void
4187 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4188 {
4189 ztest_od_t *od;
4190
4191 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4192 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4193 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4194
4195 /*
4196 * Have multiple threads write to large offsets in an object
4197 * to verify that parallel writes to an object -- even to the
4198 * same blocks within the object -- doesn't cause any trouble.
4199 */
4200 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4201
4202 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
4203 return;
4204
4205 while (ztest_random(10) != 0)
4206 ztest_io(zd, od->od_object, offset);
4207
4208 umem_free(od, sizeof (ztest_od_t));
4209 }
4210
4211 void
4212 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4213 {
4214 ztest_od_t *od;
4215 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4216 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4217 uint64_t count = ztest_random(20) + 1;
4218 uint64_t blocksize = ztest_random_blocksize();
4219 void *data;
4220
4221 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4222
4223 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4224
4225 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4226 !ztest_random(2)) != 0) {
4227 umem_free(od, sizeof (ztest_od_t));
4228 return;
4229 }
4230
4231 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
4232 umem_free(od, sizeof (ztest_od_t));
4233 return;
4234 }
4235
4236 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
4237
4238 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4239
4240 while (ztest_random(count) != 0) {
4241 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4242 if (ztest_write(zd, od->od_object, randoff, blocksize,
4243 data) != 0)
4244 break;
4245 while (ztest_random(4) != 0)
4246 ztest_io(zd, od->od_object, randoff);
4247 }
4248
4249 umem_free(data, blocksize);
4250 umem_free(od, sizeof (ztest_od_t));
4251 }
4252
4253 /*
4254 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4255 */
4256 #define ZTEST_ZAP_MIN_INTS 1
4257 #define ZTEST_ZAP_MAX_INTS 4
4258 #define ZTEST_ZAP_MAX_PROPS 1000
4259
4260 void
4261 ztest_zap(ztest_ds_t *zd, uint64_t id)
4262 {
4263 objset_t *os = zd->zd_os;
4264 ztest_od_t *od;
4265 uint64_t object;
4266 uint64_t txg, last_txg;
4267 uint64_t value[ZTEST_ZAP_MAX_INTS];
4268 uint64_t zl_ints, zl_intsize, prop;
4269 int i, ints;
4270 dmu_tx_t *tx;
4271 char propname[100], txgname[100];
4272 int error;
4273 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4274
4275 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4276 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4277
4278 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4279 !ztest_random(2)) != 0)
4280 goto out;
4281
4282 object = od->od_object;
4283
4284 /*
4285 * Generate a known hash collision, and verify that
4286 * we can lookup and remove both entries.
4287 */
4288 tx = dmu_tx_create(os);
4289 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4290 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4291 if (txg == 0)
4292 goto out;
4293 for (i = 0; i < 2; i++) {
4294 value[i] = i;
4295 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4296 1, &value[i], tx));
4297 }
4298 for (i = 0; i < 2; i++) {
4299 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4300 sizeof (uint64_t), 1, &value[i], tx));
4301 VERIFY3U(0, ==,
4302 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4303 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4304 ASSERT3U(zl_ints, ==, 1);
4305 }
4306 for (i = 0; i < 2; i++) {
4307 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4308 }
4309 dmu_tx_commit(tx);
4310
4311 /*
4312 * Generate a buch of random entries.
4313 */
4314 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4315
4316 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4317 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4318 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4319 bzero(value, sizeof (value));
4320 last_txg = 0;
4321
4322 /*
4323 * If these zap entries already exist, validate their contents.
4324 */
4325 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4326 if (error == 0) {
4327 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4328 ASSERT3U(zl_ints, ==, 1);
4329
4330 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4331 zl_ints, &last_txg) == 0);
4332
4333 VERIFY(zap_length(os, object, propname, &zl_intsize,
4334 &zl_ints) == 0);
4335
4336 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4337 ASSERT3U(zl_ints, ==, ints);
4338
4339 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4340 zl_ints, value) == 0);
4341
4342 for (i = 0; i < ints; i++) {
4343 ASSERT3U(value[i], ==, last_txg + object + i);
4344 }
4345 } else {
4346 ASSERT3U(error, ==, ENOENT);
4347 }
4348
4349 /*
4350 * Atomically update two entries in our zap object.
4351 * The first is named txg_%llu, and contains the txg
4352 * in which the property was last updated. The second
4353 * is named prop_%llu, and the nth element of its value
4354 * should be txg + object + n.
4355 */
4356 tx = dmu_tx_create(os);
4357 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4358 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4359 if (txg == 0)
4360 goto out;
4361
4362 if (last_txg > txg)
4363 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4364
4365 for (i = 0; i < ints; i++)
4366 value[i] = txg + object + i;
4367
4368 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4369 1, &txg, tx));
4370 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4371 ints, value, tx));
4372
4373 dmu_tx_commit(tx);
4374
4375 /*
4376 * Remove a random pair of entries.
4377 */
4378 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4379 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4380 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4381
4382 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4383
4384 if (error == ENOENT)
4385 goto out;
4386
4387 ASSERT0(error);
4388
4389 tx = dmu_tx_create(os);
4390 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4391 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4392 if (txg == 0)
4393 goto out;
4394 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4395 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4396 dmu_tx_commit(tx);
4397 out:
4398 umem_free(od, sizeof (ztest_od_t));
4399 }
4400
4401 /*
4402 * Testcase to test the upgrading of a microzap to fatzap.
4403 */
4404 void
4405 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4406 {
4407 objset_t *os = zd->zd_os;
4408 ztest_od_t *od;
4409 uint64_t object, txg;
4410 int i;
4411
4412 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4413 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4414
4415 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4416 !ztest_random(2)) != 0)
4417 goto out;
4418 object = od->od_object;
4419
4420 /*
4421 * Add entries to this ZAP and make sure it spills over
4422 * and gets upgraded to a fatzap. Also, since we are adding
4423 * 2050 entries we should see ptrtbl growth and leaf-block split.
4424 */
4425 for (i = 0; i < 2050; i++) {
4426 char name[MAXNAMELEN];
4427 uint64_t value = i;
4428 dmu_tx_t *tx;
4429 int error;
4430
4431 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4432 (u_longlong_t)id, (u_longlong_t)value);
4433
4434 tx = dmu_tx_create(os);
4435 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4436 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4437 if (txg == 0)
4438 goto out;
4439 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4440 &value, tx);
4441 ASSERT(error == 0 || error == EEXIST);
4442 dmu_tx_commit(tx);
4443 }
4444 out:
4445 umem_free(od, sizeof (ztest_od_t));
4446 }
4447
4448 /* ARGSUSED */
4449 void
4450 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4451 {
4452 objset_t *os = zd->zd_os;
4453 ztest_od_t *od;
4454 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4455 dmu_tx_t *tx;
4456 int i, namelen, error;
4457 int micro = ztest_random(2);
4458 char name[20], string_value[20];
4459 void *data;
4460
4461 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4462 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4463
4464 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4465 umem_free(od, sizeof (ztest_od_t));
4466 return;
4467 }
4468
4469 object = od->od_object;
4470
4471 /*
4472 * Generate a random name of the form 'xxx.....' where each
4473 * x is a random printable character and the dots are dots.
4474 * There are 94 such characters, and the name length goes from
4475 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4476 */
4477 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4478
4479 for (i = 0; i < 3; i++)
4480 name[i] = '!' + ztest_random('~' - '!' + 1);
4481 for (; i < namelen - 1; i++)
4482 name[i] = '.';
4483 name[i] = '\0';
4484
4485 if ((namelen & 1) || micro) {
4486 wsize = sizeof (txg);
4487 wc = 1;
4488 data = &txg;
4489 } else {
4490 wsize = 1;
4491 wc = namelen;
4492 data = string_value;
4493 }
4494
4495 count = -1ULL;
4496 VERIFY0(zap_count(os, object, &count));
4497 ASSERT(count != -1ULL);
4498
4499 /*
4500 * Select an operation: length, lookup, add, update, remove.
4501 */
4502 i = ztest_random(5);
4503
4504 if (i >= 2) {
4505 tx = dmu_tx_create(os);
4506 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4507 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4508 if (txg == 0)
4509 return;
4510 bcopy(name, string_value, namelen);
4511 } else {
4512 tx = NULL;
4513 txg = 0;
4514 bzero(string_value, namelen);
4515 }
4516
4517 switch (i) {
4518
4519 case 0:
4520 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4521 if (error == 0) {
4522 ASSERT3U(wsize, ==, zl_wsize);
4523 ASSERT3U(wc, ==, zl_wc);
4524 } else {
4525 ASSERT3U(error, ==, ENOENT);
4526 }
4527 break;
4528
4529 case 1:
4530 error = zap_lookup(os, object, name, wsize, wc, data);
4531 if (error == 0) {
4532 if (data == string_value &&
4533 bcmp(name, data, namelen) != 0)
4534 fatal(0, "name '%s' != val '%s' len %d",
4535 name, data, namelen);
4536 } else {
4537 ASSERT3U(error, ==, ENOENT);
4538 }
4539 break;
4540
4541 case 2:
4542 error = zap_add(os, object, name, wsize, wc, data, tx);
4543 ASSERT(error == 0 || error == EEXIST);
4544 break;
4545
4546 case 3:
4547 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4548 break;
4549
4550 case 4:
4551 error = zap_remove(os, object, name, tx);
4552 ASSERT(error == 0 || error == ENOENT);
4553 break;
4554 }
4555
4556 if (tx != NULL)
4557 dmu_tx_commit(tx);
4558
4559 umem_free(od, sizeof (ztest_od_t));
4560 }
4561
4562 /*
4563 * Commit callback data.
