]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
new bochs BIOS - 16 bit APM support (initial patch by Struan Bartlett)
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #if defined(__arm__) || defined(__sparc__)
24 #define WORDS_ALIGNED
25 #endif
26
27 /* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40 #include "bswap.h"
41
42 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43 #define BSWAP_NEEDED
44 #endif
45
46 #ifdef BSWAP_NEEDED
47
48 static inline uint16_t tswap16(uint16_t s)
49 {
50 return bswap16(s);
51 }
52
53 static inline uint32_t tswap32(uint32_t s)
54 {
55 return bswap32(s);
56 }
57
58 static inline uint64_t tswap64(uint64_t s)
59 {
60 return bswap64(s);
61 }
62
63 static inline void tswap16s(uint16_t *s)
64 {
65 *s = bswap16(*s);
66 }
67
68 static inline void tswap32s(uint32_t *s)
69 {
70 *s = bswap32(*s);
71 }
72
73 static inline void tswap64s(uint64_t *s)
74 {
75 *s = bswap64(*s);
76 }
77
78 #else
79
80 static inline uint16_t tswap16(uint16_t s)
81 {
82 return s;
83 }
84
85 static inline uint32_t tswap32(uint32_t s)
86 {
87 return s;
88 }
89
90 static inline uint64_t tswap64(uint64_t s)
91 {
92 return s;
93 }
94
95 static inline void tswap16s(uint16_t *s)
96 {
97 }
98
99 static inline void tswap32s(uint32_t *s)
100 {
101 }
102
103 static inline void tswap64s(uint64_t *s)
104 {
105 }
106
107 #endif
108
109 #if TARGET_LONG_SIZE == 4
110 #define tswapl(s) tswap32(s)
111 #define tswapls(s) tswap32s((uint32_t *)(s))
112 #define bswaptls(s) bswap32s(s)
113 #else
114 #define tswapl(s) tswap64(s)
115 #define tswapls(s) tswap64s((uint64_t *)(s))
116 #define bswaptls(s) bswap64s(s)
117 #endif
118
119 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
120 endian ! */
121 typedef union {
122 float64 d;
123 #if defined(WORDS_BIGENDIAN) || (defined(__arm__) && !defined(__VFP_FP__))
124 struct {
125 uint32_t upper;
126 uint32_t lower;
127 } l;
128 #else
129 struct {
130 uint32_t lower;
131 uint32_t upper;
132 } l;
133 #endif
134 uint64_t ll;
135 } CPU_DoubleU;
136
137 /* CPU memory access without any memory or io remapping */
138
139 /*
140 * the generic syntax for the memory accesses is:
141 *
142 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
143 *
144 * store: st{type}{size}{endian}_{access_type}(ptr, val)
145 *
146 * type is:
147 * (empty): integer access
148 * f : float access
149 *
150 * sign is:
151 * (empty): for floats or 32 bit size
152 * u : unsigned
153 * s : signed
154 *
155 * size is:
156 * b: 8 bits
157 * w: 16 bits
158 * l: 32 bits
159 * q: 64 bits
160 *
161 * endian is:
162 * (empty): target cpu endianness or 8 bit access
163 * r : reversed target cpu endianness (not implemented yet)
164 * be : big endian (not implemented yet)
165 * le : little endian (not implemented yet)
166 *
167 * access_type is:
168 * raw : host memory access
169 * user : user mode access using soft MMU
170 * kernel : kernel mode access using soft MMU
171 */
172 static inline int ldub_p(void *ptr)
173 {
174 return *(uint8_t *)ptr;
175 }
176
177 static inline int ldsb_p(void *ptr)
178 {
179 return *(int8_t *)ptr;
180 }
181
182 static inline void stb_p(void *ptr, int v)
183 {
184 *(uint8_t *)ptr = v;
185 }
186
187 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
188 kernel handles unaligned load/stores may give better results, but
189 it is a system wide setting : bad */
190 #if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
191
192 /* conservative code for little endian unaligned accesses */
193 static inline int lduw_p(void *ptr)
194 {
195 #ifdef __powerpc__
196 int val;
197 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
198 return val;
199 #else
200 uint8_t *p = ptr;