4564 */
4565 typedef struct ztest_cb_data {
4566 list_node_t zcd_node;
4567 uint64_t zcd_txg;
4568 int zcd_expected_err;
4569 boolean_t zcd_added;
4570 boolean_t zcd_called;
4571 spa_t *zcd_spa;
4572 } ztest_cb_data_t;
4573
4574 /* This is the actual commit callback function */
4575 static void
4576 ztest_commit_callback(void *arg, int error)
4577 {
4578 ztest_cb_data_t *data = arg;
4579 uint64_t synced_txg;
4580
4581 VERIFY(data != NULL);
4582 VERIFY3S(data->zcd_expected_err, ==, error);
4583 VERIFY(!data->zcd_called);
4584
4585 synced_txg = spa_last_synced_txg(data->zcd_spa);
4586 if (data->zcd_txg > synced_txg)
4587 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4588 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4589 synced_txg);
4590
4591 data->zcd_called = B_TRUE;
4592
4593 if (error == ECANCELED) {
4594 ASSERT0(data->zcd_txg);
4595 ASSERT(!data->zcd_added);
4596
4597 /*
4598 * The private callback data should be destroyed here, but
4599 * since we are going to check the zcd_called field after
4600 * dmu_tx_abort(), we will destroy it there.
4601 */
4602 return;
4603 }
4604
4605 ASSERT(data->zcd_added);
4606 ASSERT3U(data->zcd_txg, !=, 0);
4607
4608 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4609
4610 /* See if this cb was called more quickly */
4611 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
4612 zc_min_txg_delay = synced_txg - data->zcd_txg;
4613
4614 /* Remove our callback from the list */
4615 list_remove(&zcl.zcl_callbacks, data);
4616
4617 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4618
4619 umem_free(data, sizeof (ztest_cb_data_t));
4620 }
4621
4622 /* Allocate and initialize callback data structure */
4623 static ztest_cb_data_t *
4624 ztest_create_cb_data(objset_t *os, uint64_t txg)
4625 {
4626 ztest_cb_data_t *cb_data;
4627
4628 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4629
4630 cb_data->zcd_txg = txg;
4631 cb_data->zcd_spa = dmu_objset_spa(os);
4632 list_link_init(&cb_data->zcd_node);
4633
4634 return (cb_data);
4635 }
4636
4637 /*
4638 * Commit callback test.
4639 */
4640 void
4641 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4642 {
4643 objset_t *os = zd->zd_os;
4644 ztest_od_t *od;
4645 dmu_tx_t *tx;
4646 ztest_cb_data_t *cb_data[3], *tmp_cb;
4647 uint64_t old_txg, txg;
4648 int i, error = 0;
4649
4650 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4651 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4652
4653 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4654 umem_free(od, sizeof (ztest_od_t));
4655 return;
4656 }
4657
4658 tx = dmu_tx_create(os);
4659
4660 cb_data[0] = ztest_create_cb_data(os, 0);
4661 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4662
4663 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
4664
4665 /* Every once in a while, abort the transaction on purpose */
4666 if (ztest_random(100) == 0)
4667 error = -1;
4668
4669 if (!error)
4670 error = dmu_tx_assign(tx, TXG_NOWAIT);
4671
4672 txg = error ? 0 : dmu_tx_get_txg(tx);
4673
4674 cb_data[0]->zcd_txg = txg;
4675 cb_data[1] = ztest_create_cb_data(os, txg);
4676 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4677
4678 if (error) {
4679 /*
4680 * It's not a strict requirement to call the registered
4681 * callbacks from inside dmu_tx_abort(), but that's what
4682 * it's supposed to happen in the current implementation
4683 * so we will check for that.
4684 */
4685 for (i = 0; i < 2; i++) {
4686 cb_data[i]->zcd_expected_err = ECANCELED;
4687 VERIFY(!cb_data[i]->zcd_called);
4688 }
4689
4690 dmu_tx_abort(tx);
4691
4692 for (i = 0; i < 2; i++) {
4693 VERIFY(cb_data[i]->zcd_called);
4694 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4695 }
4696
4697 umem_free(od, sizeof (ztest_od_t));
4698 return;
4699 }
4700
4701 cb_data[2] = ztest_create_cb_data(os, txg);
4702 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4703
4704 /*
4705 * Read existing data to make sure there isn't a future leak.
4706 */
4707 VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
4708 &old_txg, DMU_READ_PREFETCH));
4709
4710 if (old_txg > txg)
4711 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4712 old_txg, txg);
4713
4714 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
4715
4716 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4717
4718 /*
4719 * Since commit callbacks don't have any ordering requirement and since
4720 * it is theoretically possible for a commit callback to be called
4721 * after an arbitrary amount of time has elapsed since its txg has been
4722 * synced, it is difficult to reliably determine whether a commit
4723 * callback hasn't been called due to high load or due to a flawed
4724 * implementation.
4725 *
4726 * In practice, we will assume that if after a certain number of txgs a
4727 * commit callback hasn't been called, then most likely there's an
4728 * implementation bug..
4729 */
4730 tmp_cb = list_head(&zcl.zcl_callbacks);
4731 if (tmp_cb != NULL &&
4732 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
4733 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4734 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4735 }
4736
4737 /*
4738 * Let's find the place to insert our callbacks.
4739 *
4740 * Even though the list is ordered by txg, it is possible for the
4741 * insertion point to not be the end because our txg may already be
4742 * quiescing at this point and other callbacks in the open txg
4743 * (from other objsets) may have sneaked in.
4744 */
4745 tmp_cb = list_tail(&zcl.zcl_callbacks);
4746 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4747 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4748
4749 /* Add the 3 callbacks to the list */
4750 for (i = 0; i < 3; i++) {
4751 if (tmp_cb == NULL)
4752 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4753 else
4754 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4755 cb_data[i]);
4756
4757 cb_data[i]->zcd_added = B_TRUE;
4758 VERIFY(!cb_data[i]->zcd_called);
4759
4760 tmp_cb = cb_data[i];
4761 }
4762
4763 zc_cb_counter += 3;
4764
4765 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4766
4767 dmu_tx_commit(tx);
4768
4769 umem_free(od, sizeof (ztest_od_t));
4770 }
4771
4772 /* ARGSUSED */
4773 void
4774 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4775 {
4776 zfs_prop_t proplist[] = {
4777 ZFS_PROP_CHECKSUM,
4778 ZFS_PROP_COMPRESSION,
4779 ZFS_PROP_COPIES,
4780 ZFS_PROP_DEDUP
4781 };
4782 int p;
4783
4784 (void) rw_rdlock(&ztest_name_lock);
4785
4786 for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4787 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4788 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4789
4790 VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
4791 ztest_random_blocksize(), (int)ztest_random(2)));
4792
4793 (void) rw_unlock(&ztest_name_lock);
4794 }
4795
4796 /* ARGSUSED */
4797 void
4798 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4799 {
4800 nvlist_t *props = NULL;
4801
4802 (void) rw_rdlock(&ztest_name_lock);
4803
4804 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4805 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4806
4807 VERIFY0(spa_prop_get(ztest_spa, &props));
4808
4809 if (ztest_opts.zo_verbose >= 6)
4810 dump_nvlist(props, 4);
4811
4812 nvlist_free(props);
4813
4814 (void) rw_unlock(&ztest_name_lock);
4815 }
4816
4817 static int
4818 user_release_one(const char *snapname, const char *holdname)
4819 {
4820 nvlist_t *snaps, *holds;
4821 int error;
4822
4823 snaps = fnvlist_alloc();
4824 holds = fnvlist_alloc();
4825 fnvlist_add_boolean(holds, holdname);
4826 fnvlist_add_nvlist(snaps, snapname, holds);
4827 fnvlist_free(holds);
4828 error = dsl_dataset_user_release(snaps, NULL);
4829 fnvlist_free(snaps);
4830 return (error);
4831 }
4832
4833 /*
4834 * Test snapshot hold/release and deferred destroy.
4835 */
4836 void
4837 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4838 {
4839 int error;
4840 objset_t *os = zd->zd_os;
4841 objset_t *origin;
4842 char snapname[100];
4843 char fullname[100];
4844 char clonename[100];
4845 char tag[100];
4846 char osname[MAXNAMELEN];
4847 nvlist_t *holds;
4848
4849 (void) rw_rdlock(&ztest_name_lock);
4850
4851 dmu_objset_name(os, osname);
4852
4853 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
4854 (u_longlong_t)id);
4855 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4856 (void) snprintf(clonename, sizeof (clonename),
4857 "%s/ch1_%llu", osname, (u_longlong_t)id);
4858 (void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
4859
4860 /*
4861 * Clean up from any previous run.
4862 */
4863 error = dsl_destroy_head(clonename);
4864 if (error != ENOENT)
4865 ASSERT0(error);
4866 error = user_release_one(fullname, tag);
4867 if (error != ESRCH && error != ENOENT)
4868 ASSERT0(error);
4869 error = dsl_destroy_snapshot(fullname, B_FALSE);
4870 if (error != ENOENT)
4871 ASSERT0(error);
4872
4873 /*
4874 * Create snapshot, clone it, mark snap for deferred destroy,
4875 * destroy clone, verify snap was also destroyed.
4876 */
4877 error = dmu_objset_snapshot_one(osname, snapname);
4878 if (error) {
4879 if (error == ENOSPC) {
4880 ztest_record_enospc("dmu_objset_snapshot");
4881 goto out;
4882 }
4883 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4884 }
4885
4886 error = dmu_objset_clone(clonename, fullname);
4887 if (error) {
4888 if (error == ENOSPC) {
4889 ztest_record_enospc("dmu_objset_clone");
4890 goto out;
4891 }
4892 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4893 }
4894
4895 error = dsl_destroy_snapshot(fullname, B_TRUE);
4896 if (error) {
4897 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4898 fullname, error);
4899 }
4900
4901 error = dsl_destroy_head(clonename);
4902 if (error)
4903 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4904
4905 error = dmu_objset_hold(fullname, FTAG, &origin);
4906 if (error != ENOENT)
4907 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4908
4909 /*
4910 * Create snapshot, add temporary hold, verify that we can't
4911 * destroy a held snapshot, mark for deferred destroy,
4912 * release hold, verify snapshot was destroyed.
4913 */
4914 error = dmu_objset_snapshot_one(osname, snapname);
4915 if (error) {
4916 if (error == ENOSPC) {
4917 ztest_record_enospc("dmu_objset_snapshot");
4918 goto out;
4919 }
4920 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4921 }
4922
4923 holds = fnvlist_alloc();
4924 fnvlist_add_string(holds, fullname, tag);
4925 error = dsl_dataset_user_hold(holds, 0, NULL);
4926 fnvlist_free(holds);
4927
4928 if (error == ENOSPC) {
4929 ztest_record_enospc("dsl_dataset_user_hold");
4930 goto out;
4931 } else if (error) {
4932 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4933 fullname, tag, error);
4934 }
4935
4936 error = dsl_destroy_snapshot(fullname, B_FALSE);
4937 if (error != EBUSY) {
4938 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4939 fullname, error);
4940 }
4941
4942 error = dsl_destroy_snapshot(fullname, B_TRUE);
4943 if (error) {
4944 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4945 fullname, error);
4946 }
4947
4948 error = user_release_one(fullname, tag);
4949 if (error)
4950 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4951
4952 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4953
4954 out:
4955 (void) rw_unlock(&ztest_name_lock);
4956 }
4957
4958 /*
4959 * Inject random faults into the on-disk data.
4960 */
4961 /* ARGSUSED */
4962 void
4963 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4964 {
4965 ztest_shared_t *zs = ztest_shared;
4966 spa_t *spa = ztest_spa;
4967 int fd;
4968 uint64_t offset;
4969 uint64_t leaves;
4970 uint64_t bad = 0x1990c0ffeedecadeull;
4971 uint64_t top, leaf;
4972 char *path0;
4973 char *pathrand;
4974 size_t fsize;
4975 int bshift = SPA_OLD_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
4976 int iters = 1000;
4977 int maxfaults;
4978 int mirror_save;
4979 vdev_t *vd0 = NULL;
4980 uint64_t guid0 = 0;
4981 boolean_t islog = B_FALSE;
4982
4983 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4984 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4985
4986 mutex_enter(&ztest_vdev_lock);
4987 maxfaults = MAXFAULTS();
4988 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4989 mirror_save = zs->zs_mirrors;
4990 mutex_exit(&ztest_vdev_lock);
4991
4992 ASSERT(leaves >= 1);
4993
4994 /*
4995 * Grab the name lock as reader. There are some operations
4996 * which don't like to have their vdevs changed while
4997 * they are in progress (i.e. spa_change_guid). Those
4998 * operations will have grabbed the name lock as writer.
4999 */
5000 (void) rw_rdlock(&ztest_name_lock);
5001
5002 /*
5003 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5004 */
5005 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5006
5007 if (ztest_random(2) == 0) {
5008 /*
5009 * Inject errors on a normal data device or slog device.
5010 */
5011 top = ztest_random_vdev_top(spa, B_TRUE);
5012 leaf = ztest_random(leaves) + zs->zs_splits;
5013
5014 /*
5015 * Generate paths to the first leaf in this top-level vdev,
5016 * and to the random leaf we selected. We'll induce transient
5017 * write failures and random online/offline activity on leaf 0,
5018 * and we'll write random garbage to the randomly chosen leaf.
5019 */
5020 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
5021 ztest_opts.zo_dir, ztest_opts.zo_pool,
5022 top * leaves + zs->zs_splits);
5023 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
5024 ztest_opts.zo_dir, ztest_opts.zo_pool,
5025 top * leaves + leaf);
5026
5027 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5028 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5029 islog = B_TRUE;
5030
5031 /*
5032 * If the top-level vdev needs to be resilvered
5033 * then we only allow faults on the device that is
5034 * resilvering.
5035 */
5036 if (vd0 != NULL && maxfaults != 1 &&
5037 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5038 vd0->vdev_resilver_txg != 0)) {
5039 /*
5040 * Make vd0 explicitly claim to be unreadable,
5041 * or unwriteable, or reach behind its back
5042 * and close the underlying fd. We can do this if
5043 * maxfaults == 0 because we'll fail and reexecute,
5044 * and we can do it if maxfaults >= 2 because we'll
5045 * have enough redundancy. If maxfaults == 1, the
5046 * combination of this with injection of random data
5047 * corruption below exceeds the pool's fault tolerance.
5048 */
5049 vdev_file_t *vf = vd0->vdev_tsd;
5050
5051 if (vf != NULL && ztest_random(3) == 0) {
5052 (void) close(vf->vf_vnode->v_fd);
5053 vf->vf_vnode->v_fd = -1;
5054 } else if (ztest_random(2) == 0) {
5055 vd0->vdev_cant_read = B_TRUE;
5056 } else {
5057 vd0->vdev_cant_write = B_TRUE;
5058 }
5059 guid0 = vd0->vdev_guid;
5060 }
5061 } else {
5062 /*
5063 * Inject errors on an l2cache device.
5064 */
5065 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5066
5067 if (sav->sav_count == 0) {
5068 spa_config_exit(spa, SCL_STATE, FTAG);
5069 (void) rw_unlock(&ztest_name_lock);
5070 goto out;
5071 }
5072 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5073 guid0 = vd0->vdev_guid;
5074 (void) strcpy(path0, vd0->vdev_path);
5075 (void) strcpy(pathrand, vd0->vdev_path);
5076
5077 leaf = 0;
5078 leaves = 1;
5079 maxfaults = INT_MAX; /* no limit on cache devices */
5080 }
5081
5082 spa_config_exit(spa, SCL_STATE, FTAG);
5083 (void) rw_unlock(&ztest_name_lock);
5084
5085 /*
5086 * If we can tolerate two or more faults, or we're dealing
5087 * with a slog, randomly online/offline vd0.
5088 */
5089 if ((maxfaults >= 2 || islog) && guid0 != 0) {
5090 if (ztest_random(10) < 6) {
5091 int flags = (ztest_random(2) == 0 ?
5092 ZFS_OFFLINE_TEMPORARY : 0);
5093
5094 /*
5095 * We have to grab the zs_name_lock as writer to
5096 * prevent a race between offlining a slog and
5097 * destroying a dataset. Offlining the slog will
5098 * grab a reference on the dataset which may cause
5099 * dsl_destroy_head() to fail with EBUSY thus
5100 * leaving the dataset in an inconsistent state.