201 return p[0] | (p[1] << 8);
202 #endif
203 }
204
205 static inline int ldsw_p(void *ptr)
206 {
207 #ifdef __powerpc__
208 int val;
209 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
210 return (int16_t)val;
211 #else
212 uint8_t *p = ptr;
213 return (int16_t)(p[0] | (p[1] << 8));
214 #endif
215 }
216
217 static inline int ldl_p(void *ptr)
218 {
219 #ifdef __powerpc__
220 int val;
221 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
222 return val;
223 #else
224 uint8_t *p = ptr;
225 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
226 #endif
227 }
228
229 static inline uint64_t ldq_p(void *ptr)
230 {
231 uint8_t *p = ptr;
232 uint32_t v1, v2;
233 v1 = ldl_p(p);
234 v2 = ldl_p(p + 4);
235 return v1 | ((uint64_t)v2 << 32);
236 }
237
238 static inline void stw_p(void *ptr, int v)
239 {
240 #ifdef __powerpc__
241 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
242 #else
243 uint8_t *p = ptr;
244 p[0] = v;
245 p[1] = v >> 8;
246 #endif
247 }
248
249 static inline void stl_p(void *ptr, int v)
250 {
251 #ifdef __powerpc__
252 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
253 #else
254 uint8_t *p = ptr;
255 p[0] = v;
256 p[1] = v >> 8;
257 p[2] = v >> 16;
258 p[3] = v >> 24;
259 #endif
260 }
261
262 static inline void stq_p(void *ptr, uint64_t v)
263 {
264 uint8_t *p = ptr;
265 stl_p(p, (uint32_t)v);
266 stl_p(p + 4, v >> 32);
267 }
268
269 /* float access */
270
271 static inline float32 ldfl_p(void *ptr)
272 {
273 union {
274 float32 f;
275 uint32_t i;
276 } u;
277 u.i = ldl_p(ptr);
278 return u.f;
279 }
280
281 static inline void stfl_p(void *ptr, float32 v)
282 {
283 union {
284 float32 f;
285 uint32_t i;
286 } u;
287 u.f = v;
288 stl_p(ptr, u.i);
289 }
290
291 static inline float64 ldfq_p(void *ptr)
292 {
293 CPU_DoubleU u;
294 u.l.lower = ldl_p(ptr);
295 u.l.upper = ldl_p(ptr + 4);
296 return u.d;
297 }
298
299 static inline void stfq_p(void *ptr, float64 v)
300 {
301 CPU_DoubleU u;
302 u.d = v;
303 stl_p(ptr, u.l.lower);
304 stl_p(ptr + 4, u.l.upper);
305 }
306
307 #elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
308
309 static inline int lduw_p(void *ptr)
310 {
311 #if defined(__i386__)
312 int val;
313 asm volatile ("movzwl %1, %0\n"
314 "xchgb %b0, %h0\n"
315 : "=q" (val)
316 : "m" (*(uint16_t *)ptr));
317 return val;
318 #else
319 uint8_t *b = (uint8_t *) ptr;
320 return ((b[0] << 8) | b[1]);
321 #endif
322 }
323
324 static inline int ldsw_p(void *ptr)
325 {
326 #if defined(__i386__)
327 int val;
328 asm volatile ("movzwl %1, %0\n"
329 "xchgb %b0, %h0\n"
330 : "=q" (val)
331 : "m" (*(uint16_t *)ptr));
332 return (int16_t)val;
333 #else
334 uint8_t *b = (uint8_t *) ptr;
335 return (int16_t)((b[0] << 8) | b[1]);
336 #endif
337 }
338
339 static inline int ldl_p(void *ptr)
340 {
341 #if defined(__i386__) || defined(__x86_64__)
342 int val;
343 asm volatile ("movl %1, %0\n"
344 "bswap %0\n"
345 : "=r" (val)
346 : "m" (*(uint32_t *)ptr));
347 return val;
348 #else
349 uint8_t *b = (uint8_t *) ptr;
350 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
351 #endif
352 }
353
354 static inline uint64_t ldq_p(void *ptr)
355 {
356 uint32_t a,b;
357 a = ldl_p(ptr);
358 b = ldl_p(ptr+4);
359 return (((uint64_t)a<<32)|b);
360 }
361
362 static inline void stw_p(void *ptr, int v)
363 {
364 #if defined(__i386__)
365 asm volatile ("xchgb %b0, %h0\n"
366 "movw %w0, %1\n"
367 : "=q" (v)
368 : "m" (*(uint16_t *)ptr), "0" (v));
369 #else
370 uint8_t *d = (uint8_t *) ptr;
371 d[0] = v >> 8;
372 d[1] = v;
373 #endif
374 }
375
376 static inline void stl_p(void *ptr, int v)
377 {
378 #if defined(__i386__) || defined(__x86_64__)
379 asm volatile ("bswap %0\n"
380 "movl %0, %1\n"
381 : "=r" (v)