5101 */
5102 if (islog)
5103 (void) rw_wrlock(&ztest_name_lock);
5104
5105 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5106
5107 if (islog)
5108 (void) rw_unlock(&ztest_name_lock);
5109 } else {
5110 /*
5111 * Ideally we would like to be able to randomly
5112 * call vdev_[on|off]line without holding locks
5113 * to force unpredictable failures but the side
5114 * effects of vdev_[on|off]line prevent us from
5115 * doing so. We grab the ztest_vdev_lock here to
5116 * prevent a race between injection testing and
5117 * aux_vdev removal.
5118 */
5119 mutex_enter(&ztest_vdev_lock);
5120 (void) vdev_online(spa, guid0, 0, NULL);
5121 mutex_exit(&ztest_vdev_lock);
5122 }
5123 }
5124
5125 if (maxfaults == 0)
5126 goto out;
5127
5128 /*
5129 * We have at least single-fault tolerance, so inject data corruption.
5130 */
5131 fd = open(pathrand, O_RDWR);
5132
5133 if (fd == -1) /* we hit a gap in the device namespace */
5134 goto out;
5135
5136 fsize = lseek(fd, 0, SEEK_END);
5137
5138 while (--iters != 0) {
5139 offset = ztest_random(fsize / (leaves << bshift)) *
5140 (leaves << bshift) + (leaf << bshift) +
5141 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5142
5143 if (offset >= fsize)
5144 continue;
5145
5146 mutex_enter(&ztest_vdev_lock);
5147 if (mirror_save != zs->zs_mirrors) {
5148 mutex_exit(&ztest_vdev_lock);
5149 (void) close(fd);
5150 goto out;
5151 }
5152
5153 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5154 fatal(1, "can't inject bad word at 0x%llx in %s",
5155 offset, pathrand);
5156
5157 mutex_exit(&ztest_vdev_lock);
5158
5159 if (ztest_opts.zo_verbose >= 7)
5160 (void) printf("injected bad word into %s,"
5161 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5162 }
5163
5164 (void) close(fd);
5165 out:
5166 umem_free(path0, MAXPATHLEN);
5167 umem_free(pathrand, MAXPATHLEN);
5168 }
5169
5170 /*
5171 * Verify that DDT repair works as expected.
5172 */
5173 void
5174 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5175 {
5176 ztest_shared_t *zs = ztest_shared;
5177 spa_t *spa = ztest_spa;
5178 objset_t *os = zd->zd_os;
5179 ztest_od_t *od;
5180 uint64_t object, blocksize, txg, pattern, psize;
5181 enum zio_checksum checksum = spa_dedup_checksum(spa);
5182 dmu_buf_t *db;
5183 dmu_tx_t *tx;
5184 void *buf;
5185 blkptr_t blk;
5186 int copies = 2 * ZIO_DEDUPDITTO_MIN;
5187 int i;
5188
5189 blocksize = ztest_random_blocksize();
5190 blocksize = MIN(blocksize, 2048); /* because we write so many */
5191
5192 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5193 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5194
5195 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5196 umem_free(od, sizeof (ztest_od_t));
5197 return;
5198 }
5199
5200 /*
5201 * Take the name lock as writer to prevent anyone else from changing
5202 * the pool and dataset properies we need to maintain during this test.
5203 */
5204 (void) rw_wrlock(&ztest_name_lock);
5205
5206 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5207 B_FALSE) != 0 ||
5208 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5209 B_FALSE) != 0) {
5210 (void) rw_unlock(&ztest_name_lock);
5211 umem_free(od, sizeof (ztest_od_t));
5212 return;
5213 }
5214
5215 object = od[0].od_object;
5216 blocksize = od[0].od_blocksize;
5217 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
5218
5219 ASSERT(object != 0);
5220
5221 tx = dmu_tx_create(os);
5222 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5223 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5224 if (txg == 0) {
5225 (void) rw_unlock(&ztest_name_lock);
5226 umem_free(od, sizeof (ztest_od_t));
5227 return;
5228 }
5229
5230 /*
5231 * Write all the copies of our block.
5232 */
5233 for (i = 0; i < copies; i++) {
5234 uint64_t offset = i * blocksize;
5235 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5236 DMU_READ_NO_PREFETCH);
5237 if (error != 0) {
5238 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5239 os, (long long)object, (long long) offset, error);
5240 }
5241 ASSERT(db->db_offset == offset);
5242 ASSERT(db->db_size == blocksize);
5243 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5244 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5245 dmu_buf_will_fill(db, tx);
5246 ztest_pattern_set(db->db_data, db->db_size, pattern);
5247 dmu_buf_rele(db, FTAG);
5248 }
5249
5250 dmu_tx_commit(tx);
5251 txg_wait_synced(spa_get_dsl(spa), txg);
5252
5253 /*
5254 * Find out what block we got.
5255 */
5256 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5257 DMU_READ_NO_PREFETCH));
5258 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5259 dmu_buf_rele(db, FTAG);
5260
5261 /*
5262 * Damage the block. Dedup-ditto will save us when we read it later.
5263 */
5264 psize = BP_GET_PSIZE(&blk);
5265 buf = zio_buf_alloc(psize);
5266 ztest_pattern_set(buf, psize, ~pattern);
5267
5268 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5269 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5270 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5271
5272 zio_buf_free(buf, psize);
5273
5274 (void) rw_unlock(&ztest_name_lock);
5275 umem_free(od, sizeof (ztest_od_t));
5276 }
5277
5278 /*
5279 * Scrub the pool.
5280 */
5281 /* ARGSUSED */
5282 void
5283 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5284 {
5285 spa_t *spa = ztest_spa;
5286
5287 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5288 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5289 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5290 }
5291
5292 /*
5293 * Change the guid for the pool.
5294 */
5295 /* ARGSUSED */
5296 void
5297 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5298 {
5299 spa_t *spa = ztest_spa;
5300 uint64_t orig, load;
5301 int error;
5302
5303 orig = spa_guid(spa);
5304 load = spa_load_guid(spa);
5305
5306 (void) rw_wrlock(&ztest_name_lock);
5307 error = spa_change_guid(spa);
5308 (void) rw_unlock(&ztest_name_lock);
5309
5310 if (error != 0)
5311 return;
5312
5313 if (ztest_opts.zo_verbose >= 4) {
5314 (void) printf("Changed guid old %llu -> %llu\n",
5315 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5316 }
5317
5318 VERIFY3U(orig, !=, spa_guid(spa));
5319 VERIFY3U(load, ==, spa_load_guid(spa));
5320 }
5321
5322 /*
5323 * Rename the pool to a different name and then rename it back.
5324 */
5325 /* ARGSUSED */
5326 void
5327 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5328 {
5329 char *oldname, *newname;
5330 spa_t *spa;
5331
5332 (void) rw_wrlock(&ztest_name_lock);
5333
5334 oldname = ztest_opts.zo_pool;
5335 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5336 (void) strcpy(newname, oldname);
5337 (void) strcat(newname, "_tmp");
5338
5339 /*
5340 * Do the rename
5341 */
5342 VERIFY3U(0, ==, spa_rename(oldname, newname));
5343
5344 /*
5345 * Try to open it under the old name, which shouldn't exist
5346 */
5347 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5348
5349 /*
5350 * Open it under the new name and make sure it's still the same spa_t.
5351 */
5352 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5353
5354 ASSERT(spa == ztest_spa);
5355 spa_close(spa, FTAG);
5356
5357 /*
5358 * Rename it back to the original
5359 */
5360 VERIFY3U(0, ==, spa_rename(newname, oldname));
5361
5362 /*
5363 * Make sure it can still be opened
5364 */
5365 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5366
5367 ASSERT(spa == ztest_spa);
5368 spa_close(spa, FTAG);
5369
5370 umem_free(newname, strlen(newname) + 1);
5371
5372 (void) rw_unlock(&ztest_name_lock);
5373 }
5374
5375 static int
5376 ztest_check_path(char *path)
5377 {
5378 struct stat s;
5379 /* return true on success */
5380 return (!stat(path, &s));
5381 }
5382
5383 static void
5384 ztest_get_zdb_bin(char *bin, int len)
5385 {
5386 char *zdb_path;
5387 /*
5388 * Try to use ZDB_PATH and in-tree zdb path. If not successful, just
5389 * let popen to search through PATH.
5390 */
5391 if ((zdb_path = getenv("ZDB_PATH"))) {
5392 strlcpy(bin, zdb_path, len); /* In env */
5393 if (!ztest_check_path(bin)) {
5394 ztest_dump_core = 0;
5395 fatal(1, "invalid ZDB_PATH '%s'", bin);
5396 }
5397 return;
5398 }
5399
5400 VERIFY(realpath(getexecname(), bin) != NULL);
5401 if (strstr(bin, "/ztest/")) {
5402 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
5403 strcat(bin, "/zdb/zdb");
5404 if (ztest_check_path(bin))
5405 return;
5406 }
5407 strcpy(bin, "zdb");
5408 }
5409
5410 /*
5411 * Verify pool integrity by running zdb.