382 : "m" (*(uint32_t *)ptr), "0" (v));
383 #else
384 uint8_t *d = (uint8_t *) ptr;
385 d[0] = v >> 24;
386 d[1] = v >> 16;
387 d[2] = v >> 8;
388 d[3] = v;
389 #endif
390 }
391
392 static inline void stq_p(void *ptr, uint64_t v)
393 {
394 stl_p(ptr, v >> 32);
395 stl_p(ptr + 4, v);
396 }
397
398 /* float access */
399
400 static inline float32 ldfl_p(void *ptr)
401 {
402 union {
403 float32 f;
404 uint32_t i;
405 } u;
406 u.i = ldl_p(ptr);
407 return u.f;
408 }
409
410 static inline void stfl_p(void *ptr, float32 v)
411 {
412 union {
413 float32 f;
414 uint32_t i;
415 } u;
416 u.f = v;
417 stl_p(ptr, u.i);
418 }
419
420 static inline float64 ldfq_p(void *ptr)
421 {
422 CPU_DoubleU u;
423 u.l.upper = ldl_p(ptr);
424 u.l.lower = ldl_p(ptr + 4);
425 return u.d;
426 }
427
428 static inline void stfq_p(void *ptr, float64 v)
429 {
430 CPU_DoubleU u;
431 u.d = v;
432 stl_p(ptr, u.l.upper);
433 stl_p(ptr + 4, u.l.lower);
434 }
435
436 #else
437
438 static inline int lduw_p(void *ptr)
439 {
440 return *(uint16_t *)ptr;
441 }
442
443 static inline int ldsw_p(void *ptr)
444 {
445 return *(int16_t *)ptr;
446 }
447
448 static inline int ldl_p(void *ptr)
449 {
450 return *(uint32_t *)ptr;
451 }
452
453 static inline uint64_t ldq_p(void *ptr)
454 {
455 return *(uint64_t *)ptr;
456 }
457
458 static inline void stw_p(void *ptr, int v)
459 {
460 *(uint16_t *)ptr = v;
461 }
462
463 static inline void stl_p(void *ptr, int v)
464 {
465 *(uint32_t *)ptr = v;
466 }
467
468 static inline void stq_p(void *ptr, uint64_t v)
469 {
470 *(uint64_t *)ptr = v;
471 }
472
473 /* float access */
474
475 static inline float32 ldfl_p(void *ptr)
476 {
477 return *(float32 *)ptr;
478 }
479
480 static inline float64 ldfq_p(void *ptr)
481 {
482 return *(float64 *)ptr;
483 }
484
485 static inline void stfl_p(void *ptr, float32 v)
486 {
487 *(float32 *)ptr = v;
488 }
489
490 static inline void stfq_p(void *ptr, float64 v)
491 {
492 *(float64 *)ptr = v;
493 }
494 #endif
495
496 /* MMU memory access macros */
497
498 /* NOTE: we use double casts if pointers and target_ulong have
499 different sizes */
500 #define ldub_raw(p) ldub_p((uint8_t *)(long)(p))
501 #define ldsb_raw(p) ldsb_p((uint8_t *)(long)(p))
502 #define lduw_raw(p) lduw_p((uint8_t *)(long)(p))
503 #define ldsw_raw(p) ldsw_p((uint8_t *)(long)(p))
504 #define ldl_raw(p) ldl_p((uint8_t *)(long)(p))
505 #define ldq_raw(p) ldq_p((uint8_t *)(long)(p))
506 #define ldfl_raw(p) ldfl_p((uint8_t *)(long)(p))
507 #define ldfq_raw(p) ldfq_p((uint8_t *)(long)(p))
508 #define stb_raw(p, v) stb_p((uint8_t *)(long)(p), v)
509 #define stw_raw(p, v) stw_p((uint8_t *)(long)(p), v)
510 #define stl_raw(p, v) stl_p((uint8_t *)(long)(p), v)
511 #define stq_raw(p, v) stq_p((uint8_t *)(long)(p), v)
512 #define stfl_raw(p, v) stfl_p((uint8_t *)(long)(p), v)
513 #define stfq_raw(p, v) stfq_p((uint8_t *)(long)(p), v)
514
515
516 #if defined(CONFIG_USER_ONLY)
517
518 /* if user mode, no other memory access functions */
519 #define ldub(p) ldub_raw(p)
520 #define ldsb(p) ldsb_raw(p)
521 #define lduw(p) lduw_raw(p)
522 #define ldsw(p) ldsw_raw(p)
523 #define ldl(p) ldl_raw(p)
524 #define ldq(p) ldq_raw(p)
525 #define ldfl(p) ldfl_raw(p)
526 #define ldfq(p) ldfq_raw(p)
527 #define stb(p, v) stb_raw(p, v)
528 #define stw(p, v) stw_raw(p, v)
529 #define stl(p, v) stl_raw(p, v)
530 #define stq(p, v) stq_raw(p, v)
531 #define stfl(p, v) stfl_raw(p, v)
532 #define stfq(p, v) stfq_raw(p, v)
533
534 #define ldub_code(p) ldub_raw(p)
535 #define ldsb_code(p) ldsb_raw(p)
536 #define lduw_code(p) lduw_raw(p)
537 #define ldsw_code(p) ldsw_raw(p)
538 #define ldl_code(p) ldl_raw(p)
539
540 #define ldub_kernel(p) ldub_raw(p)
541 #define ldsb_kernel(p) ldsb_raw(p)