5412 */
5413 static void
5414 ztest_run_zdb(char *pool)
5415 {
5416 int status;
5417 char *bin;
5418 char *zdb;
5419 char *zbuf;
5420 const int len = MAXPATHLEN + MAXNAMELEN + 20;
5421 FILE *fp;
5422
5423 bin = umem_alloc(len, UMEM_NOFAIL);
5424 zdb = umem_alloc(len, UMEM_NOFAIL);
5425 zbuf = umem_alloc(1024, UMEM_NOFAIL);
5426
5427 ztest_get_zdb_bin(bin, len);
5428
5429 (void) sprintf(zdb,
5430 "%s -bcc%s%s -d -U %s %s",
5431 bin,
5432 ztest_opts.zo_verbose >= 3 ? "s" : "",
5433 ztest_opts.zo_verbose >= 4 ? "v" : "",
5434 spa_config_path,
5435 pool);
5436
5437 if (ztest_opts.zo_verbose >= 5)
5438 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5439
5440 fp = popen(zdb, "r");
5441
5442 while (fgets(zbuf, 1024, fp) != NULL)
5443 if (ztest_opts.zo_verbose >= 3)
5444 (void) printf("%s", zbuf);
5445
5446 status = pclose(fp);
5447
5448 if (status == 0)
5449 goto out;
5450
5451 ztest_dump_core = 0;
5452 if (WIFEXITED(status))
5453 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5454 else
5455 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5456 out:
5457 umem_free(bin, len);
5458 umem_free(zdb, len);
5459 umem_free(zbuf, 1024);
5460 }
5461
5462 static void
5463 ztest_walk_pool_directory(char *header)
5464 {
5465 spa_t *spa = NULL;
5466
5467 if (ztest_opts.zo_verbose >= 6)
5468 (void) printf("%s\n", header);
5469
5470 mutex_enter(&spa_namespace_lock);
5471 while ((spa = spa_next(spa)) != NULL)
5472 if (ztest_opts.zo_verbose >= 6)
5473 (void) printf("\t%s\n", spa_name(spa));
5474 mutex_exit(&spa_namespace_lock);
5475 }
5476
5477 static void
5478 ztest_spa_import_export(char *oldname, char *newname)
5479 {
5480 nvlist_t *config, *newconfig;
5481 uint64_t pool_guid;
5482 spa_t *spa;
5483 int error;
5484
5485 if (ztest_opts.zo_verbose >= 4) {
5486 (void) printf("import/export: old = %s, new = %s\n",
5487 oldname, newname);
5488 }
5489
5490 /*
5491 * Clean up from previous runs.
5492 */
5493 (void) spa_destroy(newname);
5494
5495 /*
5496 * Get the pool's configuration and guid.
5497 */
5498 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5499
5500 /*
5501 * Kick off a scrub to tickle scrub/export races.
5502 */
5503 if (ztest_random(2) == 0)
5504 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5505
5506 pool_guid = spa_guid(spa);
5507 spa_close(spa, FTAG);
5508
5509 ztest_walk_pool_directory("pools before export");
5510
5511 /*
5512 * Export it.
5513 */
5514 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5515
5516 ztest_walk_pool_directory("pools after export");
5517
5518 /*
5519 * Try to import it.
5520 */
5521 newconfig = spa_tryimport(config);
5522 ASSERT(newconfig != NULL);
5523 nvlist_free(newconfig);
5524
5525 /*
5526 * Import it under the new name.
5527 */
5528 error = spa_import(newname, config, NULL, 0);
5529 if (error != 0) {
5530 dump_nvlist(config, 0);
5531 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5532 oldname, newname, error);
5533 }
5534
5535 ztest_walk_pool_directory("pools after import");
5536
5537 /*
5538 * Try to import it again -- should fail with EEXIST.
5539 */
5540 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5541
5542 /*
5543 * Try to import it under a different name -- should fail with EEXIST.
5544 */
5545 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5546
5547 /*
5548 * Verify that the pool is no longer visible under the old name.
5549 */
5550 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5551
5552 /*
5553 * Verify that we can open and close the pool using the new name.
5554 */
5555 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5556 ASSERT(pool_guid == spa_guid(spa));
5557 spa_close(spa, FTAG);
5558
5559 nvlist_free(config);
5560 }
5561
5562 static void
5563 ztest_resume(spa_t *spa)
5564 {
5565 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5566 (void) printf("resuming from suspended state\n");
5567 spa_vdev_state_enter(spa, SCL_NONE);
5568 vdev_clear(spa, NULL);
5569 (void) spa_vdev_state_exit(spa, NULL, 0);
5570 (void) zio_resume(spa);
5571 }
5572
5573 static void *
5574 ztest_resume_thread(void *arg)
5575 {
5576 spa_t *spa = arg;
5577
5578 while (!ztest_exiting) {
5579 if (spa_suspended(spa))
5580 ztest_resume(spa);
5581 (void) poll(NULL, 0, 100);
5582 }
5583
5584 thread_exit();
5585
5586 return (NULL);
5587 }
5588
5589 #define GRACE 300
5590
5591 #if 0
5592 static void
5593 ztest_deadman_alarm(int sig)
5594 {
5595 fatal(0, "failed to complete within %d seconds of deadline", GRACE);
5596 }
5597 #endif
5598
5599 static void
5600 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5601 {
5602 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5603 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5604 hrtime_t functime = gethrtime();
5605 int i;
5606
5607 for (i = 0; i < zi->zi_iters; i++)
5608 zi->zi_func(zd, id);
5609
5610 functime = gethrtime() - functime;
5611
5612 atomic_add_64(&zc->zc_count, 1);
5613 atomic_add_64(&zc->zc_time, functime);
5614
5615 if (ztest_opts.zo_verbose >= 4)
5616 (void) printf("%6.2f sec in %s\n",
5617 (double)functime / NANOSEC, zi->zi_funcname);
5618 }
5619
5620 static void *
5621 ztest_thread(void *arg)
5622 {
5623 int rand;
5624 uint64_t id = (uintptr_t)arg;
5625 ztest_shared_t *zs = ztest_shared;
5626 uint64_t call_next;
5627 hrtime_t now;
5628 ztest_info_t *zi;
5629 ztest_shared_callstate_t *zc;
5630
5631 while ((now = gethrtime()) < zs->zs_thread_stop) {
5632 /*
5633 * See if it's time to force a crash.
5634 */
5635 if (now > zs->zs_thread_kill)
5636 ztest_kill(zs);
5637
5638 /*
5639 * If we're getting ENOSPC with some regularity, stop.
5640 */
5641 if (zs->zs_enospc_count > 10)
5642 break;
5643
5644 /*
5645 * Pick a random function to execute.
5646 */
5647 rand = ztest_random(ZTEST_FUNCS);
5648 zi = &ztest_info[rand];
5649 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5650 call_next = zc->zc_next;
5651
5652 if (now >= call_next &&
5653 atomic_cas_64(&zc->zc_next, call_next, call_next +
5654 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5655 ztest_execute(rand, zi, id);
5656 }
5657 }
5658
5659 thread_exit();
5660
5661 return (NULL);
5662 }
5663
5664 static void
5665 ztest_dataset_name(char *dsname, char *pool, int d)
5666 {
5667 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
5668 }
5669
5670 static void
5671 ztest_dataset_destroy(int d)
5672 {
5673 char name[MAXNAMELEN];
5674 int t;
5675
5676 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5677
5678 if (ztest_opts.zo_verbose >= 3)
5679 (void) printf("Destroying %s to free up space\n", name);
5680
5681 /*
5682 * Cleanup any non-standard clones and snapshots. In general,
5683 * ztest thread t operates on dataset (t % zopt_datasets),
5684 * so there may be more than one thing to clean up.
5685 */
5686 for (t = d; t < ztest_opts.zo_threads;
5687 t += ztest_opts.zo_datasets)
5688 ztest_dsl_dataset_cleanup(name, t);
5689
5690 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5691 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5692 }
5693
5694 static void
5695 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5696 {
5697 uint64_t usedobjs, dirobjs, scratch;
5698
5699 /*
5700 * ZTEST_DIROBJ is the object directory for the entire dataset.
5701 * Therefore, the number of objects in use should equal the
5702 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5703 * If not, we have an object leak.
5704 *
5705 * Note that we can only check this in ztest_dataset_open(),
5706 * when the open-context and syncing-context values agree.
5707 * That's because zap_count() returns the open-context value,
5708 * while dmu_objset_space() returns the rootbp fill count.
5709 */
5710 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5711 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5712 ASSERT3U(dirobjs + 1, ==, usedobjs);
5713 }
5714
5715 static int
5716 ztest_dataset_open(int d)
5717 {
5718 ztest_ds_t *zd = &ztest_ds[d];
5719 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5720 objset_t *os;
5721 zilog_t *zilog;
5722 char name[MAXNAMELEN];
5723 int error;
5724
5725 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5726
5727 (void) rw_rdlock(&ztest_name_lock);
5728
5729 error = ztest_dataset_create(name);
5730 if (error == ENOSPC) {
5731 (void) rw_unlock(&ztest_name_lock);
5732 ztest_record_enospc(FTAG);
5733 return (error);
5734 }
5735 ASSERT(error == 0 || error == EEXIST);
5736
5737 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5738 (void) rw_unlock(&ztest_name_lock);
5739
5740 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5741
5742 zilog = zd->zd_zilog;
5743
5744 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5745 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5746 fatal(0, "missing log records: claimed %llu < committed %llu",
5747 zilog->zl_header->zh_claim_lr_seq, committed_seq);
5748
5749 ztest_dataset_dirobj_verify(zd);
5750
5751 zil_replay(os, zd, ztest_replay_vector);
5752
5753 ztest_dataset_dirobj_verify(zd);
5754
5755 if (ztest_opts.zo_verbose >= 6)
5756 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5757 zd->zd_name,
5758 (u_longlong_t)zilog->zl_parse_blk_count,
5759 (u_longlong_t)zilog->zl_parse_lr_count,
5760 (u_longlong_t)zilog->zl_replaying_seq);
5761
5762 zilog = zil_open(os, ztest_get_data);
5763
5764 if (zilog->zl_replaying_seq != 0 &&
5765 zilog->zl_replaying_seq < committed_seq)
5766 fatal(0, "missing log records: replayed %llu < committed %llu",
5767 zilog->zl_replaying_seq, committed_seq);
5768
5769 return (0);
5770 }
5771
5772 static void
5773 ztest_dataset_close(int d)
5774 {
5775 ztest_ds_t *zd = &ztest_ds[d];
5776
5777 zil_close(zd->zd_zilog);
5778 dmu_objset_disown(zd->zd_os, zd);
5779
5780 ztest_zd_fini(zd);
5781 }
5782
5783 /*
5784 * Kick off threads to run tests on all datasets in parallel.
5785 */
5786 static void
5787 ztest_run(ztest_shared_t *zs)
5788 {
5789 kt_did_t *tid;
5790 spa_t *spa;
5791 objset_t *os;
5792 kthread_t *resume_thread;
5793 uint64_t object;
5794 int error;
5795 int t, d;
5796
5797 ztest_exiting = B_FALSE;
5798
5799 /*
5800 * Initialize parent/child shared state.
5801 */
5802 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
5803 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5804
5805 zs->zs_thread_start = gethrtime();
5806 zs->zs_thread_stop =
5807 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5808 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5809 zs->zs_thread_kill = zs->zs_thread_stop;
5810 if (ztest_random(100) < ztest_opts.zo_killrate) {
5811 zs->zs_thread_kill -=
5812 ztest_random(ztest_opts.zo_passtime * NANOSEC);
5813 }
5814
5815 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
5816
5817 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5818 offsetof(ztest_cb_data_t, zcd_node));
5819
5820 /*
5821 * Open our pool.
5822 */
5823 kernel_init(FREAD | FWRITE);
5824 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5825 spa->spa_debug = B_TRUE;
5826 metaslab_preload_limit = ztest_random(20) + 1;
5827 ztest_spa = spa;
5828
5829 VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5830 DMU_OST_ANY, B_TRUE, FTAG, &os));
5831 zs->zs_guid = dmu_objset_fsid_guid(os);
5832 dmu_objset_disown(os, FTAG);
5833
5834 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5835
5836 /*
5837 * We don't expect the pool to suspend unless maxfaults == 0,
5838 * in which case ztest_fault_inject() temporarily takes away
5839 * the only valid replica.
5840 */
5841 if (MAXFAULTS() == 0)
5842 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5843 else
5844 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5845
5846 /*
5847 * Create a thread to periodically resume suspended I/O.
5848 */
5849 VERIFY3P((resume_thread = zk_thread_create(NULL, 0,
5850 (thread_func_t)ztest_resume_thread, spa, TS_RUN, NULL, 0, 0,
5851 PTHREAD_CREATE_JOINABLE)), !=, NULL);
5852
5853 #if 0
5854 /*
5855 * Set a deadman alarm to abort() if we hang.
5856 */
5857 signal(SIGALRM, ztest_deadman_alarm);
5858 alarm((zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + GRACE);
5859 #endif
5860
5861 /*
5862 * Verify that we can safely inquire about about any object,
5863 * whether it's allocated or not. To make it interesting,
5864 * we probe a 5-wide window around each power of two.
5865 * This hits all edge cases, including zero and the max.
5866 */
5867 for (t = 0; t < 64; t++) {
5868 for (d = -5; d <= 5; d++) {
5869 error = dmu_object_info(spa->spa_meta_objset,
5870 (1ULL << t) + d, NULL);
5871 ASSERT(error == 0 || error == ENOENT ||
5872 error == EINVAL);
5873 }
5874 }
5875
5876 /*
5877 * If we got any ENOSPC errors on the previous run, destroy something.
5878 */
5879 if (zs->zs_enospc_count != 0) {
5880 int d = ztest_random(ztest_opts.zo_datasets);
5881 ztest_dataset_destroy(d);
5882 }
5883 zs->zs_enospc_count = 0;
5884
5885 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (kt_did_t),
5886 UMEM_NOFAIL);
5887
5888 if (ztest_opts.zo_verbose >= 4)
5889 (void) printf("starting main threads...\n");
5890
5891 /*
5892 * Kick off all the tests that run in parallel.
5893 */
5894 for (t = 0; t < ztest_opts.zo_threads; t++) {
5895 kthread_t *thread;
5896
5897 if (t < ztest_opts.zo_datasets &&
5898 ztest_dataset_open(t) != 0)
5899 return;
5900
5901 VERIFY3P(thread = zk_thread_create(NULL, 0,
5902 (thread_func_t)ztest_thread,
5903 (void *)(uintptr_t)t, TS_RUN, NULL, 0, 0,
5904 PTHREAD_CREATE_JOINABLE), !=, NULL);
5905 tid[t] = thread->t_tid;
5906 }
5907
5908 /*
5909 * Wait for all of the tests to complete. We go in reverse order
5910 * so we don't close datasets while threads are still using them.
5911 */
5912 for (t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5913 thread_join(tid[t]);
5914 if (t < ztest_opts.zo_datasets)
5915 ztest_dataset_close(t);
5916 }
5917
5918 txg_wait_synced(spa_get_dsl(spa), 0);
5919
5920 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5921 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5922
5923 umem_free(tid, ztest_opts.zo_threads * sizeof (kt_did_t));
5924
5925 /* Kill the resume thread */
5926 ztest_exiting = B_TRUE;
5927 thread_join(resume_thread->t_tid);
5928 ztest_resume(spa);
5929
5930 /*
5931 * Right before closing the pool, kick off a bunch of async I/O;
5932 * spa_close() should wait for it to complete.
5933 */
5934 for (object = 1; object < 50; object++) {
5935 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
5936 ZIO_PRIORITY_SYNC_READ);
5937 }
5938
5939 /* Verify that at least one commit cb was called in a timely fashion */
5940 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
5941 VERIFY0(zc_min_txg_delay);
5942
5943 spa_close(spa, FTAG);
5944
5945 /*
5946 * Verify that we can loop over all pools.
5947 */
5948 mutex_enter(&spa_namespace_lock);
5949 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5950 if (ztest_opts.zo_verbose > 3)
5951 (void) printf("spa_next: found %s\n", spa_name(spa));
5952 mutex_exit(&spa_namespace_lock);
5953
5954 /*
5955 * Verify that we can export the pool and reimport it under a
5956 * different name.
5957 */
5958 if (ztest_random(2) == 0) {
5959 char name[MAXNAMELEN];
5960 (void) snprintf(name, MAXNAMELEN, "%s_import",
5961 ztest_opts.zo_pool);
5962 ztest_spa_import_export(ztest_opts.zo_pool, name);
5963 ztest_spa_import_export(name, ztest_opts.zo_pool);
5964 }
5965
5966 kernel_fini();
5967
5968 list_destroy(&zcl.zcl_callbacks);
5969 mutex_destroy(&zcl.zcl_callbacks_lock);
5970 (void) rwlock_destroy(&ztest_name_lock);
5971 mutex_destroy(&ztest_vdev_lock);
5972 }
5973
5974 static void
5975 ztest_freeze(void)
5976 {
5977 ztest_ds_t *zd = &ztest_ds[0];
5978 spa_t *spa;
5979 int numloops = 0;
5980
5981 if (ztest_opts.zo_verbose >= 3)
5982 (void) printf("testing spa_freeze()...\n");
5983
5984 kernel_init(FREAD | FWRITE);
5985 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5986 VERIFY3U(0, ==, ztest_dataset_open(0));
5987 spa->spa_debug = B_TRUE;
5988 ztest_spa = spa;
5989
5990 /*
5991 * Force the first log block to be transactionally allocated.