542 #define lduw_kernel(p) lduw_raw(p)
543 #define ldsw_kernel(p) ldsw_raw(p)
544 #define ldl_kernel(p) ldl_raw(p)
545 #define ldfl_kernel(p) ldfl_raw(p)
546 #define ldfq_kernel(p) ldfq_raw(p)
547 #define stb_kernel(p, v) stb_raw(p, v)
548 #define stw_kernel(p, v) stw_raw(p, v)
549 #define stl_kernel(p, v) stl_raw(p, v)
550 #define stq_kernel(p, v) stq_raw(p, v)
551 #define stfl_kernel(p, v) stfl_raw(p, v)
552 #define stfq_kernel(p, vt) stfq_raw(p, v)
553
554 #endif /* defined(CONFIG_USER_ONLY) */
555
556 /* page related stuff */
557
558 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
559 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
560 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
561
562 extern unsigned long qemu_real_host_page_size;
563 extern unsigned long qemu_host_page_bits;
564 extern unsigned long qemu_host_page_size;
565 extern unsigned long qemu_host_page_mask;
566
567 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
568
569 /* same as PROT_xxx */
570 #define PAGE_READ 0x0001
571 #define PAGE_WRITE 0x0002
572 #define PAGE_EXEC 0x0004
573 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
574 #define PAGE_VALID 0x0008
575 /* original state of the write flag (used when tracking self-modifying
576 code */
577 #define PAGE_WRITE_ORG 0x0010
578
579 void page_dump(FILE *f);
580 int page_get_flags(unsigned long address);
581 void page_set_flags(unsigned long start, unsigned long end, int flags);
582 void page_unprotect_range(uint8_t *data, unsigned long data_size);
583
584 #define SINGLE_CPU_DEFINES
585 #ifdef SINGLE_CPU_DEFINES
586
587 #if defined(TARGET_I386)
588
589 #define CPUState CPUX86State
590 #define cpu_init cpu_x86_init
591 #define cpu_exec cpu_x86_exec
592 #define cpu_gen_code cpu_x86_gen_code
593 #define cpu_signal_handler cpu_x86_signal_handler
594
595 #elif defined(TARGET_ARM)
596
597 #define CPUState CPUARMState
598 #define cpu_init cpu_arm_init
599 #define cpu_exec cpu_arm_exec
600 #define cpu_gen_code cpu_arm_gen_code
601 #define cpu_signal_handler cpu_arm_signal_handler
602
603 #elif defined(TARGET_SPARC)
604
605 #define CPUState CPUSPARCState
606 #define cpu_init cpu_sparc_init
607 #define cpu_exec cpu_sparc_exec
608 #define cpu_gen_code cpu_sparc_gen_code
609 #define cpu_signal_handler cpu_sparc_signal_handler
610
611 #elif defined(TARGET_PPC)
612
613 #define CPUState CPUPPCState
614 #define cpu_init cpu_ppc_init
615 #define cpu_exec cpu_ppc_exec
616 #define cpu_gen_code cpu_ppc_gen_code
617 #define cpu_signal_handler cpu_ppc_signal_handler
618
619 #else
620
621 #error unsupported target CPU
622
623 #endif
624
625 #endif /* SINGLE_CPU_DEFINES */
626
627 void cpu_dump_state(CPUState *env, FILE *f,
628 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
629 int flags);
630
631 void cpu_abort(CPUState *env, const char *fmt, ...);
632 extern CPUState *cpu_single_env;
633 extern int code_copy_enabled;
634
635 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
636 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
637 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
638 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
639 void cpu_interrupt(CPUState *s, int mask);
640 void cpu_reset_interrupt(CPUState *env, int mask);
641
642 int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
643 int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
644 void cpu_single_step(CPUState *env, int enabled);
645 void cpu_reset(CPUState *s);
646
647 /* Return the physical page corresponding to a virtual one. Use it
648 only for debugging because no protection checks are done. Return -1
649 if no page found. */
650 target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