5992 * We have to do this before we freeze the pool -- otherwise
5993 * the log chain won't be anchored.
5994 */
5995 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5996 ztest_dmu_object_alloc_free(zd, 0);
5997 zil_commit(zd->zd_zilog, 0);
5998 }
5999
6000 txg_wait_synced(spa_get_dsl(spa), 0);
6001
6002 /*
6003 * Freeze the pool. This stops spa_sync() from doing anything,
6004 * so that the only way to record changes from now on is the ZIL.
6005 */
6006 spa_freeze(spa);
6007
6008 /*
6009 * Because it is hard to predict how much space a write will actually
6010 * require beforehand, we leave ourselves some fudge space to write over
6011 * capacity.
6012 */
6013 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
6014
6015 /*
6016 * Run tests that generate log records but don't alter the pool config
6017 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
6018 * We do a txg_wait_synced() after each iteration to force the txg
6019 * to increase well beyond the last synced value in the uberblock.
6020 * The ZIL should be OK with that.
6021 *
6022 * Run a random number of times less than zo_maxloops and ensure we do
6023 * not run out of space on the pool.
6024 */
6025 while (ztest_random(10) != 0 &&
6026 numloops++ < ztest_opts.zo_maxloops &&
6027 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
6028 ztest_od_t od;
6029 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
6030 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
6031 ztest_io(zd, od.od_object,
6032 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
6033 txg_wait_synced(spa_get_dsl(spa), 0);
6034 }
6035
6036 /*
6037 * Commit all of the changes we just generated.
6038 */
6039 zil_commit(zd->zd_zilog, 0);
6040 txg_wait_synced(spa_get_dsl(spa), 0);
6041
6042 /*
6043 * Close our dataset and close the pool.
6044 */
6045 ztest_dataset_close(0);
6046 spa_close(spa, FTAG);
6047 kernel_fini();
6048
6049 /*
6050 * Open and close the pool and dataset to induce log replay.
6051 */
6052 kernel_init(FREAD | FWRITE);
6053 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6054 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6055 VERIFY3U(0, ==, ztest_dataset_open(0));
6056 ztest_dataset_close(0);
6057
6058 spa->spa_debug = B_TRUE;
6059 ztest_spa = spa;
6060 txg_wait_synced(spa_get_dsl(spa), 0);
6061 ztest_reguid(NULL, 0);
6062
6063 spa_close(spa, FTAG);
6064 kernel_fini();
6065 }
6066
6067 void
6068 print_time(hrtime_t t, char *timebuf)
6069 {
6070 hrtime_t s = t / NANOSEC;
6071 hrtime_t m = s / 60;
6072 hrtime_t h = m / 60;
6073 hrtime_t d = h / 24;
6074
6075 s -= m * 60;
6076 m -= h * 60;
6077 h -= d * 24;
6078
6079 timebuf[0] = '\0';
6080
6081 if (d)
6082 (void) sprintf(timebuf,
6083 "%llud%02lluh%02llum%02llus", d, h, m, s);
6084 else if (h)
6085 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6086 else if (m)
6087 (void) sprintf(timebuf, "%llum%02llus", m, s);
6088 else
6089 (void) sprintf(timebuf, "%llus", s);
6090 }
6091
6092 static nvlist_t *
6093 make_random_props(void)
6094 {
6095 nvlist_t *props;
6096
6097 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6098 if (ztest_random(2) == 0)
6099 return (props);
6100 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6101
6102 return (props);
6103 }
6104
6105 /*
6106 * Create a storage pool with the given name and initial vdev size.
6107 * Then test spa_freeze() functionality.
6108 */
6109 static void
6110 ztest_init(ztest_shared_t *zs)
6111 {
6112 spa_t *spa;
6113 nvlist_t *nvroot, *props;
6114 int i;
6115
6116 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6117 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
6118
6119 kernel_init(FREAD | FWRITE);
6120
6121 /*
6122 * Create the storage pool.
6123 */
6124 (void) spa_destroy(ztest_opts.zo_pool);
6125 ztest_shared->zs_vdev_next_leaf = 0;
6126 zs->zs_splits = 0;
6127 zs->zs_mirrors = ztest_opts.zo_mirrors;
6128 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6129 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6130 props = make_random_props();
6131 for (i = 0; i < SPA_FEATURES; i++) {
6132 char *buf;
6133 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
6134 spa_feature_table[i].fi_uname));
6135 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6136 free(buf);
6137 }
6138 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6139 nvlist_free(nvroot);
6140 nvlist_free(props);
6141
6142 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6143 zs->zs_metaslab_sz =
6144 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6145 spa_close(spa, FTAG);
6146
6147 kernel_fini();
6148
6149 ztest_run_zdb(ztest_opts.zo_pool);
6150
6151 ztest_freeze();
6152
6153 ztest_run_zdb(ztest_opts.zo_pool);
6154
6155 (void) rwlock_destroy(&ztest_name_lock);
6156 mutex_destroy(&ztest_vdev_lock);
6157 }
6158
6159 static void
6160 setup_data_fd(void)
6161 {
6162 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6163
6164 ztest_fd_data = mkstemp(ztest_name_data);
6165 ASSERT3S(ztest_fd_data, >=, 0);
6166 (void) unlink(ztest_name_data);
6167 }
6168
6169 static int
6170 shared_data_size(ztest_shared_hdr_t *hdr)
6171 {
6172 int size;
6173
6174 size = hdr->zh_hdr_size;
6175 size += hdr->zh_opts_size;
6176 size += hdr->zh_size;
6177 size += hdr->zh_stats_size * hdr->zh_stats_count;
6178 size += hdr->zh_ds_size * hdr->zh_ds_count;
6179
6180 return (size);
6181 }
6182
6183 static void
6184 setup_hdr(void)
6185 {
6186 int size;
6187 ztest_shared_hdr_t *hdr;
6188
6189 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6190 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6191 ASSERT(hdr != MAP_FAILED);
6192
6193 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6194
6195 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6196 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6197 hdr->zh_size = sizeof (ztest_shared_t);
6198 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6199 hdr->zh_stats_count = ZTEST_FUNCS;
6200 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6201 hdr->zh_ds_count = ztest_opts.zo_datasets;
6202
6203 size = shared_data_size(hdr);
6204 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6205
6206 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6207 }
6208
6209 static void
6210 setup_data(void)
6211 {
6212 int size, offset;
6213 ztest_shared_hdr_t *hdr;
6214 uint8_t *buf;
6215
6216 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6217 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6218 ASSERT(hdr != MAP_FAILED);
6219
6220 size = shared_data_size(hdr);
6221
6222 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6223 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6224 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6225 ASSERT(hdr != MAP_FAILED);
6226 buf = (uint8_t *)hdr;
6227
6228 offset = hdr->zh_hdr_size;
6229 ztest_shared_opts = (void *)&buf[offset];
6230 offset += hdr->zh_opts_size;
6231 ztest_shared = (void *)&buf[offset];
6232 offset += hdr->zh_size;
6233 ztest_shared_callstate = (void *)&buf[offset];
6234 offset += hdr->zh_stats_size * hdr->zh_stats_count;
6235 ztest_shared_ds = (void *)&buf[offset];
6236 }
6237
6238 static boolean_t
6239 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6240 {
6241 pid_t pid;
6242 int status;
6243 char *cmdbuf = NULL;
6244
6245 pid = fork();
6246
6247 if (cmd == NULL) {
6248 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6249 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6250 cmd = cmdbuf;
6251 }
6252
6253 if (pid == -1)
6254 fatal(1, "fork failed");
6255
6256 if (pid == 0) { /* child */
6257 char *emptyargv[2] = { cmd, NULL };
6258 char fd_data_str[12];
6259
6260 struct rlimit rl = { 1024, 1024 };
6261 (void) setrlimit(RLIMIT_NOFILE, &rl);
6262
6263 (void) close(ztest_fd_rand);
6264 VERIFY(11 >= snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6265 VERIFY(0 == setenv("ZTEST_FD_DATA", fd_data_str, 1));
6266
6267 (void) enable_extended_FILE_stdio(-1, -1);
6268 if (libpath != NULL)
6269 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6270 (void) execv(cmd, emptyargv);
6271 ztest_dump_core = B_FALSE;
6272 fatal(B_TRUE, "exec failed: %s", cmd);
6273 }
6274
6275 if (cmdbuf != NULL) {
6276 umem_free(cmdbuf, MAXPATHLEN);
6277 cmd = NULL;
6278 }
6279
6280 while (waitpid(pid, &status, 0) != pid)
6281 continue;
6282 if (statusp != NULL)
6283 *statusp = status;
6284
6285 if (WIFEXITED(status)) {
6286 if (WEXITSTATUS(status) != 0) {
6287 (void) fprintf(stderr, "child exited with code %d\n",
6288 WEXITSTATUS(status));
6289 exit(2);
6290 }
6291 return (B_FALSE);
6292 } else if (WIFSIGNALED(status)) {
6293 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6294 (void) fprintf(stderr, "child died with signal %d\n",
6295 WTERMSIG(status));
6296 exit(3);
6297 }
6298 return (B_TRUE);
6299 } else {
6300 (void) fprintf(stderr, "something strange happened to child\n");
6301 exit(4);
6302 /* NOTREACHED */
6303 }
6304 }
6305
6306 static void
6307 ztest_run_init(void)
6308 {
6309 int i;
6310
6311 ztest_shared_t *zs = ztest_shared;
6312
6313 ASSERT(ztest_opts.zo_init != 0);
6314
6315 /*
6316 * Blow away any existing copy of zpool.cache
6317 */
6318 (void) remove(spa_config_path);
6319
6320 /*
6321 * Create and initialize our storage pool.
6322 */
6323 for (i = 1; i <= ztest_opts.zo_init; i++) {
6324 bzero(zs, sizeof (ztest_shared_t));
6325 if (ztest_opts.zo_verbose >= 3 &&
6326 ztest_opts.zo_init != 1) {
6327 (void) printf("ztest_init(), pass %d\n", i);
6328 }
6329 ztest_init(zs);
6330 }
6331 }
6332
6333 int
6334 main(int argc, char **argv)
6335 {
6336 int kills = 0;
6337 int iters = 0;
6338 int older = 0;
6339 int newer = 0;
6340 ztest_shared_t *zs;
6341 ztest_info_t *zi;
6342 ztest_shared_callstate_t *zc;
6343 char timebuf[100];
6344 char numbuf[6];
6345 spa_t *spa;
6346 char *cmd;
6347 boolean_t hasalt;
6348 int f;
6349 char *fd_data_str = getenv("ZTEST_FD_DATA");
6350 struct sigaction action;
6351
6352 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6353
6354 dprintf_setup(&argc, argv);
6355
6356 action.sa_handler = sig_handler;
6357 sigemptyset(&action.sa_mask);
6358 action.sa_flags = 0;
6359
6360 if (sigaction(SIGSEGV, &action, NULL) < 0) {
6361 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
6362 strerror(errno));
6363 exit(EXIT_FAILURE);
6364 }
6365
6366 if (sigaction(SIGABRT, &action, NULL) < 0) {
6367 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
6368 strerror(errno));
6369 exit(EXIT_FAILURE);
6370 }
6371
6372 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6373 ASSERT3S(ztest_fd_rand, >=, 0);
6374
6375 if (!fd_data_str) {
6376 process_options(argc, argv);
6377
6378 setup_data_fd();
6379 setup_hdr();
6380 setup_data();
6381 bcopy(&ztest_opts, ztest_shared_opts,
6382 sizeof (*ztest_shared_opts));
6383 } else {
6384 ztest_fd_data = atoi(fd_data_str);
6385 setup_data();
6386 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6387 }
6388 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6389
6390 /* Override location of zpool.cache */
6391 VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6392 ztest_opts.zo_dir) != -1);
6393
6394 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6395 UMEM_NOFAIL);
6396 zs = ztest_shared;
6397
6398 if (fd_data_str) {
6399 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6400 metaslab_df_alloc_threshold =
6401 zs->zs_metaslab_df_alloc_threshold;
6402
6403 if (zs->zs_do_init)
6404 ztest_run_init();
6405 else
6406 ztest_run(zs);
6407 exit(0);
6408 }
6409
6410 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6411
6412 if (ztest_opts.zo_verbose >= 1) {
6413 (void) printf("%llu vdevs, %d datasets, %d threads,"
6414 " %llu seconds...\n",
6415 (u_longlong_t)ztest_opts.zo_vdevs,
6416 ztest_opts.zo_datasets,
6417 ztest_opts.zo_threads,
6418 (u_longlong_t)ztest_opts.zo_time);
6419 }
6420
6421 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6422 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6423
6424 zs->zs_do_init = B_TRUE;
6425 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6426 if (ztest_opts.zo_verbose >= 1) {
6427 (void) printf("Executing older ztest for "
6428 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6429 }
6430 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6431 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6432 } else {
6433 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6434 }
6435 zs->zs_do_init = B_FALSE;
6436
6437 zs->zs_proc_start = gethrtime();
6438 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6439
6440 for (f = 0; f < ZTEST_FUNCS; f++) {
6441 zi = &ztest_info[f];
6442 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6443 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6444 zc->zc_next = UINT64_MAX;
6445 else
6446 zc->zc_next = zs->zs_proc_start +
6447 ztest_random(2 * zi->zi_interval[0] + 1);
6448 }
6449
6450 /*
6451 * Run the tests in a loop. These tests include fault injection
6452 * to verify that self-healing data works, and forced crashes
6453 * to verify that we never lose on-disk consistency.
6454 */
6455 while (gethrtime() < zs->zs_proc_stop) {
6456 int status;
6457 boolean_t killed;
6458
6459 /*
6460 * Initialize the workload counters for each function.
6461 */
6462 for (f = 0; f < ZTEST_FUNCS; f++) {
6463 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6464 zc->zc_count = 0;
6465 zc->zc_time = 0;
6466 }
6467
6468 /* Set the allocation switch size */
6469 zs->zs_metaslab_df_alloc_threshold =
6470 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6471
6472 if (!hasalt || ztest_random(2) == 0) {
6473 if (hasalt && ztest_opts.zo_verbose >= 1) {
6474 (void) printf("Executing newer ztest: %s\n",
6475 cmd);
6476 }
6477 newer++;
6478 killed = exec_child(cmd, NULL, B_TRUE, &status);
6479 } else {
6480 if (hasalt && ztest_opts.zo_verbose >= 1) {
6481 (void) printf("Executing older ztest: %s\n",
6482 ztest_opts.zo_alt_ztest);
6483 }
6484 older++;
6485 killed = exec_child(ztest_opts.zo_alt_ztest,
6486 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6487 }
6488
6489 if (killed)
6490 kills++;
6491 iters++;
6492
6493 if (ztest_opts.zo_verbose >= 1) {
6494 hrtime_t now = gethrtime();
6495
6496 now = MIN(now, zs->zs_proc_stop);
6497 print_time(zs->zs_proc_stop - now, timebuf);
6498 nicenum(zs->zs_space, numbuf);
6499
6500 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6501 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6502 iters,
6503 WIFEXITED(status) ? "Complete" : "SIGKILL",
6504 (u_longlong_t)zs->zs_enospc_count,
6505 100.0 * zs->zs_alloc / zs->zs_space,
6506 numbuf,
6507 100.0 * (now - zs->zs_proc_start) /
6508 (ztest_opts.zo_time * NANOSEC), timebuf);
6509 }
6510
6511 if (ztest_opts.zo_verbose >= 2) {
6512 (void) printf("\nWorkload summary:\n\n");
6513 (void) printf("%7s %9s %s\n",
6514 "Calls", "Time", "Function");
6515 (void) printf("%7s %9s %s\n",
6516 "-----", "----", "--------");
6517 for (f = 0; f < ZTEST_FUNCS; f++) {
6518 zi = &ztest_info[f];
6519 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6520 print_time(zc->zc_time, timebuf);
6521 (void) printf("%7llu %9s %s\n",
6522 (u_longlong_t)zc->zc_count, timebuf,
6523 zi->zi_funcname);
6524 }
6525 (void) printf("\n");
6526 }
6527
6528 /*
6529 * It's possible that we killed a child during a rename test,
6530 * in which case we'll have a 'ztest_tmp' pool lying around
6531 * instead of 'ztest'. Do a blind rename in case this happened.
6532 */
6533 kernel_init(FREAD);
6534 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6535 spa_close(spa, FTAG);
6536 } else {
6537 char tmpname[MAXNAMELEN];
6538 kernel_fini();
6539 kernel_init(FREAD | FWRITE);
6540 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6541 ztest_opts.zo_pool);
6542 (void) spa_rename(tmpname, ztest_opts.zo_pool);
6543 }
6544 kernel_fini();
6545
6546 ztest_run_zdb(ztest_opts.zo_pool);
6547 }
6548
6549 if (ztest_opts.zo_verbose >= 1) {
6550 if (hasalt) {
6551 (void) printf("%d runs of older ztest: %s\n", older,
6552 ztest_opts.zo_alt_ztest);
6553 (void) printf("%d runs of newer ztest: %s\n", newer,
6554 cmd);
6555 }
6556 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6557 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6558 }
6559
6560 umem_free(cmd, MAXNAMELEN);
6561
6562 return (0);
6563 }