651
652 #define CPU_LOG_TB_OUT_ASM (1 << 0)
653 #define CPU_LOG_TB_IN_ASM (1 << 1)
654 #define CPU_LOG_TB_OP (1 << 2)
655 #define CPU_LOG_TB_OP_OPT (1 << 3)
656 #define CPU_LOG_INT (1 << 4)
657 #define CPU_LOG_EXEC (1 << 5)
658 #define CPU_LOG_PCALL (1 << 6)
659 #define CPU_LOG_IOPORT (1 << 7)
660 #define CPU_LOG_TB_CPU (1 << 8)
661
662 /* define log items */
663 typedef struct CPULogItem {
664 int mask;
665 const char *name;
666 const char *help;
667 } CPULogItem;
668
669 extern CPULogItem cpu_log_items[];
670
671 void cpu_set_log(int log_flags);
672 void cpu_set_log_filename(const char *filename);
673 int cpu_str_to_log_mask(const char *str);
674
675 /* IO ports API */
676
677 /* NOTE: as these functions may be even used when there is an isa
678 brige on non x86 targets, we always defined them */
679 #ifndef NO_CPU_IO_DEFS
680 void cpu_outb(CPUState *env, int addr, int val);
681 void cpu_outw(CPUState *env, int addr, int val);
682 void cpu_outl(CPUState *env, int addr, int val);
683 int cpu_inb(CPUState *env, int addr);
684 int cpu_inw(CPUState *env, int addr);
685 int cpu_inl(CPUState *env, int addr);
686 #endif
687
688 /* memory API */
689
690 extern int phys_ram_size;
691 extern int phys_ram_fd;
692 extern uint8_t *phys_ram_base;
693 extern uint8_t *phys_ram_dirty;
694
695 /* physical memory access */
696 #define IO_MEM_NB_ENTRIES 256
697 #define TLB_INVALID_MASK (1 << 3)
698 #define IO_MEM_SHIFT 4
699
700 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
701 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
702 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
703 #define IO_MEM_CODE (3 << IO_MEM_SHIFT) /* used internally, never use directly */
704 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
705
706 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
707 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
708
709 void cpu_register_physical_memory(target_phys_addr_t start_addr,
710 unsigned long size,
711 unsigned long phys_offset);
712 int cpu_register_io_memory(int io_index,
713 CPUReadMemoryFunc **mem_read,
714 CPUWriteMemoryFunc **mem_write,
715 void *opaque);
716 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
717 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
718
719 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
720 int len, int is_write);
721 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
722 uint8_t *buf, int len)
723 {
724 cpu_physical_memory_rw(addr, buf, len, 0);
725 }
726 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
727 const uint8_t *buf, int len)
728 {
729 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
730 }
731 uint32_t ldl_phys(target_phys_addr_t addr);
732 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
733 void stl_phys(target_phys_addr_t addr, uint32_t val);
734
735 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
736 uint8_t *buf, int len, int is_write);
737
738 #define VGA_DIRTY_FLAG 0x01
739
740 /* read dirty bit (return 0 or 1) */
741 static inline int cpu_physical_memory_is_dirty(target_ulong addr)
742 {
743 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
744 }
745
746 static inline int cpu_physical_memory_get_dirty(target_ulong addr,
747 int dirty_flags)
748 {
749 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
750 }
751
752 static inline void cpu_physical_memory_set_dirty(target_ulong addr)
753 {
754 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
755 }
756
757 void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end,
758 int dirty_flags);
759
760 void dump_exec_info(FILE *f,
761 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
762
763 #endif /* CPU_ALL_H */